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A GENERALIZATION OF COLEMAN’S ISOMORPHISM

. PIERRE COLMEZ

1. General Notation. Fix a compatible system (1,e;,...,€5,...) of roots of
unity, with €, ., = €, and ¢; # 1. If K is a finite extension of Q, and n € N, let
Kn = K(en) and Koo = UnenKy. Let also 9k be the Galois group Gal(Q,/K)
and x : ¥k :— Zj be the cyclotomic character and denote by /% C ¥k its kernel.
Finally, let T'x = 9k /#k = Gal(Ko/K) and Ax = Z,[['k]] be the completed
group algebra of I'k. ‘

2. Coleman’s isomorphism. If K = Q, and v = (un)neN is an element of the
projective limit of the groups 0% with respect to the norm maps, Coleman proved
[5] that there exists a unique element Col,(T") of (Z,[[T]])* such that Col,(e,—1) =
un for all n € N. Now, as Col,(T) € (Z,[[T]])*, its logarithmic derivative has
coefficients in Z, and there is a unique measure p,, on Z, such that

(1) /Z (1+T)p, =1+ T)diT log(Col,(T)).

Restricting this measure to Z; and pulling it back to 'k using the cyclotomic
character gives us a map from lﬂ_n O%. to Ak which is almost an isomorphism and
is known as Coleman’s isomorphism. Moreover, the measure giving the Kubota-
Leopoldt zeta function is the image of the cyclotomic units via this map and so Cole-
man’s isomorphism can be thought of as a machine producing p-adic L-functions
out of compatible systems of units.

All this can be thought of as being related to the p-adic representation Q,(1).
It seems therefore interesting to try to generalize as much as possible the results
to other p-adic representations. A big breaktrough has been made by Perrin-Riou
[10] in the case where the representation is crystalline and K unramified over Q,
using p-adic interpolation of the exponentials of Bloch-Kato [1] for the twists of
the representation by powers of the cyclotomic character. Her construction has
been refined by Kato-Kurihara and Tsuji in their work on trivial zeroes of p-adic
L-functions and generalized to the case of de Rham representations in [6]. As
explained below, the theory of (¢, I')-modules introduced by Fontaine [7] gives such
a generalization without any restriction on the representation.

3. The Iwasawa module attached to a p-adic representation. Define

HL(K,V)=HYK,Ax ® V).
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One can view Ax @V as the space of measures on ' with values in V which makes
it possible to define maps :

Hy, (K,V) — H'(Kn, V(k))

p— / x(z)*u
Tk,
for any n € N and k € Z. If T is a Z,-lattice in V which is stable under the action
of ¥k, one can show, using Shapiro’s lemma, that the map

HL,(K,V) — Qp ® (lim H* (Kn,T(k)))

o — (,/r x(x)ky,)

is an isomorphism for all k € Z (the inverse limit above is taken with respect to

corestriction maps). If V = Q,(1), Kummer’s theory gives us a natural map from
K} to H'(K,,Z,(1)) and, taking inverse limits, a map

§ :im 6% — HE, (K, Qp(1)).

4. (p,I')-modules and Coleman’s isomorphism. The theory of (p, I')-modules
- attaches to a p-adic representation V' a module D(V') with commuting actions of
'k and a Frobenius endomorphism ¢. One of the nice features of this theory is
that it is possible to reconstruct V from D(V') which is a priori a simpler object.
One natural problem is therefore to read directly on D(V) the properties of V.
One of the things that one can recover in this way is the Galois cohomology of V
(cf. [8]). Using these results, it is possible to construct (cf.. [3]) a natural map
Exp*: H} (K,V) — D(V).

To relate the above construction to Coleman’s, let Bq, be the ring of Laurent
series £ =) . a,T" where a, is a'bounded sequence of elements of Q,, going to
0 when n goes to —oo. This ring is given an action of ¢ and I via the formulae

y(m )"(1+7T)X('7)—1andcp(7r) (14+7)P—-1.

Now, if K = Qp and V = Qy(1), then D(V) is the B, -module of rank 1 w1th
action of I' twisted by x and the following identity holds if « € lim Ox%.

Bxp™(6(w) = (1+ 7)1~ log(Colu(m)),

which shows that this map Exp* is a direct generalization of Coleman’s isomor-
phism. '

5. Relation with Bloch-Kato exponential map. Using the theory of overcon-
vergent representations and especially the fact that any p-adic representation of
9K is overconvergent [2], it is possible to relate invariants coming from the the-
ory of (y,I')-modules to invariants involving the ring B4r of p-adic periods. More

precisely, the ring Bgr and the ring B occuring in the theory of (¢, I')-modules

are both built up from the ring of Witt vectors of the perfectization of &¢_/p and
overconvergent elements in B are, by definition, elements z such that ¢~"(z) has
a meaning in Bgg for n big enough.
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‘Prdposition. If V is a de Rham represéntatz'on of V and p € H} (K,V), then
Exp*(V) is overconvergent and, if n is big enough, the following identity holds in

@) pme (B () = X exp ([ x(e)™)
kEZ Pkn
Remark. (i) As mentioned above, fI‘x,. x(z)~* is an element of H'(K,,V(—k))
and . ‘
exp* : HY(Kn,V(~k)) = Dgr(V(=k)) = t* Dgr(V)
is the map constructed by Kato [9] and is dual to the exponential of Bloch and
Kato [1] for the representation V*(1 + k).

(ii) The term CWy »(p) corresponding to exp* ( fl‘x,. x(a:)"“) in the sum above
can be defined directly from Exp*(p) without any reference to exp* and the maps
p — CWy, (p) are generalizations of the Coates-Wiles homomorphisms [4]. Thus,
formula (2) shows that they are related to Bloch-Kato’s exponential maps. This
last fact is usually thought of as an explicit reciprocity law.
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