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Existence of non-topological solutions to a
~ nonlinear elliptic equation arising in
- self-dual Chern-Simons-Higgs theory

Kazuhiro Kurata, Kazuyuki Matsuda

1 Introdiiction

In this paper I will report our recent studies on existence of 0-vortex non-
topological solutions to a nonlinear elliptic equation arising in self-dual Chern-
Simons-Higgs theory in a general background metric. For physical back-
grounds for the Chern-Simons-Higgs theory, see [HKP], [JW], and [Du].

As in Schiff{Sc], the energy for static states in the (2+1)-dimensional
relativistic Abelian Chern-Simons Higgs theory under the background metric
g = diag(1,—k(z), —k(z)) is defined as follows: '

- KF
4k(z)|¢|?

where ¢ is a complex scalar field, A,(x = 1,2) is a vector field, D, ¢ =
(8, —iA,)d, F = 8,A, —8,A,, k> 0 is a coupling constant, and k(z) is a
positive function. If we take the special Higgs potential |

V(lel) = (1/f€2)|¢|2(|¢lzv - 1)%

Then we have the following formula under certain decay assumptions to some
quantities. -

= [{(D:P + D2sl) + + K@)V (14]) | de,

o 9 kFi2 \/zzx—) (] 112 2
E=/{|(D1:1:ZD2)¢| +- L1 5 (|62 =1)] }dm;l:/Flzd:v. (1)
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Here, ¢* is the complex conjugate of ¢. Let ® = [Fipdx be the total
magnetic flux and fix it. Then, it follows that (¢, A,) is the global minimizer
of E if and only if (¢, A,) satisfies

(Dy £iD,)¢) =0, | (2)
Fox 2D gp (o -1 =0. ®)

As in self-dual models in many gauge theory, the study of this system can
be reduced to the one of an certain second order scalar nonlinear elliptic

equation. For simplicity, consider O-vortex solutions, i.e. ¢ # 0. Writing
¢ = hew = e(1/Du+iw () yields

Ai = —0;w + e,-jaj(log h)

‘Thus, Fy; = —{0,(81h/h) + 05(02h/h)} = —A(log h) Therefore by (3) we
obtain 4h(z)
T

Au = 2 e*(e* — 1). (4)

We use the notation A = 4/x? throughout this paper.

Remark 1 (8) in the case of plus sign yields

2= [ Fydo= %fﬂ;(zi)euu _ ¢%) da. )

Later, we will find solutions to (4) (i.e. 0-vortex non-topological solution) in
‘the form u = ug + w, ug = log(1 + ||?)*/2, where w satisfies [ Awdz = 0
and w(z) tends to a constant at infinity. Since [ Augdz = 2w, we have the
relation ® = —am. So, to prescribe the total magnetic fluz ® is equivalent to
prescribe the number «.

From the energy finiteness of solutions, the following two type of solution
can be considered: the one is |¢| — 1 as |z| — oo (which is called topological
solutions), the other is || — 0 as |z| — oo (which is called non-topological
solutions). Hence, for solution u to (4), we call u is topological iff u(z) — 0
as |z| — oco; u is non-topological iff u(z) — —oo as |z| — co. We also say ¢
is a N-Vortex solution (N U N) for prescribed points {p;}i_;, if

|¢| ~ ci|z — pi|™ (|z — pi| = 0),c; >0,N = Zn,

=1
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For a N—vortex solution, the system (2)-(3) can be reduced into the study
of ‘ |

4k(z) 1
Av = uo+v uo+v_ 4 z —
VST Z" T+l =Py
where uo(z) = — Y, n;log(l + Iac — pi|” 2) (see e.g. [SpYa2]), with the

asymptotic behaviour v(z) — 0 for a topological solution, v(z) — —oo for
a non-topological solution, respectively. We recall several known results on
existence of non-topological and topological solutions. First, for the case g =
diag(1,-1,-1)(i.e., k(z) = 1), existence of arbitrary N-vortex topological solu-
tion was shown by Wang[Wal, Spruck—Yang[SpYa2] and ®, Q(total charge),
E are all quantized:

® =27N,Q =2nNk,E =27 N.

They also proved the asymptotic behaviour (|¢|? — 1), |Fiz| ~ O(e™(¢/I=Dlel)
at infinity, The existence of radially symmetric N-voretex non-topological
solutions was proved by Spruck-Yang[SpYal]|, Chen-Hastings-McLeod-Yang,
especially in [CHMY] they showed that for every § > 2N + 4, N > 0, there
exist a solution s.t. |@|%, |Fiz| ~ O(|z|7?),|D;¢|* = O(]z|~?*#)) at infinity.
In this case, we have :

S =27rN+78,Q=%®xk,,FE=9.

Next, Schiff studied self-dual Chern-Simon-Higgs theory in a general
bachground metric and proved that for the case 4k(|z|)/x* = 8%/|z|%, 8 > 0,
u(|z]) = —log(A|z|? +1), X > 0 is a solution of (4) (8-vortex non-topological
solution). In [CHMY] they alos studied for certain k(z) = k(|z|) the unique-
ness of N- vortex topological radially symmetric solution for the prescribed
N; existence of N-vortex non-topological radially symmetric solutions for
ceratin range for (.

The purpose of this paper is to study (4) for certain general, not neces-
sary radially symmetric, k(z) and show existence of 0-vortex non-topological
solutions via a variational method or a fixed point theorem.

2 Main Results

Throughout this paper, we assume k(z) % 0 and k(z) is a non-negative
Holder continuous function. Qur main result is as follows.
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Theorem 1 Suppose k(z) satisfies k(z) = O(1/|z|") as |z| — oo for some
1>2. Let =4 < o < min(0,1 — 4). Then there exists a constant Ny > 0 such
that for every A > Xy (4) has a solution u satisfying

lim (u(z) — alog|z|) = C,

jz|—o00

for some constant C,.

Remark 2 Actually, we can prove the following: there exists a critical pa-
rameter A, > (—8wa)/ [ k(x)dz s.t. there exists a solution for every A > )\,
and no solution for 0 < X < \.. We can prove this result by combining
a subsolution-supersolution method with Theorem 1. It will be published in
elsewhere. Our method can be applied to obtain a I1-vortex non-topological
solution under certain conditions.

We can show Theorem 1 via a variational method based on several results on
the weighted Sobolev spaces W2s(see [Mc]). (4) has some similarity to the
Gauss curvature equation, but a difficult problem to determine the sign of the
Lagrange multiplier occurs due to the nonlinearity in (4). We overcome this
dificulty by using the idea of Caffarelli and Yang, in [CaYa] they employed
their idea to periodic problem.

Theorem 2 Suppose k(x) satisfies k(z) = O(1/|z|") as |z| — oo for some
1>2. Fiz A\ > 0in (4). Then, there exists sufficientlly small constant ap >0
s.t. for any o € (—ayp,0), (4) has a solution u which satisfies

alog [o] - €1 < u(z) < aloglz| + C;
near infinity, where C1,Cy are positive constants.

Theorem 2 is proved by using the Leray-Schauder’s fixed point theorem on a
weighted Sobolev space W?;. In this paper, we only give a sketch of the proof
of Theorem 1 (see [Ku] for the details). See [Ma] for the proof of Theorem 2.

We can also show an existence theorem under somewhat mild condition
for the decay on k(z) via subsolution-supersolution method(see [Ma]) for
certain a. However, to author’s knowledge, it is an open problem to obtain
an existence theorem for non-topological solutions under slow dacay general
(not radially symmetirc) background metric.
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Remark 3 Recently, the results on the periodic problem in [CaYa] is sharp-
end by Tarantello[Ta]. As an analogy to [Ta/, we have a following conjecture:
there exist two solutions uy, Uy s.t. uy — 0 as A — 400, Uy = wy + ¢y, Cy
is a constant, which satisfy wy — wy in ‘H and ¢y — —oo as A — +oo.
Moreover, wq satisfies the following equation:

k(z)evotwo
frz kevotwo dz f /wOf dz =0,

| where f = —Aug and ug = log(1 + |z|?)*/2.

—Awg = (—27a)

'3 Preliminaries

In this section, we recall several known results on weighted Sobolev spaces
and Moser-Trudinger’s inequality and Poincaré’s inequality adapted in this
setting. The weighted Sobolev spaces W75 are defined as the closure of Cg°
with respect to the norm: '

llls = 3 1101+ )P+ D

‘ T lBIss
We use the notation L} = W¢;. The following results are well-known (see
e.g. [Mc]). :

(i) If s' > 5,6 > 6, then we have a compact embedding: W7 5 C Wis.

(ii) If s > 1,6 > —1, then W2; C Co(R?). '

(iii) w € L, Au € L%,, implies u € W¥;. |
~ (iv) Let -1 < 6 < 0. Then A : W}; — L%, is the bijiection to the range
{f € L%,,; [ fdz = 0}. We also need the follwoing two technical lemmas.
Lemma 1 Let du = h(z)dz with h(z) ~ (1 + |z|)~?9,e > 0, and 0 < B <
min(4w,27e). Then we have

2 —
/e“'"' dp < Cexp(%a—HVz/I‘l%z)‘, veEH.
Here H is the closure of C w.r.t. V|3 = [|Vv|Pde + [v?du and H =
{veH;[vdp =0} | -

Lemma 2 Let n > 0 and v € . Then there egists a constant C = C(n)
such that

W2, < C@)IVylle.
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4 Sketch of The Proof of Theorem 1

Let o < 0 and take ug(z) = log(1 + |z|?)*/2. Then
—2a

f(z) = —Aue(z) = (—1—_!_—7,—2—)5(2 0).

Consider the measure dy = f(z) dz. Then we have

/du = /f(a:) dz = —2ma.

Let H be the closure of C§° w.r.t. the norm ||v|}, = {[ |Vw|*dz+ [ w? du <
+o0} and H = {w € H; fwdu—O} Now u = w + uy is a solution to (4) iff
w satisfies

Aw + Mk(z)e™ (1 — e*™™) = f.

We will find a solution w in the class H. Decompose w € H into w =
v +c,v € H with a constant c. Assume

/ Awdz = 0.
v and c should satisfy |
e* / k(z)eX ) dg — ¢ / k(z)e*t dz + (—2ma)/A = 0.
Thus the following condition is necessary:

([ Me)ewor o) + Sma 2 [ (z)eer) dz > 0. (6)

Let H, = {v € H;v satisfies the condition above}. Define the constant
= ¢(v) as follows:

k(z)e*ot” dx + /([ k(z)ewot” dx)? + 822 [k m)ez(,“°+V) dx
_ X

: 7
2 [ k(z)eXuotv) dg | ()

Then consider the following minimizing problem:
o= Vleng* I(v), (8)

1 A
I(v) = /§|V1/|2+ §k(:c)ez(“°+”+c) — Ak(m)§“°+”+° dz — 2rac.  (9)
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Lemma 3 There exists a constant ¢ = c(a) s.t.

I(v) > —(—27a)log A — c(a),v € OH..
Next take Ao sufficiently large s.t.

8T

(/ k(z)e™ dz)? + T/k(w)ezu" dz > 0.
_ 0
Then 0 belongs to the interior of H, for every A > Ag. On the other hand,

Lemma 4 Taking A\ sufficiently large if necessary, there exist positive con-
stants Cj = Cj(a),j = 1,2 s.t.

I(0) < —=CiA + Cy
for A > Xo.
Therefore, we have, taking )¢ sufficiently large if necessary again,
I(0) < =1+ I(v),v € OH,

for A > Ao. Hence, if there exists a minimizer v, to the minimizing problem,
vo belongs to the interior of H,.

Lemma 5 There ezist poéz’tz’ve constants 6,C s.t.
1(v) 2 §][Vv|% - C,v € M.

Our assuption ! > 2 need here! This lemma and the compactness of the

embedding H — L?(du), we can conclude the existence of the minumizer vy,

which belongs to the interior of H,. Note H — W{_,_, for every e < 1.
Since vy belongs to the interior of H,, we have

(I'(v), ) = 0,6 € H.

Using [ ¢f dz = 0 and the definition of ¢ = ¢(vy), this implies

/‘VVO -V dx + /{)\k(m) (ez("°+"°+°) - e"°+”°+c) + flypdz =0



73

for every ¢ € H. Thus U(x) = o+ vo + c(vo) satisfies —AU + Ak(z)eV (¥ -
1) = 0. Finally, since H — Cj, we have vy(z) — 0 as || — co. This’
conclude the desired result. O
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