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Berger-Shaw’s theorem for p-hyponormal operators

BLAZER SRR Il 3 (Atsushi Uchiyama)

For a n-multicyclic p-hyponormal operator T', we shall show
that | T [ —| T* |*” belongs to the Schatten %—class C: and
Y

that tr((| T [ — | T* )%) < 2Area(o(T)).

1. Introduction For a bounded linear operator T' on Hilbert space
H, R(o(T)) denotes the set of all rational functions analytic on o(T),
where o(7') is the spectrum of T. The operator T is said to be n-
multicyclic if there are n vectors zi,...,z, € H, called generating
vectors, such that V{g(T)z;; i =1,...,n, g € R(c(T))} = H. For a
psuch as 0 < p < 1, T is said to be p-hyponormal, if (T*T)P > (TT*)*.
In particular, 1-hyponormal is called hyponormal and %——hyponormal
1s called semihyponormal. Xia([7]) gave an example which is not hy-
ponormal but semihyponormal. Thus, the class of p-hyponormal op-
erators properly contains 1- hyponormal operators. Putnam([6]) ob-
tained the norm estimation for the self-commutator of a hyponormal
operator, so called Putnam’s inequality. This inequality is extended
for a p-hyponormal operator by Xia([8]) and Cho-Itoh([3]). Berger-
Shaw([2]) showed the trace norm estimation for the self-commutator
of n-multicyclic hyponormal operator, so called Berger-Shaw’s inequal-
ity. In this paper we shall extend this inequality to the case of a
n-multicyclic p-hyponormal operator.

2.  Preliminary lemmas

For p-hyponormal operator 1" with its polar decomposition T' = U |
—~ 1 1
T |, the operator T'= | T |2U| T |? is said to be the Aluthge transform.
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It is known, by Aluthge([1]), that T is hyponormal if 1<p<1land
(p+ ) hyponormal if 0 < p < % 5 and if U is unitary. In this paper, we

deal with the operator T = | T |75 P | T |7+ for s < p < o,
where m is non-negative integer. :

Lemma 1. If T is p-hyponormal operator for a p such as 2—,,11;1— <p<

Qm , then

(T < | T |72 7 7| 7 [
<|T |7 < (T*T)r,

and hence T is -hyponormal.

2 m

Proof. Since 2m+1 <p< 2m, 2—,,,
by Heinz’s inequality and hence

——p <pandTis ( —p)-hyponormal

T*T = | T "= U T |2<-r*n'~P)U| T [-emt
> | T |‘o ey 7 PPy T |t
=|T | 2m+p| T | o p)* T |1_§TH"+P | T |

Thus, by Heinz’s inequality, we have the inequality,
ITI">|T) Vse(0,2].

Since, by the (2% — p)-hyponormality of T,

TT* = | T |7 PU| T |-t y*| T |
= | T || 7 T
= | T || o e e P o e g
S| T [r o [ P 7 e 7

= (| 7| 7 | |y

I



We have, by Heinz’s inequality and by (51—,; — p)-hyponormality of T

1

(TT*)s < | T [#72| 7 [\ 2| 7 [se?

= | T || 7 [ R o ) e [ e

1

S| T[T e ) 7 e 7 e

= (I T |77| T [ 7 ey

?

and, by repeating the same arguments as above, we obtain
(TT*)?
<| T 77| 7 |
=| T |FP| T [ o P et e
<| T || 7 | e g e e
=(| T |[#7| T* [T 2| 7 |2,
and
(TT*)
<IT P 7 EE T
=| T [0 T Fm | e ) o e g
<| T [P 7F| 7 [t e g et [
=(| T [ T T T )
Eventually, we have
(TT*)w-T
<IT [ T e T
=| T [P T e ) 7 e
=| T [ T [ 7 P T T
<|T |7 T PP 7 R 7 P e
= (| T |77 T PP Ty,

112
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and hence
(T < | T |7 7 | T |77
<IT T T
=|T |7 < (T*T)*.

Therefore T is -hyponormal.

2771
Lemma 2. If T 1s n-multicyclic p-hyponormal, then T is also n-
multicyclic and o(T) = o(T).

Proof.  For a p-hyponormal operator T', KerT' is a reducing subspace
of T and also T. Hence we may assume that KerT = {0}. Put

S = 5= — D, Where 2m+1 <p<am

2771

oT)=o(ITI'UIT|7) C U(Ul T 77 T 1) U{0} = o(T) Uf0}.
Similarly

o(T)=o(UIT | TI") Co(IT I'UI T |"")U{0} = o(T) U{0}.
Since T is invertible if and only if T is invertible, we have ¢(T) = o(T)
and R(o(T)) = R(o(T)). Since T is n-multicyclic, .

dx,...,z, € H s.t.

V{g(T)zi; i=1,...,n, g€ R(o(T))} = H.

Put y; = | T |’z;, © = 1,...,n. We shall show that {y;}\; are n-
multicyclic vectors for T'.

TNTI={TIUITI" ¥ TF=ITIH{UIT} =|T[T"

If A\ € p(T), then A = U(| T | +e€) is invertible for sufficiently small
e > 0. Therefore,

(1T 1+ (A =U(T|+e)
(A -U(T|+9)(T| +o~} |
=T+ A= (T | +e°U( T | +¢)'~*)}"
== (T [+ U( T | +'*) (| T | +¢)°
Letting € | 0, we have
A=T) TP —ITI(/\ 7)™

-1
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Hence, we have
gDIT [ =T g(T), ¥gé€R(s(T)),
and
gDy =| T ’g(T)z;, ¥YgeR((T)) i=1,...,n.
Thus,
V{g(Dy;; i=1,...,n, g€ R(e(T))}

=V{g(T)y;; i=1,...,n, g € R(c(T))}
=V{| T |’"g(T)zi;; i=1,...,n, g € R(a(T))}

=[| T |°H] = H because KerT = {0}.
This implies that T is n-multicyclic.
3. Main theorem

Berger-Shaw’s Theorem. If T is a n-multicyclic hyponormal op-
erator, then [T*,T] = T*T —TT™ is in the trace class, and tr([T*, T]) <

2Area(o(T)), where Area means the planar Lebesgue measure.
The following result is our main theorem.

Theorem. If T is a n-multicyclic p-hyponormal operator for p such as
9.

0<p<1,then for psuchas 0 < p <1, then |T [2” | T* |”? belongs

to the Schatten ——class C L and '

tr((| T* =T [*)) < ;Area(a(T)).

When p = 1, this theorem is exactly Berger-Shaw’s theorem.

The following is the key for our purpose.

Lemma 3. If T is n-multicyclic p-hyponormal, then
tr(|T [P T 17 = | T )| T ) < ZArea(o(T)).
T

Proof.  We shall show this lemma for p such as 2,,1% <p< %, m =
0,1,2...., by the induction in m.
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Ifm =0, then T is a n-multicyclic hyponormal operator by Lemmas 1
and 2. Thus Berger-Shaw’s theorem implies that '

tr (T*T — TT*) < ;Area(a(T)) = ;A'r’ea(a(T)),
because ¢(T) = o(T) by Lemma 2. Since, by Lemma 1,
TT-TT 2| TP =TT |77
=TT~ T ™) T,
we have | |
(| T T = 70 ) T ) < (7T - TT7)

<

33

Area(o(T)).

Hence, the assertion holds for m = 0.

Next, we assume that the assertion holds for m = k (k > 0). If
m = k + 1, then T is 2k+1 -hyponormal by Lemma 1. Hence by the
assumption and by Lemmas 1 and 2, we have

gArea(a(T)) = ZArea(o(T))

2ur(| T |7FT( T FT - | T P T |75
2tr(| T|757( 7 P — | 7 e g o) 7)) 7))
ztr(({ T P | T (78| 7 2| T ey 7 P )

x (| T |251l1+—1 —|T lgkl—l—pl T | T ngﬂr—l—p)%)
Str(“ T |2# —|T lglﬁ—z)l T* I2p| T |5£,+—1—p):}| T F(l-#)

x (| T [ — | T |7 T ] T )
=tr(| T [""#¥(| T '#7 — | T [#7 2| T* 2| T [#570)| T |- 7—)
=tr(| T [(T - |7 )| T 7).

Hence, the assertion holds for m = k + 1. This completes the proof of
Lemma 3.
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Corollary 1. If T' is an invertible n-multicyclic p-hyponormal opera-
tor, then (T*T) — (TT*)? € C1 and |

tr((T"T) = (TT*)) < ||T_1H2(1"1’)—:—Area(-a(T)).

Proof. Since T is invertible, T*T > ||T7!||72, and n-multicyclic p-
hyponormality of 7" implies that

;Area(a(T))

>tr( | T | {(TT) = (TT*V} | T '~ ) by Lemma3
=tr ({(T"T)? — (T} (T T P{(T°T) — (TT*)"}})
>[4 20Per (1T — (TT°)).

We have (T*T)P — (TT*)? € C; and |
tr ((T*T)P - (TT*)P) < ||IT712-P 2 Area(o(T)). This completes the
proof of Corollary 1.

Proof of Theorem. By Lemma 3, |
(| TP =TI T 1) < Zarea(o(T))
And by the property of trace,
w(IT T P - T ) T )
=tr((| T 7 = | T* )| T P72( T 1" = | 7" [*)?)
=tr((| T [ = | T PP T *Y5( T 7 = T [7)3))
[f1<p<1,then 0 < =2 < 1. Thus, by Heinz's inequality, we obtain
(1T 7 = | T PRI T P75 T 2 = 7 [)2)
(7= T PR T P T PR T 7 )
—tr (| 7 - | T ) . |
=tr( )

(AT pr =17 P2).
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Therefore, we have
tr((1T [* | T [*)) < ~Area(o(T)).

Thus, the assertion of Theorem holds for p € [5, 1].
Ifo<p< l then by Furuta’s inequality([4]),

(AT PP = | TP T PPYF( T P = | T 7))

(TP =T (T 1? = | T )7 (T I? = | T [)5)”
(17— |1 ).

Thus (| T 1% | T* [®)i{] T *} 5 (| T [*=| T* )3)” and (| T | -

| T* [ )? are both compact positive operators. Let s, [A] be the n-th

!

singular number of a positive compact operator A. Then,

(T PP =T PRI T Y5 T P = | 7 2)2)Y]

Sy

~

2p

=su[(1 TP = | T* ) T Py 5 (TP = | 7 )]

>s, (17 7 = | T [7)],
and hence,
TP — | T ) {|T1"P} (T P = | T )]
TP )]

(

( )
=su[( T =T )

( )

[T =7 ).

—=s,
Hence, |
(T 2 = | T P TP} T - | 7 [)?)
>tr((| T % = | T* [*)?).
Therefore, we have

tr((| T [P = | T 7)) < %Area(a(T)).



118

The assertion of Theorem also holds for p € (0, 1]. This completes the
proof of Theorem.

For the restriction of a p-hyponormal operator to invariant subspace,
we have the following.

Lemma 4. Let M be an invariant subspace for a p-hyponormal oper-
ator T, and T' be the restriction of T to M. Then

{(T'T"Y < P(TT*YP
< P(T*TYP < {T"T"}?,
and T' is also p-hyponormal, where P denotes the projection onto M.
Proof. SinceT'=TP,
T"T" = PT*TP,
and hence, for any s € (0, 1],
{T"™T'}y* = {PT*TP}* > P(T*T)*P by Hansen’s inequality([5]).
While,
T'T" = TPT* = PTPT*P,
we have, for any s € (0, 1],
{T'T"}* = (TPT*)*
= P(TPT*)°P |
< P(TT*)°P by Heinz’s inequality.
Therefore, if T' is p-hyponormal for p such as 0 < p < 1, then
{T'T"™}? < P(TT*}*P
< P(T*T)*P
< A{T"T'}*.

Thus, 7" is also p-hyponormal.

Corollary 2. If T is p-hyponormal operator, then

I(TTY — (TT*P| < (> Area(o(T))}".



Proof. Let z be an arbitrary unit Vectdr in ‘H. We define
Ho = V{g(T)z; g € R(a(T))}.

Since Hy is an invariant subspace for T', Lemma 4 implies that 7" =
Ty, is a (1-multicyclic) p-hyponormal operator. If A € p(T), then,
for any y € Ho, (T — N\)7'y € Hy. Therefore, A € p(T'). Hence,
o(T") C o(T). By Theorem,

tr ({(T’*T')p — (T'T'*)P}%) < lArea(a(T’))

=

< —Area(o(T))

7

and the maximal eigenvalue of positive trace class operator {(7"*T")? —
(T’T'*)P}% is equal to or less than 1Area(o(T)). Thus, the maximal
eigenvalue of (T"*T")"—(T"T")? is equal to or less than {1 Area(a(T))}".
Therefore,

I(T™T) = (TP < {-Area(o(T))}.
Let P be the projection onto Hy. Then, by Lemma 4,
(- Area(o(T)))?
™
(@ Ty — (T'T")P}a, z)

>
> ({P(T*T)"P — P(TT*? P}z, z)
=({(T"T)y - (TT*)}z,2).

Since z € ’H is arbitrary unit vector,
1
I(T"T) = (TT)P|| < {-Area(a(T))}".

This inequality is an extension of the Putnam inequality to the case of
p-hyponormal operator.

Corollary 3. If T is an invertible p-hyponormal operator, then

* x —120-p) 1
I(TT) = (TT*)I| < TP~ Area(o(T)).

119
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Proof. Put Hy, T" = Ty, and P as Corollary 2, then 7" is an in-
vertible (1-multicyclic) p-hyponormal operator. Therfore by Lemma 3,

lArea(a(T)) > %Area(a(T’))

u(|T (T - (@ T T )

=t (7T — (PTOPR T (T — (TT) )

>tr({(T°T') = (TP Y P T) P P{T T — (T'T" Y1)
( by Hansen’s inequality )

(Y - TP T T - (1)

>|| 7|72 (7T - (1T,

=tr

(T"Ty = (@T" PP PT TP (T T - (T'T")}3)

Therefore
7120 Area(o (7))
>tr((T"T') = (T'T"Y)
2[[(TT") = (T'T")|
> (T — (1T }e, 2)
> ({P(T*T)*P — P(TT**P}z,z) by Lemma 4
={(T"T) - (TT")"}z, ). |

Since x € H is arbitrary unit vector,

|(T"T) = (TPl < |70 Area(o(T)),

Remark.  Putnam inequality was extended to the p-hyponormal
operator by Xia in the case of % < p <1, and by Cho-Itoh in the case
of 0 <p< % Their estimation is different from ours.
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