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Stationary Keller-Segel model with the linear

sensitivity
Yoshitsugu Kabeya [BE% E#¥] (Miyazaki Univ.)

Wei-Ming Ni [{id #£BA] (University of Minnesota)

1 IntrOduction

The Keller-Segel models [7], which describes the chemotactic aggregation
stage of cellular slime molds, was investigated by many authors, see e.g.,
Lin, Ni and Takagi [9] and Ni and Takagi [10],[11], [12]. We are interested in
the stationary problem of the Keller-Segel system

DiAu — xV - (uVé(v)) =0 in Q,
D)Av —av+bu=0 1in Q,
Ou  Ov

vt =0 on 09,

(1.1)
(1.2)

(1.3)

where D; >0, D, >0, a >0 and b > 0 are constants, v is the outer normal
unit vector on 99, ¢ is a smooth function with ¢’ > 0 on (0,00) and § is
a smooth bounded domain in R?. We will seek a pair of positive solutions
(u,v) to (1.1)-(1.3). Biologically, u represents the density of amoebae, v does
the concentration of the chemical which amoebae transmit. ¢ represents the
sensitivity of amoebae to the chemical.

The logarithmic sensitivity ¢(v) =

e.g., Ni and Takagi [10] and the references therein. -
Instead, here we adopt ¢(v) = v. In this case, (1.1) is written as

V- {D1uV(logu - Div)} =0.

1

log v, there are lots of literature, see,
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Then we see that u = ce? by using (1.3), where p = x/D; and ¢ > 0 is a
constant. Thus (1.1)-(1.3) is equivalent to.

D;Av — av + bee?” =0 in Q,

v>0 in (],
Ov

- = Q.
5 0 ono

Now putting €2 = D,/a and bc/a = A, we have

e2Av—v+ AP’ =0 in ),

'tév> 0 inQ, (1.4)
=0 on 0.
ov

Conversely, if w is a positive solution to (1.4), then u = ¢,e?” and v = c,w
satisfy (1.1)-(1.3) with ¢; = apD;A\/bx and ¢; = pD, /.

From now on, we will mainly investigate (1.4) with ¢, A and p being
positive parameters. _

Before stating our results on (1.4), we first discuss a slightly more general
problem:

€2Au‘— cu+h(u)=0 inQ, (1.5)
u>0 1in ),

Ou =0 on 09, (1.7)
v .

where € > 0 and ¢ > 0. .
We make the following assumptions on A:

(h1)  : R — R is locally Holder continuous, h(z) = 0 for z < 0 and
h(z) > 0 for z > 0.

(h2) h(z) = o(z) as z | 0.
)

(h3) h(z)/z — oo as z — oco. Moreover, there exist & > 0 and B(z) with
B(z)/z* = 0 as z — oo such that

h(z) < aexpfB(z) for z > 0.
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(hs) Let H(z) = JF h(t)dt. There exists a; > 0 and 8 € (0,1/2) such that
| H(z) < 0zh(z) if z2> a.

(hs) v = inf{cz?/2 — H(z)|z € Z} > 0 where Z = {z > 0| h(z) = cz}.

We note that Z # () because of (h;) and (hs). If (h4) holds with oy =0,
then (hs) is automatically satisfied. If ( € Z, then u(z) = ( is a positive
solution to (1.5)-(1.7). An example of a function satisifying (h1)-(hs) is
h(z) = (e”* — 1 — pz)4. Just note that (h4) is satisfied with 6 € [1/3,1/2)
and a; = 0. ’

Let E denote the Hilbert space W'?() endowed with the norm

]| = (52/Q|Vu|2d:t+c/9u2d:v)1/2.

We define a functional Je on E by

Je(u) = %(62/9|Vu]2 dx+c/9u2 dx) —/ﬂH(u) dz.

Theorem 1.1 Under assumptions (hy) through (hs), there exists a positive
nonconstant solution u, to (1.5)-(1.7) provided ¢ > 0 is sufficiently small.
Moreover, u, satisfies

Je(ua) _<_ 0052
where Cy > 0 depends only on ) and h.

Corollary 1.1 In addition to (hy)-(hs), assume that (hs) holds with o; = 0.
Then

g,

2 2 2
/Q(e |Vu|* + cul) dz = /Queh(us)d:v < 9%

Now we return to (1.4). First we observe that ¢ = Ae?* must have exactly
two zeros on (0,00) if (1.4) is to have a nonconstant a solution. Indeed,
integrating (1.4) gives that [o(—u + €’*)dz = 0. Thus —¢ + €”* must be
negative somewhere in (0, 00), which shows the assertion. Furthermore, let ()
be the minimum point of u on . Then we have 0 < Au(Q) = u(Q)—\eP“(@),
which implies that ming u > z) where z, is the smaller solution of Ae?*—t = 0.

Let w = u — z,. Then we have

2Aw —w+ z\ (e’ — 1) = 0. (1.8)
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To apply Theorem 1.1, we rewrite as

EAw—(1—2zpw+z\(efY —1 —pw); =0 in Q, (1.9)

w>0 in{, (1.10)
w =0 on 09, (1.11)
ov

From now on, set ¢ = (1 — z,p). We observe the following fact.
Remark 1.1 If Ae?® =t has two solutions, then ¢ > 0 holds.

To see this, consider the slope of ¢(t) = Ae*. At t = z,, ¢ intersects the
straight line y = ¢ transversally. This implies that ¢'(z)) = pAeP* = pz) < 1.
The assertion is proved.

Theorem 1.2 Suppose that t = \eP* has two positive solutions. Then (1.9)-
(1.11) has a nonconstant positive solution w. which has all the properties that
are stated in Theorem 1.1 and Corollary 1.1. Moreover, there exist constants
Ci >0, Cy >0 and v > 0 such that '

sup w. < Cf.
0

Using the proof of Theorem 1.2, we can show that the |[w.|| ~ ¢ as e = 0.

Proposition 1.1 Suppose thatt = \eP* has two positive solutions. Then for

the solution w, obtained in Theorem 1.2, there exist K > 0 and g9 > 0 such

that ‘ '
/9(62|Vw5|2 + cw?) dz > K¢é*

for 0 < e < €.
We also have an upper estimate for infg w,.

Theorem 1.3 Suppose thatt = Ae”* has two positive solutions. Then for the
solution w, obtained in Thereom 1.2, there exist Cy > 0, v > 0 and g > 0
such that

. ‘ i
< 1
néf W, < Cy exp( 6)
holds for any 0 < e < €.

Theorem 1.4 For sufficiently small € > 0, the solution w, obtained in The-
orem 1.2 has ezactly one local mazimum point in Q, which must lie on the

boundary 0S.
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2 Proof of Theorem 1.1

To prove Theorem 1.1, we need two lemmas. Since these lemmas are proved
in Lin, Ni and Takagi [9] and since these proofs are strightforward calculation,
we skip the proofs. Let ¢ be such that

_ ) A=) o] <e,
w(z) = { 0 |z| > e.

Lemma 2.1 For any s > 0, there holds
/ lp(z)]* dz = K279, /Q IVo|*dz = me™*
Q

where . ‘
K, = 27r/ (1 —p)’pdp.
0

Now let g(t) := J.(tp) for t > 0. We investigate the property of g(¢).
Lemma 2.2 There exist t;,t, with 0 < t; < ty such that

(a) ¢'(t) <0 fort >ty.

(b) g(t) <0 fort > t,.

As for a proof, see [9] (pp.11-12, Lemma 2.4).

Proof of Theorem 1.1. Step 1. First we remark that any critical point of
Je 1s a classical solution to (1.5)-(1.7). In fact, a critical point of that is a
generalized solution in W12?(Q). The elliptic regularity theorem yields that
it is a classical solution(note that h(u) € LI(2) for ¢ > 1 by (h3)).

Next, we verify that any nonconstant critical point of J, is positive ev-
erywhere in §). This fact is proved exactly the same way as before, see p.9
in [9].

Step 2. To obtain nonconstant critical points of J., we shall make use of the
mountain pass theorem. Clearly, J, : W'?(Q) — R is a C'-mapping and
J:(0) = 0. We must check

(i) J. satisfies the Palais-Smale condition.

(i) There exist p > 0 and # > 0 such that J.(u) > 0if 0 < ||u|| < p and
J(u)> B> 0if [lull = o
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(iii) For sufficiently small ¢ > 0, there exist a nonnegative function ¢ €
H'(Q) and positive constants Cy and #o such that J.(to) = 0 and
Js(t(p) __<_ 0062

The checking will be done by following the argument of [9] with some mod-
ification. After verifying these conditions, we can apply the mountain pass
theorem as follows: Let e = ty¢ and

I'={leC(0,1]; H'(Q))|1(0) =0, I(1) = €}.
Then ‘ ‘
= inf sup Je(I(s)) (2.1)

is a critical value of J, with 0 < 8 <¢ < o0. |
In general, J7!(c) may consists only of constant functions. We must deny
this possibility. By (hs), the infimum of the energy of constant solution Zz is

inf{ /z d:c—-/ H(z da:} = mf cz — H(2))|Q] =~|9] > 0.

Z€eZ

So we obtain a nonconstant critical point by taking ¢ > 0 as Coe? < 7|Q|
and using (iii). » O

Proof of Corollaryl.1. Since u, is a solution to (1.5)-(1.7), we obtain

2o, |2 2 _
[ @19l + ) do = [ uh(u) do.

On the other hand, from (h4) with o = 0, we have

(ue) %/ (€3 Vue|* + cluel?) d:c—/ H(u.)dz
ush(ue da:——/ H(u,)
1
> (5 —49)/Q uzh(ue) dz.

Thus we obtain the desired inequality. | a
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3 Proofs of Theorem 1.2 and Proposition 1.1

To prove Theorem 1.2, we need to investigate the dependence of the Sobolev

constant on the exponent of the target L? space of the embedding Wh(Q) —

L¢(9). We invoke an inequality in the proof of Theorem 2.9.1 in Ziemer [13].
Only in this section, for u € W1?(), we define ||ul|w.2() by

1/2
lllwsay = { [ (V0P + ) da} "

The following is a key lemma to obtain the upper estimate of the solution.
The proof is done by the combination of an inequality in Lemma 7. 12 of
Gilbarg and Trudinger [6] and Lemma 5.14 in Adams [1], so we omit it.

Lemma 3.1 For anyu € W'?(Q), there egists a positive constant K, inde-
pendent of |Q| but on the cone property of ) such that

+ 2 '
llullze@) < K17T1/2(q—2—)(qf2)/2q|lullwm(n) (3.1)

holds.
From Lemma 3.1, we have

4+ 2, (g+2)/2 2 2 9/2
ol ey < () D2KS ([ ((Vul? + ) do)

with positive constant K3 > 0. As is the same way in (2.19) of [9], we obtain
er a solution u, in Theorem 1.1

(/Q|U|q dw)Z/q < Kg(q;_2)(q+2')/q5"2+4/q/9(62|Vu|2+c|u|2> de |
< K3 (12) e &

by Corollary 1.1. The inequality (3.2) is proved as follows: Let u.(z) = v(y)
with z = ey and Q. = {y|ey € Q}. Then we have

/Q (Va2 + clue|?) dz = & /Q (IV0l? + clo?) dy
| o 7q+2\—(a+2)/a 2/q
> K72 (42) e ([ ol dy)

2 K (LY O [ i)
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Now we denote various constants independent of € by C.

* Proof of Theorem 1.2. Step 1. In the case h(u) = z)(e?™ — 1 — pu)4, we can
take A > 0 sufficiently large such that

h(u) < %(u + Auh(w)) (3.3)

for any u > 0. Integrating (1.1) over {2, we have

/Qud:v=/ﬂhd:c§-;-/n(u+Auh(u))dx

by taking the boundary condition into account. It follows from Corollary 1.1
that :
/ﬂudw < A/Quh(u) dz < Cé*. - (34)

Thus we obtain

/th:c < Ce?.

Now we prove that

-2 2 — pU 1 _ 2 < 2
,\/th:v /Q(e 1 — pu)?dz < Ce?. (3.5)

Expanding in the Taylor series, we have

—2/ hdz = Z/ — 2pu — (p]:;i!’)k dz.

From Lemma 3.1 and (3.2), we get

& 1 k+2
/thda: <32 - )kl( BTS2 ek k2

k
1 k+3 .
-9 Z __(__2_)(k+3)/21&§+1pk+152.

It suffice to show that the power series are convergent. Let

2k _2 k+2

1k
ap 1= () RGP, b= 3\ ewayy2 e (b 1)/2 41,

A2
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We have limy_yoo ar4+1/@x = 0 and limg_yo0 by1/bx = 0. Hence we have proved
(3.5). ‘

Step 2. This step is similar to Step 2 in the proof of Corollary 2.1 of [9]. As
we have seen in Introduction, h(u) = z)(eP* — 1 — pu) satisfies (hy)-(hs).
Thus there exists a solution w, by Theorem 1.1.

Multiplying the both sides of (1.7) by w**~*, with s > 1, we have

25 —1
52

62/ |Vu'|? dz + c/ u* dx = / h(uw)u® "t dz. (3.6)
Q Q Q

By the Schwarz inequality, the right-hand side is estimated as

| /Qh(u)u%"ld:c < (/Q(h(u))2 d:z:)lm(/ﬂu“—2 d$)1/2. (3.7)

Since we have already had (3.5), we obtain

wt dz)” < C(p)seWW=1( [ u*2dz
Q VJa

by (3.6), (3.7) and the Sobolev inequality (3.1) with 4 > 4. Here we do not
need to have an exact embedding constant, so we just denote the constant
by C(x). Now we define two sequences {s;} and {M;} by

1/2

(3.8)

480—2 = U
4s;41—2 = ps; fory=0,1,2,... (3.9)
and
My = C(u)?
My = (C(u)s;)"*(M;)** for j=0,1,2,... (3.10)

We note that s; is explicitly given by

2 2

_ (B |
s =(3) (S°+#—4)—u—4' (3.11)

Since we have chosen p > 4, s; — 00 as 7 — co. We shall show

/Q =2 dz < Mie? (3.12)
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for y > 0 and
Mj S emsi—1 ‘ (313)

for some constant m > 0. Verfying these inequalities is done by induction.
So we omit the detail. Hence we have

|Jul|prss-1 () < (emomre?)Mbesimt = gmlughlmsim, (3.14)
Letting J — 00, we obtain

”'U/”LOO(Q) S em/“.

Proof of Proposition 1.1. Suppose to the contrary that there exist a sequence
{ex}; and a sequence of positive solutions {wg} to (1.9)—(1.11) with e = ¢
such that

Mg 1= 5;2(/9(6i|Vwk|2 + ch)dw) — 0

as k — oo. As in the proof of Theorem 1.2, we define {s;} and {M,} by
(3.9) and (3.10) with C(u) replaced by 7. Similar to the proof of Theorem
1.2, we have (3.8) with w = wy, and € = ¢ for £ > 1. Using the argument in
the proof of Theorem 1.2, we obtain

|lwillLeo (@) < CCXP(blpo)

where C' > 0 and b, > 0 are constants independent of k and po = (1/2) log(C(u)ex).
Since p = —oo, we have

||wi||Leo (@) — 0 | (3.15)

as k — oo. Hence if k is sufficiently large,
g2 Awy, = cwy — 25 (P — 1 — pwy) > 0

on Q by (3.15). This contradicts the Neumann boundary condition. The
assertion is proved. O
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4 Proof of Theorem 1.3

To prove Theorem 1.3, we need the Harnack inequality due to [9]. We also
need some estimates on L? norm of w,.

Lemma 4.1 Let w, be the solution obtained in Theorem 1.2. Then there
hold

=
S
ml\.')
IN

/ wldz < M(g)e? if 1< g < oo, (4.1)
Q

m(q)e? < /ng dz < M(q)e* if0<g<]l. (4.2)
where m(q) and M(q) are positive constants such that m(q) < M(q) and are
independent of €. :
To prove Theorem 1.3, the following proposition is useful. As in [9], we define
a family of cubes. For K = (ky,k;) € Z* and | > 0, we define

[
C[I{, l] = {(1)1,.’132) € R2 | IJJJ' - lkJI S 5,] = 1,2}

CleaJrly,AR2 = Ukeze C[K, ] and the intersection of two such cubes is either
empty or a line segment(face).

Proposition 4.1 Let w, be the solution obtained in Thereom 1.2. Forn > 0,
let Q, = {z € Q|w.(z) > n}. Then there exist a positive integer m > 0
‘independent of € > 0 such that Q, is covered by at most m of the C[K,l]’s
provided € is sufficiently small.

To prove Proposition 4.1, we need the Harnack inequality valid for the bound—
ary, which was mtroduced by [9].

Lemma 4.2 Let w be a positive solution to
2Aw+c(z)w=0 inQ

with Ow/0v = 0 on 09, where c(z) € C(Q). Then there exists a positive
constant C3 = C3(§), Ry/||c||p~/€) such that

sup w<Cs inf w
B(z,R)N§ B(z,R)Nf2

for any ball B(z, R) with radius R and centered at z € Q.
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For a proof, see that of Lemma 4.3 of [9].
Using Lemma 4.2, we prove Proposition 4.1.

Proof of Proposition 4.1. Just follow the argument in [9] with Lemma 4.2
above. , O

Now we are in a position to prove Theorem 1.3. Proof of Theroem 1.3.

First we will show that for any n > 0, there exist zop € § and ro > 0
independent of € > 0 such that B(zg,70) C Q2\,. If this statement is not
true, then there exist 7 > 0 and two sequences {r;} (r; — 0) and {¢;}
(e; — 0) such that

B(xvrj) Ny, #0

for any = € ), where
Qn,j = {SE € QI’U,EJ- > 77}

Hence any point z € Q belongs to the r;-neighborhood of Q, ;. Since {1, ; is
covered by at most m cubes with its segment length ¢; by Proposition 4.1,
|Q| = 0 as j — co. This is absurd.

Now we take n > 0 such that

zy(e* —1—pu) — (1 —zp)u <0

for 0 <u < nand let

Yo := inf \/—m(epu —1-py) + (1 = z)p).

0<usn U

Let w be the solution of the linear Dirichlet problem

2Aw — 2w =0 in B(zo,me) (4.3)
w=7n on dB(zo,T0). (4.4)

Since ‘
e2A(w, — w) — Y3 (we —w) >0

in B(ro,m0) and we —w < 0 on 0B(rg, zo), we have

we(z) < w(m) in B(zg,70)- (4.5)
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Put r := |z — z¢|. Then w is given by
w(r) = W*lo(gr) (4.6)

where W* = n/Io(voro/€), Io(z) is the modified Bessel function of the first
kind of order 0. Making use of the asymptotic formula Io(r) ~ €" /277 as

r — 00, we see that
inf w, < Coe 2 exp(—yoro/€)

by (4.5) with C, = C.(n,7%re) > 0. Choosing smaller v, we obtain the
desired estimate. ’ O

5 Preliminaries to a Proof of Theorem 1.4.

To show that the maximum point is on the boundary, we efficiently use the
minimax value (2.1) of w,. In this section, let u. := w, be the solution to
(1.9)-(1.11) obtained in Thereom 1.2. Since the proof of Theorem 1.4 is
lengthy, we collect technical lemmas here.
First we show an important characterization of the minimax value. For
v € W12(Q), put
M[v] := sup J.(tv).

>0

Recall the Mountain Pass critical value

c. := inf sup J.(I(s)).

lEF 36[011]

The following lemma is almost identical to Lemma 3.1 of [10] so we omit the
proof. '

Lemma 5.1 Let ¢, as above. Then c. does not depend on the choice of
e € WH2(Q) such that e > 0, e £ 0 and J.(e) = 0. More precisely, c. is the
least positive critical value of J. and is given by

c. = inf{M[v]|v € W?(Q)v # 0 and v > 0 in O},
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As in [9] and [10], we use a diffeomorphism which straightens a boundary
portion near P € 8. Since the space dimension is two in this case, it is
much easier to understand the nature of the diffeomorphism than that in [9]
and [10].

Through translation and rotation, we may assume P € 0f) is the origin
and the inner normal to 02 is pointing in the direction of the positive z; axis.
In this situation, we can take a smooth function ¢ (z;) defined in (—do, do)
such that

() $(0) = 0 and (0) = 0,
({) 09NN = {(z1,22) | 22 = p(a)},
(iii) N NQ ={(z1,22) | z9 > ¥(z1)},

where N is a neighborhood of P = (0,0).
For y = (y1,y2) € R? with |y| sufficiently small, we define a mapping

z=®(y) = (P1(y), ®(y)) by

D1(y) =y — ¥’ (n), |
Do(y) =y2+¥(¥1). ' (5:1)

Since
00, 09,
| ey, 8y, | [ 1w () —v'(w)
oe- | B, 3 |- (L )
ayl 592

det D® =1 — y29"(y1) + (¥'(y1))?. Thus det D®(0,0) = 1. Hence ® has
the inverse mapping y = ®7'(z) = U(z) for |z| < §'. We write

U(z) = (V1(2), ¥a2(2)).

As we will see later that by a suitable transformation involving ¥(z) and a
scaling, the information on positive solutions to

Aw — (1 —zyp)w + 2,(e’” — 1 —pw) =0 in R? (5.2)

is required. We enumerate properties of positive solutions of (5.2). Let

R?2

I(u) := %/ (|Vul* + (1 — zyp)u?) dz — 2, /112 {11—)(67’“' —1)—u-— %pug} dz.
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Proposition 5.1 (5.2) has a solution w satisfying
(i) w € C2(R?) N W*(R?) and w > 0 in R?.

(i) w is spherically symmetric, i.e., w(z) = w(r) withr = |z| and dw/dr <
0 forr > 0.

(iii) There exist constants C > 0 and p > 0 such that
|D*w| < Ce™#l for z € R2.
with || < 1. |

(iv) For any nonnegative solution u € C*(R?) N WY(R?) of (5.2), 0 <
I(w) < I(u) holds unless u = 0.

Such w is called a ground state solution of (5.2). For a proof, see
Berestycki-Gallouét-Kavian [3]. |

Now we introduce a new function ¢, constructed from the diffeomorphism
U which straightens a portion of the boundary. Recall the definition of 1, ®
and U. We assume that z = ®(y) is defined in w D Bs,. where k > 0 and B,
is the open ball centered at the origin with radius r > 0.

For p > 0, define a cut-off function (, : [0,00) — R by

1 if0<t<p,
t
0 if2 <t

Let w = w(z) be a ground state solution to (5.2) given by Proposition 5.1,

and set

| w.(2) = Corell=u(2). |
Moreover, put D; := ®(B}) and D, := ®(Bj3,), where B} = B, NR%. Note
that D; C Dy C Q. We define a comparison function ¢, as :

{ w.(p(z)/e)  z € Dy, (5.3)

,WJm):: 0 ze\D,.

Now we are in a position to state an asymptotic behavior of M|ep.].
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Proposition 5.2 As e | 0, the asymptotic expansion

Mlp.] = {2 1(w) — 9" (0)ye + o(e)}
holds, where
v = 5/ w'(|z]))? 22 dz.

To prove Proposition 5.2, we need three lemmas. The proofs of these Lemmas
are almost identical to those in [10] in Appendix pp. 844 849 So we omit
here.

Lemma 5.2 There hold
r 0w,
/R2 (azz) zZ9 le d22 = 2’)’
and |
/ [l{|Vw|2 (1-=z }—z{ (e —1)— w—1w2}]z dz) dzg = 2
R2 12 /\P A 227 2 021 0Z3 = &Y.
Lemma 5.3 Asce | 0, the asymptotic equality
g? _/Q |Vep.|* dz = 62{ /Ri(w,>2 dz — " (0)ye + 0(62)}

holds. Moreover, in general, if G : R — R is locally Hélder continuous and
~G(0) =0, then '

/G% Vdz = ¢ {/ §"(0)ez,) dz1 dzg + O(¢%)}

holds for € | 0.
Lemma 5.4 Let us define h.(t) as

he(t) := g(f(€2|V99512+CI995|2)J$4ZA/ {l(etp""ﬁfl)—tws—-lz-p(t%)Z} dz.

Then for each e > 0 suﬁiczently small, h. attains a unique positive mazimum
at t = to(e) > 0 and

tole) = 1+ B + ole)

as € 1 0, where 8 > 0 is a constant.
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Proof of Proposition 5.2. For the sake of simplicity, set

f(u) = z\(e”* =1 —pu) and F(u)= zx{%(e”“ —1)~u- %qu}.

From the definition of M[p.], we have

Mlpd = sto(e)? [ {1Vl + (1 = mp)e?}do = [ Fltops) do

By Lemmas 5.3 and 5.4, expanding F(t(¢)p.) in the Taylor series and the
decay property of ¢., we have

Me.] =€2[/R2 {%(w) (1 — zyp)w }dz

+5[ﬂ/1;2 {(w') + (1 — zp)w* —wF'(w }dz

" 0
_?%{ +(1 _ZAp)/Riw zzdz——Z/R1 F(w)22dz}}+0(5)].
Since w is radial, we get
2/2{ 1—z,\pw—wF' }dz
R
/ {|Vw|2 — zp)w’ — wF' (w }dz
- w(—Aw + (1 — zxp)w — F'(w))dz = 0.
Moreover, since
lq )/Zd—/F()al—z—§ !
5(1—2p Rgrw zodz - w)zpdz =27 = 57 = 57,

we obtain

Ml = {5 1(w) = 9" (0)ye +o{e)}:
a

Remark 5.1 Proposition 5.2 is valid for any positive radial solution w to
(5.2) which decays exponentially at infinity. In Theorem 1.2, we have seen
that ||uc||z=(q) is bounded from above. Here we will show that the L*-norm
is also bounded away from 0.
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Lemma 5.5 Suppose that u. attains its mazimum at zo € Q. Then
us(a:o) Z U

holds for any sufficiently small € > 0. Moreover there exists ng > 0 indepen-
dent of zy and € such that u.(xz) > no holds for any z € B.(zo) N if € s
sufficiently small, where @ is a positive constant solution of

e2Au— (1 —zyp)u+2zy(e”™* —1—pu) =0 in Q

with the homogeneous Neumann boundary condition, i.e., U satisfies U =
zA(e’”—‘ — 1)

Proof. Suppose that u.(zo) < . If z5 € Q, then
e*Au, = u, — (e =1)>0

holds in a neighborhood of zg. This contradicts the fact that Au(ze) < 0
because ¢ is a local maximum point. Hence zq € 0. Hence u.(2) < u(zo)
in a neighborhood of zg. Then by the Hopf boundary point lemma, we
conclude that du./0v > 0 at zo, which contradicts the boundary condition

Ou/0v = 0 on 0f). Thus we obtain
ue(z0) > .

As for the latter part, by using Lemma 4.2(the Harnack inequality), we can
find a constant C' > 0 independent of € > 0 such that

sup u. <C inf u..
Be(z0)NQ ) Be(zo)n

- Hence from the former part, we have

1 1
inf  u. > =u. > —
inf  wu. > (:130)_0

Be(z0)nQ2 c* Y-
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6 Proof of Theorem 1.4

Finally, we have arrived at the position to prove Theorem 1.4.

Suppose that at P. € (), u. attains its maximum. We will prove Theorem
1.4 in three steps. Although the way of proving Theorem 1.4 is almost
identical to that of Theorem 1.2 of [10], we just give a sketch of a proof.
Step 1. We prove that there exists C* > 0 independent of ¢ > 0 such that

dist (P.,00) < C*e

if € > 0 is sufficiently small.
Suppose to the contrary that there exists a sequence {¢;} (e;  0) such
that .
dist ( P, 0N)

= — 00
Pj e

as j — oo. Let us define a scaled function v;(z) := u,(P; +¢52), z €
B,,. Then by the elliptic regularity theory (see, e.g. [6]), we can extract a
subsequence, still denoted by {v,}, such that

v, »w in CIOC(RZ)

with w(z 0) € C*(R?) N W (R2).

Now we estimate the minimax value c.; from below. Using I(w), we have

ce; > €5 (I(w) — Csexp(—p2R))

forvany 3 > jm with C3 and po > 0 inidepedent of j and m.
On the other hand, we have from Proposition 5.2 and Remark 5.1

<5%I( )

if ¢; is sufficiently small. This is a contradiction. Thus we have proved

dist (P.,090) < C*e.

Step 2. We will prove P. € 9Q if ¢ > 0 is sufficiently small. Suppose to
the contrary that there exists a decreasing sequence {ex} (¢ | 0 as k — o0)
such that P., € Q. From Step 1, we may suppose that P, =: P,, — P € 90
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as k — oo choosing a subsequence if necessary. We may regard P = (0,0).
We use the diffeomorphism @ introduced in (5.1). The inverse image ¥ of @
straightens a boundary portion of P. We may suppose that ® is defined in
an open set containing the closed ball By, and that Qy := U(P;) € BF for
all k. Put

vk(y) = ue (®(y)) fory € B2m - (6.1)
and extend it to B,,. by reflection: '

~ . — Uk(y) lf Yy € BQK.) .
Buly) = { v(y1,—y2)  ify € By, (6.2)

where B;,, = {y € Bax |y2 < 0}. Moreover, we define a scaled function wg(2)
by ' .
wi(z) = 9x(Qr + €xz) for z € By/e, - - (6.3)

Let Qx = (qx, axer) with ¢ € R and a; > 0. Then by the Step 1, {ax} is
bounded. It is easily seen that

wy, € C*(Byse\{z2 = —a}) N C'(Byse,)

since Ovg/dy, = 0 on {y, = 0}. Similar to Step 1, we obtain a convergent
subsequence (still denoted by {wy}) such that

wy = w in Cf (R?)
and w € C*(R*) N W?7(R?). The limit w satisfies

0? H? 0 . o |
a11(0) 5 072 - + 2‘112(0)8Z1;UZ2 + 022(0)5:% - (1 -2z )w+ f(w)=0 in R2

However, in fact, since Q; — (0,0) as & — oo and D¥(0) = [D®(0)]~ = I,
we have

Aw — (1 - zp)w + f(w) =0 in R

Moreover, w is raidalyy symmetric with respect to the origin and decays
exponentially at infinity. Fix R > 0 sufficietly large. Then we can find an
integer kg such that, for £ > kg,

|lwe — wllo2(Byp) < MR- (6.4)
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This shows that w; has only one maximum point in Bg. If ax > 0, then
by the definition of ¥, @k = (gk, —akek) is also a local maximum point of
¥, i.e., (0,—ayx) is another local maximum point of wy in Bg, which Is a
contradiction. Step 2 is complete.

Step 3. We shall show that u, has at most one local maximum point. Suppose
to the contrary that there exists a decreasing sequence {ex}such that u., has
two local maxima at P and P}. From Step 2, P and P, are on the boundary.
Moreover, we may assume

| P, — P

- =00 (k— 00)
€k

since otherwise, the scaled function wy has two local maxima in Bg, which
contradicts Step 2. :

We introduce the diffeomorphism y = ¥(z) which straightens a boundary
portion around P as in Section 5 and define vy, ¥y and wy, by (6.1), (6.2) and
(6.3), respectively. Then by the compactness argument as in Step 2, we see
that {wy} has a convergent subsequence, still denoted by {w;}, converging
to w € C*(R*)NW2(R?) in the CE (R?) topology and w is a positive radial -
solution to (5.2). |

Now we estimate ¢, from below. Similar to Step 1, we have

¢, > eﬁ{%f(w) Gy — Cse R = Coey} (6.5)

with positive constants Cy, Cs and Cs by making use of the exponential decay .
of w. Now choosing P € 0f) such that ¢”(0) > 0, we see from Proposition

5.2 that 1
Cep < siil(w)

if € is sufficiently small, which is inconsistent with (6.5). Therefore u. has
at most one maximum. O
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