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1 Introduction
The Keller-Segel models [7], which describes the chemotactic aggregation
stage of cellular slime molds, was investigated by many authors, see e.g.,
Lin, Ni and Takagi [9] and Ni and Takagi $[10],[11],$ $[12]$ . We are interested in
the stationary problem of the Keller-Segel system

$D_{1}\triangle u-\chi\nabla\cdot(u\nabla\phi(v))=0$ in $\Omega$ , (1.1)
$D_{2}\triangle v-av+bu=0$ in $\Omega$ , (1.2)
$\frac{}\partial u}{\partial\iota^{\text{ノ}}=\frac{\partial v}{\partial\nu}=0$ on $\partial\Omega$ , (1.3)

where $D_{1}>0,$ $D_{2}>0,$ $a>0$ and $b>0$ are constants, $\nu$ is the outer normal
unit vector on $\partial\Omega,$ $\phi$ is a smooth function with $\phi’>0$ on $(0, \infty)$ and $\Omega$ is
a smooth bounded domain in $\mathrm{R}^{2}$ . We will seek a pair of positive solutions
$(u, v)$ to $(1.1)-(1.3)$ . Biologically, $u$ represents the density of amoebae, $v$ does
the concentration of the chemical which amoebae transmit. $\phi$ represents the
sensitivity of amoebae to the chemical.

The logarithmic sensitivity $\phi(v)=\log v$ , there are lots of literature, see,
e.g., Ni and Takagi [10] and the references therein.

Instead, here we adopt $\emptyset(v)=v$ . In this case, (1.1) is written as

$\nabla\cdot\{D_{1}u\nabla(\log u-\frac{\chi}{D_{1}}v)\}=0$ .
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Then we see that $u=ce^{pv}$ by using (1.3), where $p=\chi/D_{1}$ and $c>0$ is a
constant. Thus $(1.1)-(1.3)$ is equivalent to.

$\{$

$D_{2}\triangle v-av+bce^{pv}=0$ in $\Omega$ ,
$v>0$ in $\Omega$ ,
$\frac{}\partial v}{\partial\iota \text{ノ}=0$ on $\partial\Omega$ .

Now putting $\epsilon^{2}=D_{2}/a$ and $bc/a=\lambda$ , we have

$\{$

$\epsilon^{2}\triangle v-v+\lambda e^{p}v=0$ in $\Omega$ ,
$v>0$ in $\Omega$ ,
$\frac{}\partial v}{\partial_{l\text{ノ}}=0$ on $\partial\Omega$ .

(1.4)

Conversely, if $w$ is a positive solution to (1.4), then $u=c_{1}e^{pw}$ and $v=c_{2}w$

satisfy $(1.1)-(1.3)$ with $c_{1}=apD_{1}\lambda/b\chi$ and $c_{2}=pD_{1}/\chi$ .
From now on, we will mainly investigate (1.4) with $\epsilon,$

$\lambda$ and $p$ being
positive parameters.

Before stating our results on (1.4), we first discuss a slightly more general
problem:

$\epsilon^{2}\triangle u-cu+h(u)=0$ in $\Omega$ , (1.5)
$u>0$ in $\Omega$ , (1.6)
$\frac{\partial u}{\partial\nu}=0$ on $\partial\Omega$ , (1.7)

where $\epsilon>0$ and $c>0$ .
We make the following assumptions on $h$ :

$(h_{1})h$ : $\mathrm{R}arrow \mathrm{R}$ is locally H\"older continuous, $h(z)=0$ for $z\leq 0$ and
$h(z)>0$ for $z>0$ .

$(h_{2})h(_{Z})=o(z)$ as $z\downarrow 0$ .

$(h_{3})h(z)/zarrow\infty$ as $zarrow\infty$ . Moreover, there exist $\alpha\geq 0$ and $\beta(z)$ with
$\beta(z)/z^{2}arrow 0$ as $zarrow\infty$ such that

$h(z)\leq\alpha\exp\beta(z)$ for $z>0$ .
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$(h_{4})$ Let $H(z)= \int_{0}^{z}h(t)dt$ . There exists $\alpha_{1}\geq 0$ and $\theta\in(0,1/2)$ such that

$H(z)\leq\theta Zh(\mathcal{Z})$ if $z\geq\alpha_{1}$ .

$(h_{5}) \gamma=\inf\{CZ^{2}/2-H(z)|z\in Z\}>0$ where $Z=\{z>0|h(z)=cZ\}$ .

We note that $Z\neq\emptyset$ because of $(h_{2})$ and $(h_{3})$ . If $(h_{4})$ holds with $\alpha_{1}=0$ ,
then $(h_{5})$ is automatically satisfied. lf $\zeta\in Z$ , then $u(x)\equiv\zeta$ is a positive
solution to $(1.5)-(1.7)$ . An example of a function satisifying $(h_{1})-(h_{5})$ is
$h(z)=(e^{pz}-1-pz)_{+}$ . Just note that $(h_{4})$ is satisfied with $\theta\in[1/3,1/2)$

and $\alpha_{1}=0$ .
Let $E$ denote the Hilbert space $W^{1,2}(\Omega)$ endowed with the norm

$||u||=( \epsilon^{2}\int_{\Omega}|\nabla u|^{2}dX+c\int_{\Omega}u^{2}dx)^{1}/2$

We define a functional $J_{\epsilon}$ on $E$ by

$J_{\epsilon}(u)= \frac{1}{2}(\epsilon^{2}\int_{\Omega}|\nabla u|^{2}dX+c\int_{\Omega}u^{2}d_{X}\mathrm{I}-\int_{\Omega}H(u)dx$ .

Theorem 1.1 Under assumptions $(h_{1})$ through $(h_{5}))$ there exists a positive
nonconstant solution $u_{\epsilon}$ to $(\mathit{1}.\mathit{5})-(\mathit{1}.7)$ provided $\epsilon>0$ is sufficiently small.
Moreover, $u_{\epsilon}$ satisfies

$J_{\epsilon}(u_{\epsilon})\leq C_{0}\epsilon^{2}$

where $C_{0}>0$ depends only on $\Omega$ and $h$ .

Corollary 1.1 In addition to $(h_{1})-(h_{\mathrm{s})}$ , assume that $(h_{4})$ holds with $\alpha_{1}=0$ .
Then

$\int_{\Omega}(\epsilon^{2}|\nabla u_{\epsilon}|2+cu_{\mathcal{E}}^{2})dX=\int_{\Omega}u_{\mathcal{E}}h(u)\epsilon dX\leq\frac{2C_{0}}{1-2\theta}\epsilon^{2}$ .

Now we return to (1.4). First we observe that $t=\lambda e^{pt}$ must have exactly
two zeros on $(0, \infty)$ if (1.4) is to have a nonconstant a solution. Indeed,
integrating (1.4) gives that $\int_{\Omega}(-u+e^{pu})dx=0$ . Thus $-t+e^{pt}$ must be
negative somewhere in $(0, \infty)$ , which shows the assertion. Furthermore, let $Q$

be the minimum point of $u$ on $\overline{\Omega}$ . Then we have $0\leq\triangle u(Q)=u(Q)-\lambda epu(Q)$ ,
which implies that $\min_{\Omega}u\geq z_{\lambda}$ where $z_{\lambda}$ is the smaller solution of $\lambda e^{pt}-t=0$ .

Let $w=u-z_{\lambda}$ . Then we have

$\epsilon^{2}\triangle w-w+z_{\lambda}(e^{pw}-1)=0$ . (1.8)
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To apply Theorem 1.1, we rewrite as

$\epsilon^{2}\triangle w-(1-Z_{\lambda p)w}+Z_{\lambda}(e^{pw}-1-pw)+=0$ in $\Omega$ , (1.9)
$w>0$ in $\Omega$ , (1.10)

$\frac{\partial w}{\partial\nu}=0$ on $\partial\Omega$ , (1.11)

From now on, set $c=(1-z_{\lambda}p)$ . We observe the following fact.

Remark 1.1 If $\lambda e^{pt}=t$ has two solutions, then $c>0$ holds.

To see this, consider the slope of $\varphi(t)=\lambda e^{pt}$ . At $t=z_{\lambda},$ $\varphi$ intersects the
straight line $y=t$ transversally. This implies that $\varphi’(z_{\lambda})=p\lambda e^{p}z_{\lambda}=pz_{\lambda}<1$ .
The assertion is proved.

Theorem 1.2 Suppose that $t=\lambda e^{pt}$ has two positive solutions. Then $(\mathit{1}.\mathit{9})-$

$(\mathit{1}.\mathit{1}\mathit{1})$ has a nonconstant positive solution $w_{\epsilon}$ which has all the properties that
are stated in Theorem 1.1 and Corollary 1.1. Moreover, there exist constants
$C_{1}>0,$ $C_{2}>0$ and $\gamma>0$ such that

$\sup_{\Omega}w_{\epsilon}\leq C_{1}$ .

Using. the proof of Theorem 1.2, we can show that the $||w_{\epsilon}||\sim \mathcal{E}$ as $\epsilonarrow 0$ .

Proposition 1.1 Suppose that $t=\lambda e^{pt}$ has two positive solutions. Then for
the solution $w_{\epsilon}$ obtained in Theorem 1.2, there exist $K>0$ and $\epsilon_{0}>0$ such
that

$\int_{\Omega}(\epsilon^{2}|\nabla w_{\epsilon}|2+Cw_{\epsilon}^{2})d_{X}\geq K\epsilon^{2}$

for $0<\epsilon<\epsilon 0$ .

We also have an upper estimate for $\inf_{\Omega}w_{\epsilon}$ .

Theorem 1.3 Suppose that $t=\lambda e^{pt}$ has two positive solutions. Then for the
solution $w_{\epsilon}$ obtained in Thereom 1.2, there exist $C_{2}>0,$ $\gamma>0$ and $\epsilon_{0}>0$

such that
$\inf_{\Omega}w_{\epsilon}\leq C_{2}\exp$

holds for any $0<\epsilon<\epsilon_{0}$ .

Theorem 1.4 For sufficiently small $\epsilon>0$ , the solution $w_{\epsilon}$ obtained in The-
orem 1.2 has exactly one local maximum point in $\overline{\Omega}_{f}$ which must lie on the
boundary $\partial\Omega$ .
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2 Proof of Theorem 1.1

To prove Theorem 1.1, we need two lemmas. Since these lemmas are proved
in Lin, Ni and Takagi [9] and since these proofs are strightforward calculation,
we skip the proofs. Let $\varphi$ be such that

$\varphi(x)=\{$
$\epsilon^{-2}(1-\epsilon|arrow 1X|)$ $|x|<\epsilon$ ,
$0$ $|x|\geq\epsilon$ .

Lemma 2.1 For any $s>0$ , there holds

$\int_{\Omega}|\varphi(x)|^{s_{d}}x=I1_{S}^{\prime 2(1)}\epsilon-S$ , $\int_{\Omega}|\nabla\varphi|^{2}dX=\pi\epsilon^{-4}$

where
$I_{1_{S}^{r}}=2 \pi\int_{0}^{1}(1-\rho)^{s}\rho d\rho$ .

Now let $g(t):=J_{\epsilon}(t\varphi)$ for $t\geq 0$ . We investigate the property of $g(t)$ .

Lemma 2.2 There exist $t_{1},$ $t_{2}$ with $0<t_{1}<t_{2}$ such that

(a) $g’(t)<0$ for $t>t_{1}$ .

(b) $g(t)<0$ for $t>t_{2}$ .

As for a proof, see [9] (pp.11-12, Lemma 2.4).

Proof of Theorem 1.1. Step 1. First we remark that any critical point of
$J_{\epsilon}$ is a classical solution to $(1.5)-(1.7)$ . In fact, a critical point of that is a
generalized solution in $W^{1,2}(\Omega)$ . The elliptic regularity theorem yields that
it is a classical solution($\mathrm{n}\mathrm{o}\mathrm{t}\mathrm{e}$ that $h(u)\in L^{q}(\Omega)$ for $q\geq 1$ by $(h_{3})$ ).

Next, we verify that any nonconstant critical point of $J_{\epsilon}$ is positive ev-
erywhere in $\Omega$ . This fact is proved exactly the same way as before, see p.9
in [9].
Step 2. To obtain nonconstant critical points of $J_{\epsilon}$ , we shall make use of the
mountain pass theorem. Clearly, $J_{\epsilon}$ : $W^{1,2}(\Omega)arrow \mathrm{R}$ is a $C^{1}$-mapping and
$J_{\epsilon}(\mathrm{O})=0$ . We must check

(i) $J_{\epsilon}$ satisfies the Palais-Smale condition.

(ii) There exist $\rho>0$ and $\beta>0$ such that $J_{\epsilon}(u)>0$ if $0<||u||<\rho$ and
$J_{\epsilon}(u)\geq\beta>0$ if $||u||=\rho$ .
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(iii) For sufficiently small $\epsilon>0$ , there exist a nonnegative function $\varphi\in$

$H^{1}(\Omega)$ and positive constants $C_{0}$ and $t_{0}$ such that $J_{\xi}(t0\varphi)=0$ and
$J_{\epsilon}(t\varphi)\leq C_{0}\epsilon^{2}$

The checking will be done by following the argument of [9] with some mod-
ification. After verifying these conditions, we can apply the mountain pass
theorem as follows: Let $e=t_{0}\varphi$ and

$\Gamma=\{l\in C([0,1];H^{1}(\Omega))|l(0)=0, l(1)=e\}$ .

Then
$c:= \inf\sup J_{\epsilon}(l(S))$ (2.1)

$l\in\Gamma_{\mathit{8}\in[0,1]}$

is a critical value of $J_{\epsilon}$ with $0<\beta\leq c<\infty$ .
In general, $J_{\epsilon}^{-1}(c)$ may consists only of constant functions. We must deny

this possibility. By $(h_{5})$ , the infimum of the energy of constant solution $\overline{z}$ is

$\frac{\mathrm{i}}{z}\in \mathrm{n}\mathrm{f}Z\{\frac{1}{2}c\int_{\Omega}\overline{z}^{2}dx-\int_{\Omega}H(\overline{\mathcal{Z}})dX\}=\frac{\mathrm{i}}{z}\in \mathrm{n}\mathrm{f}z(\frac{1}{2}c\overline{z}^{2}-H(\overline{z}))|\Omega|=\gamma|\Omega|>0$ .

So we obtain a nonconstant critical point by taking $\epsilon>0$ as
$C_{0}\epsilon^{2}<\gamma|\Omega|\square$

and using (iii).

Proof of Corollaryl.1. Since $u_{\epsilon}$ is a solution to $(1.5)-(1.7)$ , we obtain

$\int_{\Omega}(\epsilon^{2}|\nabla u_{\epsilon}|^{2}+c|u_{\epsilon}|2)dx=\int_{\Omega}u_{\epsilon}h(u)\epsilon dX$ .

On the other hand, from $(h_{4})$ with $\alpha_{1}=0$ , we have

$J_{\epsilon}(u_{\epsilon})$

$= \frac{1}{\not\in}\int_{\Omega}(\epsilon^{2}|\nabla u_{\epsilon}|^{2}+c|u_{\epsilon}|^{2})dx-\int_{\Omega}H(u_{\epsilon})d_{X}$

$= \overline{2}\int_{\Omega}u_{\epsilon}h(u_{\epsilon})dx-\int_{\Omega}H(u_{\epsilon})dX$

$\geq(\frac{1}{2}-\theta)\int_{\Omega}u_{\epsilon}h(u\epsilon)d_{X}$ .

Thus we obtain the desired inequality. $\square$
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3Proofs of Theorem 1.2 and Proposition 1.1

To prove Theorem 1.2, we need to investigate the dependence of the Sobolev
constant on the exponent of the target $L^{q}$ space of the embedding $W^{1,2}(\Omega)arrow$

$L^{q}(\Omega)$ . We invoke an inequality in the proof of Theorem 2.9.1 in Ziemer [13].
Only in this section, for $u\in W^{1,2}(\Omega)$ , we define $||u||_{W^{1,2}(}\Omega$ ) by

$||u||W^{1,2}( \Omega)=\{\int_{\Omega}(|\nabla u|2+|u|^{2})d_{X\}}1/2$

The following is a key lemma to obtain the upper estimate of the solution.
The proof is done by the combination of an inequality in Lemma 7. 12 of
Gilbarg and Trudinger [6] and Lemma 5.14 in Adams [1], so we omit it.

Lemma 3.1 For any $u\in W^{1,2}(\Omega)_{r}$ there exists a positive constant $I\iota_{1}^{\nearrow}$ inde-
pendent $of|\Omega|$ but on the cone property of $\Omega$ such that

$||u||_{L^{q(\Omega)}} \leq I\iota_{1}^{\nearrow}\pi 1/2(\frac{q+2}{2})(q+2)/2q||u||_{W^{1,2}()}\Omega$ (3.1)

holds.

From Lemma 3.1, we have

$||u||_{L^{q}(\Omega)}q \leq(\frac{q+2}{2})^{(}q+2)/2Ic_{2}^{q}(\int_{\Omega}(|\nabla u|^{2}+cu^{2})dX)^{/}q2$

with positive constant $I\iota_{2}^{\nearrow}>0$ . As is the same way in (2.19) of [9], we obtain
for a solution $u_{\epsilon}$ in Theorem 1. 1

$( \int_{\Omega}|u|^{q}d_{X})^{2}/q$ $\leq K_{2}^{2}(\frac{q+2}{2})(q+2)/q\epsilon-2+4/q\int_{\Omega}(\epsilon^{2}|\nabla u|2|+cu|2)dx$

(3.2)
$\leq K_{2}^{2}(\frac{q+2}{2}\mathrm{I}(q+2)/q\epsilon 4/q$

by Corollary 1.1. The inequality (3.2) is proved as follows: Let $u_{\epsilon}(x)=v(y)$

with $x=\epsilon y$ and $\Omega_{\epsilon}=\{y|\epsilon y\in\Omega\}$ . Then we have

$\int_{\Omega}(\epsilon^{2}|\nabla u\epsilon|2+c|u_{6}|2)dx$ $= \epsilon^{2}\int_{\Omega_{\epsilon}}(|\nabla v|^{2}+c|v|2)dy$

$\geq I1_{2}^{\nearrow-2}(\frac{q+2}{2}\mathrm{I}-(q+2)/q\epsilon(2\int_{\Omega_{\epsilon}}|v|^{q}dy)2/q$

$\geq I\mathrm{f}_{2}-2(\frac{q+2}{q})^{-(2}q+)/q\epsilon^{24}-/q(\int_{\Omega}|u_{\epsilon}|^{q}dX)^{2}/q$
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Now we denote various constants independent of $\epsilon$ by $C$ .

Proof of Theorem 1.2. Step 1. In the case $h(u)=z_{\lambda}(e^{pu}-1-pu)+$ , we can
take $A>0$ sufficiently large such that

$h(u) \leq\frac{1}{2}(u+Auh(u))$ (3.3)

for any $u\geq 0$ . lntegrating (1.1) over $\Omega$ , we have

$\int_{\Omega}udx=\int_{\Omega}hdx\leq\frac{1}{2}\int_{\Omega}(u+Auh(u))dx$

by taking the boundary condition into account. It follows from Corollary 1.1
that

$\int_{\Omega}udx\leq A\int_{\Omega}uh(u)dx\leq C\epsilon^{2}$ (3.4)

Thus we obtain
$\int_{\Omega}hdx\leq C\epsilon^{2}$ .

Now we prove that

$z_{\lambda}^{-2} \int_{\Omega}h^{2}dx=\int_{\Omega}(e^{pu}-1-pu)^{2}dx\leq C\epsilon^{2}$ (3.5)

Expanding in the Taylor series, we have

$z_{\lambda}^{-2} \int_{\Omega}h2dX=\sum_{k=}\infty 2\int\Omega\frac{(pu)^{k}}{k!}(2^{k}-2_{\mathrm{P}}u-2)d_{X}$ .

From Lemma 3.1 and (3.2), we get

$\int_{\Omega}h^{2}dx$ $\leq\sum_{k=2}^{\infty}(2^{k}-2)\frac{1}{k!}(\frac{k+2}{2})^{(}k+2)/2I\iota p\prime kk2\epsilon^{2}$

$-2 \sum_{k=2}^{\infty}\frac{1}{k!}(^{k}\underline{+3})(k+3)/2Kk1p^{k}2^{+}1+\epsilon^{2}$

It suffice to show that the power series are convergent. Let

$a_{k}:= \frac{2^{k}-2}{k!}(\frac{k+2}{2})(k+2)/2I\mathrm{f}kkp2$
’

$b_{k}:= \frac{1}{k!}(\frac{k+3}{2})(k+3)/2Ic^{(k}/+1)22pk+1$
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We have $\lim_{karrow\infty}a_{k+1}/a_{k}=0$ and $\lim_{karrow\infty^{b}k+1}/b_{k}=0$ . Hence we have proved
(3.5).

Step 2. This step is similar to Step 2 in the proof of Corollary 2.1 of [9]. As
we have seen in Introduction, $h(u)=z_{\lambda}(e^{pu}-1-pu)+\mathrm{s}\mathrm{a}\mathrm{t}\mathrm{i}\mathrm{s}\mathrm{f}\mathrm{i}\mathrm{e}\mathrm{s}(h_{1})-(h_{5})$ .
Thus there exists a solution $w_{\epsilon}$ by Theorem 1.1.

Multiplying the both sides of (1.7) by $u^{2s-1}$ , with $s\geq 1$ , we have

$\frac{2s-1}{s^{2}}\epsilon^{2}\int_{\Omega}|\nabla u^{s}|^{2}d_{X}+c\int_{\Omega}u^{2S}dX=\int_{\Omega}h(u)u^{2_{S}1}-d_{X}$ . (3.6)

By the Schwarz inequality, the right-hand side is estimated as

$\int_{\Omega}h(u)ud_{X\leq}2S-1(\int_{\Omega}(h(u))2dX)^{1}/2(\int_{\Omega}u^{4_{S-}2}d_{X})^{1}/2$ (3.7)

Since we have already had (3.5), we obtain

$( \int_{\Omega}u^{s\mu}dX)^{2}/\mu\leq C(\mu)S\mathcal{E}(4/\mu)-1(\int_{\Omega}u^{4s-2}d_{X})^{1}/2$ (3.8)

by (3.6), (3.7) and the Sobolev inequality (3.1) with $\mu>4$ . Here we do not
need to have an exact embedding constant, so we just denote the constant
by $C(\mu)$ . Now we define two sequences $\{s_{j}\}$ and $\{M_{j}\}$ by

$4s_{0^{-2}}$ $=$ $\mu$

$4_{S_{j+1^{-}}}2$ $=$ $\mu s_{j}$ for $j=0,1,2,$ $\ldots$ (3.9)

and

$M_{0}$ $=$ $C(\mu)^{\mu/2}$

$M_{j+1}$ $=$ $(C(\mu)S_{j})\mu/2(M_{j})\mu/4$ for $j=0,1,2,$ $\ldots$ (3.10)

We note that $s_{j}$ is explicitly given by

$s_{j}=( \frac{\mu}{4})^{j}(s_{0}+\frac{2}{\mu-4})-\frac{2}{\mu-4}$ . (3.11)

Since we have chosen $\mu>4,$ $s_{j}arrow\infty$ as $jarrow\infty$ . We shall show

$\int_{\Omega}u^{4s_{j}-2}dx\leq M_{j}\epsilon^{2}$ (3.12)
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for $j\geq 0$ and
$M_{j}\leq e^{ms_{\mathrm{J}}}.-1$ (3.13)

for some constant $m>0$ . Verfying these inequalities is done by induction.
So we omit the detail. Hence we have

$||u||L^{\mu}s_{j}-1(\Omega)\leq(e\epsilon ms_{j-1}2)^{1/-1}\mu_{S}j=e^{m/\mu_{\mathcal{E}}2/-1}\mu sj$ . (3.14)

Letting $jarrow\infty$ , we obtain

$||u||_{L^{\infty(\Omega}})\leq e^{m/\mu}$ .
$\square$

Proof of Proposition 1.1. Suppose to the contrary that there exist a sequence
$\{\epsilon_{k}\}_{k=1}^{\infty}$ and a sequence of positive solutions $\{w_{k}\}$ to $(1.9)-(1.11)$ with $\epsilon=\epsilon_{k}$

such that
$\eta_{k}:=\mathcal{E}_{k}^{-}(2\int_{\Omega}(\epsilon k|2\nabla w_{k}|2+Cw_{k})2dX)arrow 0$

as $karrow\infty$ . As in the proof of Theorem 1.2, we define $\{s_{j}\}$ and $\{M_{j}\}$ by
$(3.9)$
, and (3.10) with $C(\mu)$ replaced by $\eta_{k}$ . Similar to the proof of Theorenl

1.2, we have (3.8) with $w=w_{k}$ and $\epsilon=\epsilon_{k}$ for $k\geq 1$ . Using the argument in
the proof of Theorem 1.2, we obtain

$\mathrm{i}|w_{k}||L\infty(\Omega)\leq\tilde{C}\exp(b_{1}\rho 0)$

where $\tilde{C}>0$ and $b_{1}>0$ are constants independent of $k$ and $\rho_{0}=(\mu/2)\log(C(\mu)\epsilon k)$ .
Since $\rhoarrow-\infty$ , we have

$||w_{k}||_{L^{\infty}(\Omega)}arrow 0$ (3.15)

as $karrow\infty$ . Hence if $k$ is sufficiently large,

$\epsilon_{k}^{2}\triangle w_{k}=Cwk-\mathcal{Z}_{\lambda}(e^{p}-1-wkpwk)>0$

on $\Omega$ by (3.15). This contradicts the Neumann boundary condition.
$\mathrm{T}\mathrm{h}\mathrm{e}\square$

assertion is proved.
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4 Proof of Theorem 1.3

To prove Theorem 1.3, we need the Harnack inequality due to [9]. We also
need some estimates on $L^{q}$ norm of $w_{\epsilon}$ .

Lemma 4.1 Let $w_{\epsilon}$ be the solution obtained in Theorem 1.2. Then there
hold

$m(q)\epsilon^{2}$ $\leq$ $\int_{\Omega}w_{\epsilon}^{q}d_{X}\leq M(q)\epsilon 2$ if $1\leq q<\infty$ , (4.1)

$m(q)\epsilon^{2}$ $\leq$ $\int_{\Omega}w_{\epsilon}^{q}dx\leq M(q)\epsilon 2q$ if $0<q<1$ . (4.2)

where $m(q)$ and $M(q)$ are positive constants such that $m(q)<M(q)$ and are
independent of $\epsilon$ .

To prove Theorem 1.3, the following proposition is useful. As in [9], we define
a family of cubes. For $K=(k_{1}, k_{2})\in \mathrm{Z}^{2}$ and $l>0$ , we define

$C[K, l]:= \{(x_{1,2}X)\in \mathrm{R}^{2}||x_{j}-\iota k_{j}|\leq\frac{l}{2},j=1,2\}$ .

Clearly, $\mathrm{R}^{2}=\bigcup_{K\in \mathrm{Z}^{2}}c[K, \mathit{1}]$ and the intersection of two such cubes is either
empty or a line segment(face).

Proposition 4.1 Let $w_{\epsilon}$ be the solution obtained in Thereom 1.2. For $\eta>0$ ,
let $\Omega_{\eta}:=\{x\in\Omega|w_{\epsilon}(x)>\eta\}$ . Then there exist a positive integer $m>0$

independent of $\epsilon>0$ such that $\Omega_{\eta}$ is covered by at most $m$ of the $C[K, \mathit{1}]$ ’s
provided $\epsilon$ is sufficiently small.

To prove Proposition 4.1, we need the Harnack inequality valid for the bound-
ary, which was introduced by [9].

Lemma 4.2 Let $w$ be a positive solution to

$\epsilon^{2}\triangle w+c(X)w=0$ in $\Omega$

with $\partial w/\partial\nu=0$ on $\partial\Omega$ , where $c(x)\in C(\overline{\Omega})$ . Then there exists a positive
constant $C_{3}=C_{3}(\Omega, R\sqrt{||c||_{L}\infty/\epsilon})$ such that

$\sup$ $w\leq C_{3}$ $\inf$ $w$

$B(z,R)\cap\Omega$ $B(z,R)\cap\Omega$

for any ball $B(z, R)$ with radius $R$ and centered at $z\in\overline{\Omega}$ .
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For a proof, see that of Lemma 4.3 of [9].
Using Lemma 4.2, we prove Proposition 4.1.

Proof of Proposition 4.1. Just follow the argument in [9] with Lemma
$4.2\square$

above.

Now we are in a position to prove Theorem 1.3. Proof of Theroem 1.3.

First we will show that for any $\eta>0$ , there exist $x_{0}\in\Omega$ and $r_{0}>0$

independent of $\epsilon>0$ such that $B(x_{0}, r_{0})\subset\Omega\backslash \Omega_{\eta}$ . If this statement is not
true, then there exist $\eta>0$ and two sequences $\{r_{j}\}(r_{j}arrow 0)$ and $\{\epsilon_{j}\}$

$(\epsilon_{j}arrow 0)$ such that
$B(x, r_{j})\mathrm{n}\Omega_{\eta,j}\neq\emptyset$

for any $x\in\Omega,$ where

$\Omega_{\eta,j}=\{X\in\Omega|u\xi j>\eta\}$ .

Hence any point $x\in\Omega$ belongs to the $r_{j}$-neighborhood of $\Omega_{\eta,j}$ . Since $\Omega_{\eta,j}$ is
covered by at most $m$ cubes with its segment length $\epsilon_{j}$ by Proposition 4.1,
$|\Omega|arrow 0$ as $jarrow\infty$ . This is absurd.

Now we take $\eta>0$ such that

$z_{\lambda}(e^{pu}-1-pu)-(1-\mathcal{Z}\lambda p)u<0$

for $0<u\leq\eta$ and let

Let $w$ be the solution of the linear Dirichlet problem

$\epsilon^{2}\triangle w-\gamma_{0}^{2}w=0$ in $B(x_{0}, r_{0})$ (4.3)

$w=\eta$ on $\partial B(_{X_{0},r0})$ . (4.4)

Since
$\epsilon^{2}\triangle(w_{\epsilon}-w)-\gamma^{2}0(w-\epsilon w)\geq 0$

in $B(r_{0}, r\mathrm{o})$ and $w_{\epsilon}-w\leq 0$ on $\partial B(r_{0}, x_{0})$ , we have

$w_{\epsilon}(x)\leq w(x)$ in $B(x_{0}, r_{0})$ . (4.5)
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Put $r:=|x-x0|$ . Then $w$ is given by

$w(r)=W*I_{0}( \frac{\gamma}{\epsilon}\Gamma)$ (4.6)

where $W^{*}=\eta/I_{0}(\gamma 0r_{0}/\epsilon),$ $I_{0}(z)$ is the modified Bessel function of the first
kind of order $0$ . Making use of the asym.ptotic formula $I_{0}(r)\sim e^{r}/\sqrt{2\pi r}$ as
$rarrow\infty$ , we see that

inf $w_{\epsilon}\leq C_{*}\epsilon^{-1/2}\exp(-\gamma 0r0/\epsilon)$

by (4.5) with $C_{*}=C_{*}(\eta, \gamma_{\mathrm{o}0}r)>0$ . Choosing smaller $\gamma$ , we obtain
$\mathrm{t}\mathrm{h}\mathrm{e}\square$

desired estimate.

5 Preliminaries to a Proof of Theorem 1.4.

To show that the maximum point is on the boundary, we efficiently use the
minimax value (2.1) of $w_{\epsilon}$ . In this section, let $u_{\epsilon}:=w_{\epsilon}$ be the solution to
$(1.9)-(1.11)$ obtained in Thereom 1.2. Since the proof of Theorem 1.4 is
lengthy, we collect technical lemmas here.

First we show an important characterization of the minimax value. For
$v\in W^{1,2}(\Omega)$ , put

$M[v]:= \sup J_{\epsilon}(t\geq 0tv)$
.

Recall the Mountain Pass critical value

$c_{\epsilon}:= \inf_{\Gamma_{s}l\in}\sup_{\in[0,1]}]\epsilon(\iota(s))$
.

The following lemma is almost identical to Lemma 3.1 of [10] so we omit the
proof.

Lemma 5.1 Let $c_{\epsilon}$ as above. Then $c_{\epsilon}$ does not depend on the choice of
$e\in W^{1,2}(\Omega)$ such that $e\geq 0,$ $e\not\equiv \mathrm{O}$ and $J_{\epsilon}(e)=0$ . More precisely, $C_{\mathrm{e}}$. is the
least positive critical value of $J_{\epsilon}$ and is given by

$c_{\epsilon}=\mathrm{i}\mathrm{n}\mathrm{f}\mathrm{f}^{M}[v]|v\in W^{1,2}(\Omega)v\not\equiv \mathrm{O}$ and $v\geq 0$ in $\Omega$ }.
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As in [9] and [10], we use a diffeomorphism which straightens a boundary
portion near $P\in\partial\Omega$ . Since the space dimension is two in this case, it is
much easier to understand the nature of the diffeomorphism than that in [9]
and [10].

Through translation and rotation, we may assume $P\in\partial\Omega$ is the origin
and the inner normal to $\partial\Omega$ is pointing in the direction of the positive $x_{2}$ axis.
In this situation, we can take a smooth function $\psi(x_{1})$ defined in $(-\delta_{0,0}\delta)$

such that

(i) $\psi(0)=0$ and $\psi’(0)=0$ ,

(ii) $\partial\Omega\cap N=\{(x_{1,2}x)|x_{2}=\psi(x_{1})\}$ ,

(iii) $N\cap\Omega=\{(x_{1,2}x)|x_{2}>\psi(x_{1})\}$ ,

where $N$ is a neighborhood of $P=(\mathrm{O}, 0)$ .
For $y=(y_{1}, y_{2})\in \mathrm{R}^{2}$ with $|y|$ sufficiently small, we define a mapping

$x=\Phi(y)=(\Phi_{1}(y), \Phi(y))$ by

$\Phi_{1}(y)$ $=y_{1}-y_{2}\psi/(y_{1})$ , (5.1)
$\Phi_{2}(y)$ $=y_{2}+\psi(y1)$ .

Since

$D\Phi=($ $\frac{}{\partial y_{1}}\frac{\partial\Phi_{1}}{\partial\partial\#_{2}^{1}}$ $\frac{}{\partial y_{2}}\frac{\partial\Phi_{1}}{\partial\partial\#_{2}^{2}})=$ ,

$\det D\Phi=1-y_{2}\psi//(y_{1})+(\psi’(y_{1}))^{2}$ . Thus $\det D\Phi(\mathrm{o}, \mathrm{o})=\mathrm{I}$ . Hence $\Phi$ has
the inverse mapping $y=\Phi^{-1}(x)=\Psi(x)$ for $|x|<\delta’$ . We write

$\Psi(x)=(\Psi 1(X), \Psi_{2}(x))$ .

As we will see later that by a suitable transformation involving $\Psi(x)$ and a
scaling, the information on positive solutions to

$\triangle w-(1-\mathcal{Z}_{\lambda p)w}+z_{\lambda}(e^{pw}-1-pw)=0$ in $\mathrm{R}^{2}$ (5.2)

is required. We enumerate properties of positive solutions of (5.2). Let

$I(u):= \frac{1}{2}\int_{\mathrm{R}^{2}}(|\nabla u|^{2}+(1-Z_{\lambda}p)u^{2})dx-z\lambda\int_{\mathrm{R}^{2}}\{\frac{1}{p}(e^{pu}-1)-u-\frac{1}{2}pu^{2}\}d_{X}$ .
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Proposition 5.1 (5.2) has a solution $w$ satisfying

(i) $w\in C^{2}(\mathrm{R}^{2})\cap W^{1,2}(\mathrm{R}^{2})$ and $w>0$ in $\mathrm{R}^{2}$ .

(ii) $w$ is spherically $symmetri_{C}\prime i.e.,$ $w(z)=w(r)$ with $r=|z|$ and $dw/dr<$

$0$ for $r>0$ .

(iii) There exist constants $C>0$ and $\mu>0$ such that

$|D^{\alpha}w|\leq Ce^{-\mu 1}z|$ for $z\in \mathrm{R}^{2}$ .

with $|\alpha|\leq 1$ .

(iv) For any nonnegative solution $u\in C^{2}(\mathrm{R}^{2})\cap W^{1,2}(\mathrm{R}^{2})$ of $(\mathit{5}.\mathit{2})_{f}0<$

$I(w)\leq I(u)$ holds unless $u\equiv 0$ .

Such $w$ is called a ground state solution of (5.2). For a proof, see
Berestycki-Gallou\"et-Kavian[3].

Now we introduce a new function $\varphi_{6}$ constructed from the diffeomorphism
$\Psi$ which straightens a portion of the boundary. Recall the definition of $\psi,$ $\Phi$

and $\Psi$ . We assume that $x=\Phi(y)$ is defined in $\omega\supset\overline{B}_{3\kappa}$ where $\kappa>0$ and $B_{f}$

is the open ball centered at the origin with radius $r>0$ .
For $\rho>0$ , define a cut-off function $\zeta_{\rho}$ : $[0, \infty)\mapsto+\mathrm{R}$ by

$\zeta_{\rho}(t)=\{$

1 if $0\leq t\leq\rho$ ,

$2- \frac{t}{\rho,0}$

$\mathrm{i}\mathrm{f}\rho<t\leq 2\mathrm{i}\mathrm{f}2\rho<t.\rho$

,

Let $w=w(z)$ be a ground state solution to (5.2) given by Proposition 5.1,
and set

$w_{*}(z):=\zeta_{\kappa/6}(|\mathcal{Z}|)w(_{Z)}$ .

Moreover, put $D_{1}:=\Phi(B_{\kappa}^{+})$ and $D_{2}:=\Phi(B_{2\kappa}^{+})$ , where $B_{f}^{+}=B_{r}\cap \mathrm{R}_{+}^{2}$ . Note
that $D_{1}\subset D_{2}\subset\Omega$ . We define a comparison function $\varphi_{\epsilon}$ as

$\varphi_{\epsilon}(X):=\{$

$w_{*}(\psi(x)/\epsilon)$ $x\in D_{2}$ ,
$0$ $x\in\Omega\backslash D_{2}$ .

(5.3)

Now we are in a position to state an asymptotic behavior of $M[\varphi_{\epsilon}]$ .
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Proposition 5.2 As $\epsilon\downarrow 0_{l}$ the asymptotic expansion

$M[ \varphi_{\epsilon}]=\epsilon^{2}\{\frac{1}{2}I(w)-\psi//(0)\gamma\epsilon+o(\epsilon)\}$

holds.$l$
where

$\gamma:=\frac{1}{3}\int \mathrm{R}^{2}+(w’(|\mathcal{Z}|))^{2}Z_{2}dz$ .

To prove Proposition 5.2, we need three lemmas. The proofs of these Lemmas
are almost identical to those in [10] in Appendix pp. 844-849. So we omit
here.

Lemma 5.2 There hold

$\int_{\mathrm{R}_{+}^{2}}(\frac{\partial w}{\partial z_{2}})2z_{2}dZ_{1}d_{Z_{2\gamma}}=2$

and

$\int_{\mathrm{R}_{+}^{2}}[\frac{1}{2}\{|\nabla w|^{2}+(1-z\lambda p)w^{2}\}-Z\lambda\{\frac{1}{p}(e-pw1)-w-\frac{1}{2}pw^{2}\}]z2dZ_{1}d_{Z_{2}}=2\gamma$ .

Lemma 5.3 As $\epsilon\downarrow 0_{f}$ the asymptotic equality

$\epsilon^{2}\int_{\Omega}|\nabla\varphi_{\epsilon}|^{2}dx=\epsilon^{2}\{\int_{\mathrm{R}_{+}^{2}}(w)^{2}/dz-^{\psi}//(\mathrm{o})\gamma\epsilon+O(\epsilon)2\}$

holds. Moreover, in general, if $G:\mathrm{R}\vdash+\mathrm{R}$ is locally $H\dot{\mathit{0}}$ lder continuous and
$G(\mathrm{O})=0_{f}$ then

$\int_{\Omega}G(\varphi_{\epsilon})dX=\epsilon^{2}\{\int_{\mathrm{R}_{+}^{2}}G(w)(1-^{\psi’(}/\mathrm{o})\epsilon z_{2})dz_{1}d_{Z}2+O(\epsilon)2\}$

holds for $\epsilon\downarrow 0$ .

Lemma 5.4 Let us define $h_{\epsilon}(t)$ as

$h_{\epsilon}(t):= \frac{t^{2}}{2}(\int_{\Omega}(\epsilon^{2}|\nabla\varphi\epsilon|2)+C|\varphi\epsilon|^{2}dx-Z\lambda\int_{\Omega}\{\frac{1}{p}(e^{tp\varphi_{\epsilon}}-1)-t\Psi_{\mathcal{E}}-\frac{1}{2}p(t\varphi_{\epsilon})^{2}\}dx$.

Then for each $\epsilon>0$ sufficiently small, $h_{\epsilon}$ attains a unique positive maximum
at $t=t_{0}(\epsilon)>0$ and

$t_{0}(\epsilon)=1+\beta\epsilon+o(\epsilon)$

as $\epsilon\downarrow 0$ , where $\beta>0$ is a constant.
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Proof of Proposition 5.2. For the sake of simplicity, set

$f(u)=z_{\lambda}(e^{pu}-1-\mathrm{P}^{u})$ and $F(u)=z_{\lambda} \{\frac{1}{p}(e^{pu}-1)-u-\frac{1}{\mathit{2}}pu^{2}\}$ .

From the definition of $M[\varphi_{\epsilon}]$ , we have

$M[ \varphi_{\epsilon}]=\frac{1}{\mathit{2}}t_{0}(\epsilon)^{2}\int_{\Omega}\{\epsilon^{2}|\nabla\varphi_{\epsilon}|^{2}+(1-z\lambda p)\varphi_{\epsilon}^{2}\}dx-\int_{\Omega}F(t_{0\Psi}\epsilon)dx$ .

By Lemmas 5.3 and 5.4, expanding $F(t(\epsilon)_{\Psi}\epsilon)$ in the Taylor series and the
decay property of $\varphi_{\epsilon}$ , we have

$M[\varphi_{\epsilon}]$ $= \epsilon^{2}[\int_{\mathrm{R}_{+}}2\{\frac{1}{2}(\dot{w}’)2+(1-Z\lambda p)w2\}d_{Z}$

$+ \epsilon[\beta\int_{\mathrm{R}_{+}^{2}}\{(w)^{2}/+(1-z_{\lambda}p)w^{2}-wF/(w)\}dZ$

$- \frac{\psi^{\prime/}(0)}{2}$ { $\gamma+(1-z_{\lambda}p)\int \mathrm{R}_{+}2wz_{2}2$ dz–2 $\int_{\mathrm{R}_{+}^{2}}F(W)Z_{2}dz$} $\}+o(\epsilon)]$ .

Since $w$ is radial, we get

$2 \int_{\mathrm{R}_{+}^{2}}\{(w’)2(1-\mathcal{Z}_{\lambda}p+)w^{2}-wF’(w)\}d\mathcal{Z}$

$\int_{\mathrm{R}^{2}}\{|\nabla w|2(1-Z\lambda+p)w^{2}-wF/(w)\}d\mathcal{Z}$

$= \int_{\mathrm{R}^{2}}w(-\triangle w+(1-z\lambda p)w-F’(w))dz=0$ .

Moreover, since

$\frac{1}{\mathit{2}}(1-z\lambda P)\int \mathrm{R}^{2}z+wZ_{2}2d-\int \mathrm{R}_{+}2\gamma F(w)\mathcal{Z}_{2}d\mathcal{Z}=2\gamma-\frac{3}{2}=\frac{1}{\mathit{2}}\gamma$ ,

we obtain
$M[ \varphi_{\epsilon}]=\epsilon^{2}\{\frac{1}{\mathit{2}}I(w)-\psi’/(\mathrm{o})\gamma\epsilon+o(\epsilon)\}$ .

$\square$

Remark 5.1 Proposition 5.2 is valid for any positive radial solution $w$ to
(5.2) which decays exponentially at infinity. In Theorem 1.2, we have seen
that $||u_{\epsilon}||_{L^{\infty}(\Omega)}$ is bounded from above. Here we will show that the $L^{\infty}$ -norm
is also bounded away from $0$ .
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Lemma 5.5 Suppose that $u_{\epsilon}$ attains its maximum at $x_{0}\in\overline{\Omega}$ . Then

$u_{\epsilon}(_{X_{0}})\geq\overline{u}$

holds for any sufficiently small $\epsilon>0$ . Moreover there exists $\eta_{0}>0$ indepen-
dent of $x_{0}$ and $\epsilon$ such that $u_{\epsilon}(x)\geq\eta_{0}$ holds for any $x\in B_{\epsilon}(x_{0})\cap\Omega$ if $\epsilon$ is
sufficiently small, where $\overline{u}$ is a positive constant solution of

$\epsilon^{2}\triangle u-(1-\mathcal{Z}_{\lambda p)u}+z_{\lambda}(e^{pu}-1-pu)=0$ in $\Omega$

with the homogeneous Neumann boundary $condition_{j}i.e,.\overline{u}$ satisfies $\overline{u}=$

$z_{\lambda}(e^{p\overline{u}}-1)$ .

Proof. Suppose that $u_{\epsilon}(x_{0})<\overline{u}$ . If $x_{0}\in\Omega$ , then

$\epsilon^{2}\triangle u_{\epsilon\epsilon}=u-Z_{\lambda}(e^{p}-1)u>0$

holds in a neighborhood of $x_{0}$ . This contradicts the fact that $\triangle u(x_{0})\leq 0$

because $x_{0}$ is a local maximum point. Hence $x_{0}\in\partial\Omega$ . Hence $u_{\epsilon}(x)<u_{\epsilon}(x_{0})$

in a neighborhood of $x_{0}$ . Then by the Hopf boundary point lemma, we
conclude that $\partial u_{\epsilon}/\partial\nu>0$ at $x_{0}$ , which contradicts the boundary condition
$\partial u/\partial\nu=0$ on $\partial\Omega$ . Thus we obtain

$u_{\epsilon}(X_{0})\geq\overline{u}$.

As for the latter part, by using Lemma 4.2(the Harnack inequality), we can
find a constant $\overline{C}>0$ independent of $\epsilon>0$ such that

$\sup$
$u_{\epsilon}\leq\overline{C}$ inf $u_{\epsilon}$ .

$B_{\epsilon}(x_{0})\cap\Omega$
$B_{\epsilon}(x\mathrm{o})\cap\Omega$

Hence from the former part, we have

$B_{\epsilon}(x \mathrm{o})\inf_{\cap\Omega}u\epsilon\geq\frac{1}{\overline{C}}u_{\epsilon}(X\mathrm{o})\geq\frac{1}{\overline{C}}\overline{u}$.

$\square$

61



6 Proof of Theorem 1.4

Finally, we have arrived at the position to prove Theorem 1.4.
Suppose that at $P_{\epsilon}\in\overline{\Omega},$

$u_{\epsilon}$ attains its maximum. We will prove Theorem
1.4 in three steps. Although $\mathrm{t}\mathrm{h}’ \mathrm{e}$ way of proving Theorem 1.4 is almost
identical to that of Theorem 1.2 of [10], we just give a sketch of a proof.
Step 1. We prove that there exists $C^{*}>0$ independent of $\epsilon>0$ such that

dist $(P_{\xi}, \partial\Omega)\leq C^{*}\epsilon$

if $\epsilon>0$ is sufficiently small.
$\mathrm{S}\mathrm{u}$.ppose to the contrary that there exists a sequence $\{\epsilon_{j}\}(\epsilon_{j}\downarrow 0)$ such

that
$\rho j:=\frac{\mathrm{d}\mathrm{i}\mathrm{s}\mathrm{t}(P_{\epsilon},\partial\Omega)}{\epsilon_{j}}arrow\infty$

as $jarrow\infty$ . Let us define a scaled function $v_{j}(z):=u_{\epsilon_{j}}(P_{j}+\epsilon_{j}z)$ , $z\in$

$B_{\rho_{j}}$ . Then by the elliptic regularity theory (see, e.g. [6]), we can extract a
subsequence, still denoted by $\{v_{j}\}$ , such that

$v_{j}arrow w$ in $C_{loc}^{2}(\mathrm{R}2)$

with $w(\not\equiv 0)\in C^{2}(\mathrm{R}^{2})\cap W^{2,f}(\mathrm{R}^{2})$ .
Now we estimate the minimax value $c_{\epsilon_{j}}$ from below. Using $I(w)$ , we have

$c_{\epsilon_{j}}\geq\epsilon_{j}^{2}(I(w)-c3\exp(-\mu_{2}R))$

for any $j\geq j_{m}$ with $C_{3}$ and $\mu_{2}>0$ inidepedent of $j$ and $m$ .
On the other hand, we have from Proposition 5.2 and Remark 5.1

$c_{\epsilon_{j}}< \epsilon_{j}^{2}\frac{1}{2}I(w)$

if $\epsilon_{j}$ is sufficiently small. This is a contradiction. Thus we have proved

dist $(P_{\epsilon}, \partial\Omega)\leq C^{*}\epsilon$ .

Step 2. We will prove $P_{\epsilon}\in\partial\Omega$ if $\epsilon>0$ is sufficiently small. Suppose to
the contrary that there exists a decreasing sequence $\{\epsilon_{k}\}$ ( $\epsilon_{k}\downarrow 0$ as $karrow\infty$ )
such that $P_{\epsilon_{k}}\in\Omega$ . From Step 1, we may suppose that $P_{k}=:P_{\epsilon_{k}}arrow P\in\partial\Omega$
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as $karrow\infty$ choosing a subsequence if necessary. We may regard $P=(0,0)$ .
We use the diffeomorphism $\Phi$ introduced in (5.1). The inverse image $\Psi$ of $\Phi$

straightens a boundary portion of $P$ . We may suppose that $\Phi$ is defined in
an open set containing the closed ball $\overline{B}_{2\kappa}$ and that $Q_{k}:=\Psi(P_{k})\in B_{\kappa}^{+}$ for
all $k$ . Put

$v_{k}(y):=u_{\epsilon_{k}}(\Phi(y))$ for $y\in\overline{B}_{2\kappa}^{+}$ , : (6.1)

and extend it to $\overline{B}_{2\kappa}$ by reflection:

$\tilde{v}_{k}(y):=\{$

$v_{k}(y)$ if $y\in\overline{B}_{2\kappa}^{+}$ ,
$v_{k}(y_{1}, -y2)$ if $y\in\overline{B}_{2\kappa}^{-}$ , (6.2)

where $B_{2\kappa}^{-}=\{y\in B_{2\kappa}|y_{2}<0\}$ . Moreover, we define a scaled function $w_{k}(z)$

by
$w_{k}(z):=\tilde{v}_{k}(Q_{k}+\epsilon_{k}z)$ for $z\in\overline{B}_{\kappa/\epsilon_{k}}$ . (6.3)

Let $Q_{k}=(q_{k}, \alpha_{k}\epsilon_{k})$ with $q_{k}\in \mathrm{R}$ and $\alpha_{k}>0$ . Then by the Step 1, $\{\alpha_{k}\}$ is
bounded. It is easily seen that

$w_{k}\in C2(\overline{B}\kappa/\epsilon k\backslash \{z2=-\alpha_{k}\})\cap C1(\overline{B}\kappa/\epsilon k)$

since $\partial v_{k}/\partial y_{2}=0$ on $\{y_{2}=0\}$ . Similar to Step 1, we obtain a convergent
subsequence (still denoted by $\{w_{k}\}$ ) such that

$w_{k}arrow w$ in $c_{1\mathrm{o}\mathrm{c}}^{2}(\mathrm{R}2)$

and $w\in C^{2}(\mathrm{R}^{2})\cap W^{2,r}(\mathrm{R}^{2})$ . The limit $w$ satisfies

$a_{11}(0) \frac{\partial^{2}w}{\partial z_{1}^{2}}+\mathit{2}a_{12}(0)\frac{\partial^{2}w}{\partial z_{1}\partial_{Z_{2}}}+a_{22}(0)\frac{\partial w}{\partial z_{2}^{2}}-(1-z_{\lambda})w+f(w)=0$ in $\mathrm{R}^{2}$

However, in fact, since $Q_{k}arrow(0,0)$ as $karrow\infty$ and $D\Psi(\mathrm{O})=[D\Phi(\mathrm{o})]^{-}1=I$ ,
we have

$\triangle w-(1-Z_{\lambda}p)w\frac{1}{1}f(w)=^{\mathrm{o}}$ in $\mathrm{R}^{2}$

Moreover, $w$ is raidalyy symmetric with respect to the origin and decays
exponentially at infinity. Fix $R>0$ sufficietly large. Then we can find an
integer $k_{R}$ such that, for $k\geq k_{R}$ ,

$||w_{k}-w||c_{(\overline{B})}24R\leq\eta_{R}$ . (6.4)
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This shows that $w_{k}$ has only one maximum point in $B_{R}$ . If $\alpha_{k}>0$ , then
by the definition of $\tilde{v}_{k},$ $Q_{R}^{*}=(qk, -\alpha k\epsilon k)$ is also a local maximum point of
$\tilde{v}_{k}$ , i.e., $(0, -\alpha_{k})$ is another local maximum point of $w_{k}$ in $B_{R}$ , which is a
contradiction. Step 2 is complete.

Step 3. We shall show that $u_{\epsilon}$ has at most one local maximum point. Suppose
to the contrary that there exists a decreasing sequence $\{\epsilon_{k}\}_{\mathrm{S}\mathrm{u}}\mathrm{c}\mathrm{h}$ that $u_{\epsilon_{k}}$ has
two local maxima at $P_{k}$ and $P_{k}’$ . From Step 2, $P_{k}$ and $P_{k}’$ are on the boundary.
Moreover, we may assume

$\frac{|P_{k}-P_{k}’|}{\epsilon_{k}}arrow\infty$ $(karrow\infty)$

since otherwise, the scaled function $w_{k}$ has two local maxima in $B_{R}$ , which
contradicts Step 2.

We introduce the diffeomorphism $y=\Psi(x)$ which straightens a boundary
portion around $P_{k}$ as in Section 5 and define $v_{k},\tilde{v}_{k}$ and $w_{k}$ by (6.1), (6.2) and
(6.3), respectively. Then by the conlpactness argulllent as in Step 2, we see
that $\{w_{k}\}$ has a convergent subsequence, still denoted by $\{w_{k}\}$ , converging
to $w\in C^{2}(\mathrm{R}^{2})\cap W^{2,2}(\mathrm{R}^{2})$ in the $c_{1\mathrm{o}\mathrm{c}}^{2}(\mathrm{R}2)$ topology and $w$ is a positive radial
solution to $\mathrm{r}_{\backslash }5.2$ ).

Now we estimate $c_{\epsilon_{k}}$ from below. Similar to Step 1, we have

$c_{\epsilon_{k}} \geq\epsilon_{k}^{2}\{\frac{1}{2}I(w)+^{c}4-C_{5}e^{-}-\mu RC_{6k}\epsilon\}$ (6.5)

with positive constants $C_{4},$ $C_{5}$ and $C_{6}$ by making use of the exponential decay
of $w$ . Now choosing $P\in\partial\Omega$ such that $\psi^{\prime/}(0)>0$ , we see from Proposition
5.2 that

$c_{\epsilon_{k}}< \epsilon_{k}^{2}\frac{1}{2}I(w)$

if $\epsilon_{k}$ is sufficiently small, which is inconsistent with (6.5). Therefore
$u_{\epsilon}\mathrm{h}\mathrm{a}\mathrm{s}\coprod$

at most one maximum.
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