Ozeki’s method on Hölder’s inequality

富山大教育 泉野佐一 (Saichi Izumino)

Abstract. Ozeki’s method means applications of the following two facts at the same time: (1) A convex function on an n-dimensional cube attains its maximum at a vertex of the cube. (2) For given two n-tuples (or n-dimensional vectors) of nonnegative numbers, if they are rearranged mutually in an opposite ordering, then the corresponding inner product is not larger than the initial one. In the preceding paper, using Ozeki’s method, we succeeded in estimating the difference on both sides of Cauchy’s inequality. In this paper we again make use of the method and show a complementary inequality on the difference derived from Hölder’s inequality. We also discuss some applications and an operator version related to the complementary inequality.

1. Introduction. Let

\[a = (a_1, \ldots, a_n) \quad \text{and} \quad b = (b_1, \ldots, b_n) \]

be n-tuples of real numbers satisfying

\[0 < m_i \leq a_k \leq M_i \quad \text{and} \quad 0 < m_i \leq b_k \leq M_i \quad (k = 1, 2, \ldots, n). \]

Then as a complementary inequality connected to Cauchy’s inequality, the following one holds [4]:

\[(T :=) \quad \sum a_k^2 \sum b_k^2 - (\sum a_k b_k)^2 \leq (n^2/3)(M_1 M_2 - m_1 m_2)^2. \]

It is Ozeki [9] who initiated to try such an estimation. He presented an inequality [7][9]:

\[T \leq (n^2/4)(M_1 M_2 - m_1 m_2)^2, \]

though it was somewhat incorrect. Essentially by the same technique as
Ozeki devised the revised inequality (1.1) was deduced.

Consider $T = T(a, b)$ as a function defined in the product $[m_1, M_1]^n \times [m_2, M_2]^n$ of n-dimensional cubes $[m_1, M_1]^n$ and $[m_2, M_2]^n$. Then Ozeki's original idea for the estimation was making good use of the following two properties of $T(a, b)$.

(i) $T(a, b)$ is a separately convex function with respect to a and b, so that the maximum of $T(a, b)$ is attained at (a, b), each of a and b being an extremal point, that is, a vertex of the corresponding n-dimensional cube [6].

(ii) Define $c^- = (c^-_1, \ldots, c^-_n)$ and $c^+ = (c^+_1, \ldots, c^+_n)$ be the rearrangements of $c = (c_1, \ldots, c_n)$ in decreasing order and in increasing order, respectively. Then for $a = (a_1, \ldots, a_n)$ and $b = (b_1, \ldots, b_n)$ we have $\Sigma a^{-k}b^{-k} \leq \Sigma a^{k}b^{k}$ and $\Sigma a^{-k}b^{-k} \leq \Sigma a^{k}b^{k}$ [2], so that

\begin{equation}
(1.3) \quad T(a^-, b^-) \geq T(a, b) \quad \text{and} \quad T(a^-, b^-) \geq T(a, b).
\end{equation}

Take the difference

$S(a, b) := (\Sigma a_k^2)^{1/2}(\Sigma b_k^2)^{1/2} - \Sigma a_k b_k$

obtained from the square-root type Cauchy's inequality, or more generally, the difference

\begin{equation}
(1.4) \quad S_p(a, b) := (\Sigma a_k^p)^{1/p}(\Sigma b_k^q)^{1/q} - \Sigma a_k b_k,
\end{equation}

$p > 1, q > 1, 1/p + 1/q = 1,$

which is derived from Hölder's inequality. Then we come to a new problem to estimate it. Fortunately, the function $S_p(a, b)$ is again separately convex with respect to a and b, and similar inequalities as in (1.3) hold for $S_p(a, b)$ instead of $T(a, b)$.

In this paper we show an inequality on the difference $S_p(a, b)$, which gives an upper bound of $S_p(a, b)$, applying Ozeki's method. We also discuss some applications and an operator version connected to the inequality.

Throughout this paper we assume that $p > 1, q > 1, 1/p + 1/q = 1.$
2. Difference from Hölder's inequality. In this section we prove

Theorem 2.1. Let \(a = (a_1, \ldots, a_n) \) and \(b = (b_1, \ldots, b_n) \) be \(n \)-tuples satisfying

\[
0 < m_k \leq a_k \leq M_k \quad \text{and} \quad 0 < m_k \leq b_k \leq M_k \quad (k = 1, 2, \ldots, n).
\]

Suppose that \(\alpha := m_k/M_k < 1 \) and \(\beta := m_k/M_k < 1 \). Then we have

\[
(2.1) \quad \left(\sum a_k^p \right)^{1/p} \left(\sum b_k^q \right)^{1/q} - \sum a_k b_k \\
\leq \frac{1}{n} \left(\frac{1-\alpha}{1-\alpha p} + \frac{1-\beta}{1-\beta q} \right) - 1 \cdot \left(c(\alpha, \beta ; p, q) \{1/(1-\alpha p) + 1/(1-\beta q) - 1\} \right).
\]

Here \(c = c(\alpha, \beta ; p, q) \) is defined as follows; letting

\[
K = K(\alpha, \beta ; p, q) = \left(\frac{1-\alpha p}{p(1-\alpha)} \right)^{1/p} \left(\frac{1-\beta q}{q(1-\beta)} \right)^{1/q},
\]

\[
g(t) = (1 - \alpha)(1 - Kt^{1/q}) \quad \text{and} \quad h(t) = (1 - \beta)(1 - Kt^{-1/p}),
\]

we obtain a (unique) positive solution \(t = t^* \) of the equation \(g(t) = h(t) \), that is,

\[
(2.2) \quad (1 - \alpha)(1 - Kt^{1/q}) = (1 - \beta)(1 - Kt^{-1/p}),
\]

and then we put

\[
c = (1 - \alpha)(1 - Kt^{1/q}) = (1 - \beta)(1 - Kt^{-1/p}).
\]

Before we begin the proof, we remark that the inequality (2.1) is still holds (or has a meaning by taking a limit) if we replace the restrictions \(0 < m_k, 0 < m_k, \alpha < 1 \) and \(\beta < 1 \) by weaker ones \(0 \leq m_k, 0 \leq \alpha \leq 1 \) and \(0 \leq \beta \leq 1 \) in the theorem.

Proof of the theorem. Write

\[
S_p(a, b) := \left(\sum a_k^p \right)^{1/p} \left(\sum b_k^q \right)^{1/q} - \sum a_k b_k,
\]

\[
\| a \|_p = \left(\sum a_k^p \right)^{1/p}, \| b \|_q = \left(\sum b_k^q \right)^{1/q} \quad \text{and} \quad \langle a, b \rangle = \sum a_k b_k.
\]

Then \(\| a \|_p \) and \(\| b \|_q \) satisfy the usual norm conditions, and \(\langle a, b \rangle \) is a bilinear function. Hence we see that

\[
S_p(a, b) = \| a \|_p \| b \|_q - \langle a, b \rangle
\]

is a separately convex function with respect to \(a \) and \(b \). Furthermore,
we easily see that

\[S_p(a^-,b^-) \geq S_p(a,b) \quad \text{and} \quad S_p(a^-,b) \geq S_p(a,b). \]

Hence \(S_p(a,b) \) has the same properties (i) and (ii) as \(T(a,b) \) for application of Ozeki's method.

Note that an extremal point of \([m,M]^n\) is precisely a point, each of whose components is \(m \) or \(M \). Hence we may seek the maximum of \(S = S_p(a,b) \) among \((a,b)\) of the following two types:

Case I. \(a = (M_1, \ldots, M_1, m_1, \ldots, m_1), \quad 0 \leq s \leq n, \)

\[\begin{array}{c} \underbrace{t} \\ \underbrace{\underline{n-t}} \end{array} \]

\(b = (m_2, \ldots, m_2, M_2, \ldots, M_2), \quad 0 \leq t \leq n, \)

and

Case II. \(a = (m_1, \ldots, m_1, M_1, \ldots, M_1), \quad 0 \leq s \leq n, \)

\[\begin{array}{c} \underbrace{t} \\ \underbrace{\underline{n-t}} \end{array} \]

\(b = (M_2, \ldots, M_2, m_2, \ldots, m_2), \quad 0 \leq t \leq n. \)

Each of the Cases I and II is again divided into two cases according to \(t \leq s \) and \(s \leq t \). For convenience sake, assume \(M_1 = M_2 = 1 \), and write \(\alpha = m_1 \) and \(\beta = m_2 \) for simplicity. Now we begin with

Case I(i): Let \(0 \leq t \leq s \leq n \) and let

\[a = (1, \ldots, 1, 1, \ldots, 1, \alpha, \ldots, \alpha), \]

\[b = (\beta, \ldots, \beta, 1, \ldots, 1, 1, \ldots, 1). \]

Then

\[S = \{ s + (n - s)\alpha \}^{1/p} \{ t\beta^q + (n - t) \}^{1/q} - \{ t\beta + (s - t) + (n - s)\alpha \}. \]

Putting \(x = t, y = s - t, z = n - s \), we then have
\begin{equation}
S = (x + y + \alpha^p z)^{1/p} (\beta^q x + n - x)^{1/q} - (\beta^q x + y + \alpha z)
\end{equation}

\begin{align*}
&= \{n - (1 - \alpha^p) z\}^{1/p} \{n - (1 - \beta^q) x\}^{1/q} + (1 - \alpha) z + (1 - \beta) x - n, \\
&\quad z \geq 0, \ x \geq 0, \ z + x \leq n.
\end{align*}

In order to estimate \(S \), we note the inequality
\begin{equation}
u^{1/p} \psi^{1/q} \leq u/p + v/q, \text{ for } u \geq 0, \ v \geq 0,
\end{equation}
or its slight extension
\begin{equation}
u^{1/p} \psi^{1/q} = (1/(p \lambda))^{1/p} (1/(q \mu))^{1/q} \cdot (p \lambda u)^{1/p} (q \mu v)^{1/q} \leq (1/(p \lambda))^{1/p} (1/(q \mu))^{1/q} (\lambda u + \mu v), \ \lambda > 0, \ \mu > 0.
\end{equation}

We remark that the equality sign in the above inequality holds when
\begin{equation}
\theta \alpha = \theta \beta.
\end{equation}

Now if we put
\begin{equation}
\lambda = (1 - \alpha) t^{1/2}/(1 - \alpha^p), \ \mu = (1 - \beta) t^{1/2}/(1 - \beta^q) \text{ for } t > 0,
\end{equation}
and
\begin{equation}
u = n - (1 - \alpha^p) z, \ v = n - (1 - \beta^q) x,
\end{equation}
then from (2.4) we have
\begin{align}
&\{(n - (1 - \alpha^p) z\}^{1/p} \{n - (1 - \beta^q) x\}^{1/q} \\
&\leq \{(1 - \alpha^p) t^{-1/2}/p(1 - \alpha)\}^{1/p} \{(1 - \beta^q) t^{-1/2}/q(1 - \beta)\}^{1/q} \times \\
&\{(1 - \alpha^p)/p(1 - \alpha)\}^{1/p} \{(1 - \beta^q)/q(1 - \beta)\}^{1/q} \times \\
&\{(1 - \alpha^p) nt^{1/2}/(1 - \alpha^p) + (1 - \beta^q) nt^{-1/2}/(1 - \beta^q) \\
&\quad - (1 - \alpha) zt^{1/2} - (1 - \beta) xt^{-1/2}\}
&= K\{nt^{1/2}/K_\alpha + nt^{-1/2}/K_\beta - (1 - \alpha) zt^{1/2} - (1 - \beta) xt^{-1/2}\}.
\end{align}

Here
\begin{equation}
K_\alpha = (1 - \alpha^p)/(1 - \alpha), \ K_\beta = (1 - \beta^q)/(1 - \beta)
\end{equation}
and
\begin{equation}
K = (K_\alpha/p)^{1/p} (K_\beta/q)^{1/q}.
\end{equation}

By the way we remark that from the mean value theorem
\begin{equation}
K_\alpha/p = \theta_\alpha \alpha^{p-1} \text{ and } K_\beta/q = \theta_\beta \beta^{q-1}
\end{equation}
for some \(\theta_\alpha \) and \(\theta_\beta \) such that \(\alpha < \theta_\alpha < 1 \) and \(\beta < \theta_\beta < 1 \), so that
\(K < 1 \), and furthermore
\begin{equation}
K = (\theta_\alpha \alpha^{-1})^{1/p} (\theta_\beta \beta^{-1})^{1/q} > \alpha^{1/q} \beta^{1/p}.
\end{equation}

Now it follows from (2.3) and (2.6) that
\[(2.8) \quad S \leq nK\{t^{1/\alpha}/K_\alpha + t^{-1/\beta}/K_\beta\} - n \\
\quad + (1-\alpha)(1-Kt^{1/\alpha})z + (1-\beta)(1-Kt^{-1/\beta})x.\]

It is convenient to write \(F(z,x;t)\) the right side of the above inequality, that is,
\[F(z,x;t) = nK\{t^{1/\alpha}/K_\alpha + t^{-1/\beta}/K_\beta\} - n \\
\quad + (1-\alpha)(1-Kt^{1/\alpha})z + (1-\beta)(1-Kt^{-1/\beta})x.\]

Though the variables \(z\) and \(x\) are discrete, for a moment we assume that they are continuous. Let
\[\Delta = \{(z,x); z \geq 0, x \geq 0, z + x \leq n\},\]
and for a fixed \(t > 0\), let \(\phi_i\) be the maximum of \(F(z,x;t)\) for \((z,x) \in \Delta\). Then it is our task to seek the minimum \(\phi\) of \(\phi_i = \phi(t)\) for \(t > 0\).

Since \(F_i(z,x) = F(z,x;t)\) is a linear (or precisely, affine) function on the triangle \(\Delta\), it attains its maximum \(\phi_i\) at one of the vertexes \((0,0)\), \((n,0)\) and \((0,n)\) of \(\Delta\). Since \((0 < K < 1)\), we see that at least one of
\[g(t) = (1-\alpha)(1-Kt^{1/\alpha})\quad \text{and} \quad h(t) = (1-\beta)(1-Kt^{-1/\beta})\]
is nonnegative (for any \(t > 0\)), so that either
\[F_i(n,0) = F_i(0,0) + g(t) \quad \text{or} \quad F_i(0,n) = F_i(0,0) + h(t)\]
is not smaller than \(F_i(0,0)\). Hence, putting \(G(t) = F_i(n,0)/n\) and \(H(t) = F_i(0,n)/n\), we have
\[\phi(t) = \phi_i = \max\{F_i(z,x); (z,x) \in \Delta\} \]
\[= \max\{F_i(n,0), F_i(0,n)\} = n \max\{G(t), H(t)\}.\]

By definition we see that
\[(2.9) \quad G(t) = F_i(n,0)/n = K(t^{1/\alpha}/K_\alpha + t^{-1/\beta}/K_\beta) - 1 + g(t) \\
\quad = K\{\alpha^p t^{1/\alpha}/K_\alpha + t^{-1/\beta}/K_\beta\} - \alpha,\]
and
\[(2.10) \quad H(t) = F_i(0,n)/n = K(t^{1/\alpha}/K_\alpha + t^{-1/\beta}/K_\beta) - 1 + h(t) \\
\quad = K\{t^{1/\alpha}/K_\alpha + \beta^p t^{-1/\beta}/K_\beta\} - \beta.\]
Let $t_0 = qK\alpha^{-\rho}/pK\alpha$ and $t_\infty = qK\beta^{-\rho}/pK\beta$. Then $t_0 > t_\infty$ and by an elementary calculation we see following facts.

(i) $G(t)$ is decreasing for $(0 <) t < t_0$, increasing for $t > t_0$ and $\min_{t \to t_0} G(t) = G(t_0) = 0$,

(ii) $H(t)$ is decreasing for $(0 <) t < t_\infty$, increasing for $t > t_\infty$ and $\min_{t \to t_\infty} H(t) = H(t_\infty) = 0$,

(iii) $L(t) := G(t) - H(t)$ is decreasing, and $\lim_{t \to 0} L(t) = \infty$, $\lim_{t \to \infty} L(t) = -\infty$. Hence the equation $L(t) = 0$, that is,

$$\text{Hence we see that the minimum } \phi_0 (= \phi/n) \text{ of the function } \phi(t)/n = \max\{G(t), H(t)\} \text{ is attained at } t = t_\ast.$$

In order to express the minimum ϕ_0 in terms of t_\ast, or a parameter close to it, put (cf. (2.11))

$$c = (1 - \alpha)(1 - Kt_\ast^{1/\alpha}) = (1 - \beta)(1 - Kt_\ast^{-1/p}).$$

Then since

$$Kt_\ast^{1/\alpha} = 1 - c/(1 - \alpha) \quad \text{and} \quad Kt_\ast^{-1/p} = 1 - c/(1 - \beta),$$

we have, from (2.9) (or (2.10)),

$$\phi_0 = G(t_\ast) (= H(t_\ast)) = K(t_\ast^{1/\alpha}/K\alpha + t_\ast^{-1/p}/K\beta) - 1 + g(t_\ast)
= (1/K\alpha)(1 - c/(1 - \alpha)) + (1/K\beta)(1 - c/(1 - \beta)) - 1 + c
= 1/K\alpha + 1/K\beta - 1 - c/(1 - \alpha)K\alpha - c/(1 - \beta)K\beta + c
= (1 - \alpha)(1 - \alpha^p) + (1 - \beta)(1 - \beta^q) - 1 - c\{1/(1 - \alpha^p) + 1/(1 - \beta^q) - 1\}.$$ (2.11)

This yields the desired inequality (2.1) with the assumption $M_1 = M_2 = 1$.

Next we consider the following

Case I (ii): Let $0 \leq s \leq t \leq n$ and let
Then
\[S = \{s + (n - s)\alpha p\}^{1/p}\{n - t\} + t\beta q\}^{1/q} \]

\[- \{s\beta + (t - s)\alpha \beta + (n - t)\alpha\}. \]

Putting \(x = s,\) \(y = t - s \) and \(z = n - t, \) we have

(2.12) \[S = \{n\alpha p + (1 - \alpha p)x\}^{1/p}\{n\beta q + (1 - \beta q)z\}^{1/q} \]

\[- \beta(1 - \alpha)x - \alpha(1 - \beta)z - n\alpha \beta, \]

\[z \geqq 0, x \geqq 0, z + x \leqq n. \]

As in the preceding case, using (2.6), we have

(2.13) \[\{n\alpha p + (1 - \alpha p)x\}^{1/p}\{n\beta q + (1 - \beta q)z\}^{1/q} \]

\[\leqq \{(1 - \alpha p)t^{-1/2}/p(1 - \alpha)\}^{1/p}\{(1 - \beta q)t^{1/2}/q(1 - \beta)\}^{1/q} \times \]

\[\{(1 - \alpha)\alpha p/(1 - \alpha) + (1 - \alpha)x\}t^{1/2} + \{(1 - \beta)\beta q/(1 - \beta) + (1 - \beta)z\}t^{-1/2} \]

\[= K\{n\alpha p t^{1/q}/K_\alpha + n\beta q t^{-1/p}/K_\beta + (1 - \alpha)xt^{1/q} + (1 - \beta)zt^{-1/p}\}. \]

Hence from (2.12) and (2.13)

(2.14) \[S \leqq nK\{\alpha p t^{1/q}/K_\alpha + \beta q t^{-1/p}/K_\beta\} - n\alpha \beta \]

\[+ (1 - \alpha)(Kt^{-1/q} - \beta)x + (1 - \beta)(Kt^{-1/p} - \alpha)z. \]

Put \(F^-(x, z; t) \) the right side of the above inequality. Then for fixed \(t > 0, \) the function \(F^-(x, z) = F^-(x, z; t) \) is linear on \(\Delta = \{(x, z); x \geqq 0, z \geqq 0, x + z \leqq n\} \) as in Case I(i). Note here that at least one of

\[Kt^{1/q} - \beta \quad \text{and} \quad Kt^{-1/p} - \alpha \]

is nonnegative; in fact, if we assume that

\[Kt^{1/q} - \beta < 0 \quad \text{and} \quad Kt^{-1/p} - \alpha < 0 \quad \text{for some} \ t > 0, \]

then \((K/\alpha)^p < (\beta/K)^q, \) which is impossible, because \((K/\alpha)^p > (\beta/K)^q, \)

or equivalently, \((K/\alpha)^p/(\beta/K)^q = (K/(\alpha^{1/q}\beta^{1/p}))^{p+q} > 1, \) by (2.7).

Consequently, the maximum of \(F^-; (x, z) \) on the triangle \(\Delta \) is \(F^-; (n, 0) \) or \(F^-; (0, n) \) as in the preceding case. Putting \(G^-; (t) = \)
\[
F^-(n,0)/n \quad \text{and} \quad H^-(t) = F^-(0,n)/n, \quad \text{we have}
\]

\[
(2.15) \quad \max\{F^-(x,z); (x,z) \in \triangle \} = n \max\{G^-(t), H^-(t)\}.
\]

By definition
\[
G^-(t) = K\{\alpha p t^{1/q}/K_a + \beta q t^{-1/p}/K_b\} - \alpha \beta + (1-\alpha)(Kt^{1/q} - \beta)
\]

and
\[
H^-(t) = K\{\alpha p t^{1/q}/K_a + \beta q t^{-1/p}/K_b\} - \alpha \beta + (1-\beta)(Kt^{-1/p} - \alpha)
\]

Hence from (2.9) and (2.10) we see \(G^-(t) = H(t)\) and \(H^-(t) = G(t)\), so that we can reduce the remaining discussion in this case to one in the preceding case. Hence we have the same value \(\emptyset\) as the minimum of \(\phi(t) = \max\{F^-(x,z); (x,z) \in \triangle \}\).

Case II(i): Let \(0 \leq t \leq s \leq n\) and let
\[
a = (\alpha, \ldots, \alpha, \alpha, \ldots, \alpha, 1, \ldots, 1),
\]
\[
b = (1, \ldots, 1, \beta, \ldots, \beta, \beta, \ldots, \beta).
\]

Then
\[
S = \{s \alpha p + (n-s)\}^{1/p}\{t + (n-t)\beta q\}^{1/q}
\]

\[
- \{t \alpha + (s-t)\alpha \beta + (n-s)\beta\}.
\]

Put \(x = t\), \((y = s - t, z = n - s)\). Then
\[
S = \{n \alpha p + (1-\alpha p)z\}^{1/p}\{n \beta q + (1-\beta q)x\}^{1/q}
\]

\[
- \beta(1-\alpha)z - \alpha(1-\beta)x - n \alpha \beta.
\]

If we exchange \(x\) and \(z\), then we have the same identity (2.12) in Case I (ii). Hence we have the same upper bound \(\emptyset\) of \(S\) as before.

Case II(ii): Let \(0 \leq s \leq t \leq n\) and let
\[
a = (\alpha, \ldots, \alpha, 1, \ldots, 1, 1, \ldots, 1),
\]
\[
b = (1, \ldots, 1, 1, \ldots, 1, \beta, \ldots, \beta).
\]

Then
\[
S = \{ s \alpha^p + (n - s) \}^{1/p} \{ t + (n - t) \beta^q \}^{1/q} - \{ s \alpha^p + (t - s) + (n - t) \beta \}.
\]

Putting \(x = s, (y = t - s) \), \(z = n - t \), we have
\[
S = \{ n - (1 - \alpha^p) x \}^{1/p} \{ n - (1 - \beta^q) z \}^{1/q} + (1 - \alpha) x + (1 - \beta) z - n.
\]

Hence if we exchange \(x \) and \(z \), then we have the same identity (2.3) in Case I (i), so that we obtain the same upper bound \(\phi \) of \(S \) as before. This completes the proof.

3. Special cases. In this section we deduce two theorems from Theorem 2.1

Theorem 3.1. Let \(a = (a_1, \ldots, a_n) \) and \(b = (b_1, \ldots, b_n) \) be \(n \)-tuples satisfying
\[
0 \leq m_1 \leq a_k \leq M_1 \quad \text{and} \quad 0 \leq m_2 \leq b_k \leq M_2 \quad (k = 1, 2, \ldots, n).
\]

Suppose \(M_1 M_2 > 0 \), and put \(\alpha = m_1 / M_1 \) and \(\beta = m_2 / M_2 \). Then
\[
(3.1) \quad (S =) (\Sigma a_k^2)^{1/2} (\Sigma b_k^2)^{1/2} - \Sigma a_k b_k \leq n M_1 M_2 (1 - \alpha \beta)^2 / \{ 2(1 + \alpha)(1 + \beta) \}.
\]

If both \(\alpha \) and \(\beta \) are rational and \(n \) is sufficiently large, then
\[
s = (1 + 2 \alpha + \alpha \beta)n / \{ 2(1 + \alpha)(1 + \beta) \}
\]
is an integer, \(0 \leq s \leq n \), and for \(a, b \) such that
\[
(3.2) \quad a_1 = \ldots = a_s = M_1, a_{s+1} = \ldots = a_n = m_1,
\]
\[
b_1 = \ldots = b_s = m_2, b_{s+1} = \ldots = b_n = M_2,
\]
the equality sign in (3.1) is valid.

Proof. We may assume that \(0 < \alpha < 1 \) and \(0 < \beta < 1 \). Let \(p = q = 2 \). Then from (2.1) of Theorem 2.1 we have
\[
(3.3) \quad S \leq n M_1 M_2 [(1 + \alpha) + 1/(1 + \beta)]
\]
- \(c(\alpha, \beta; 2, 2)\{(1 + \alpha) + 1/(1 + \beta) - 1\} \).

It is easy to see that \(K = K(\alpha, \beta; 2, 2) = (1 + \alpha)^{1/2}(1 + \beta)^{1/2}/2 \). The equation (2.11) is then

\[
(1 - \alpha)(1 - \text{Kt}^{1/2}) = (1 - \beta)(1 - \text{Kt}^{-1/2}),
\]

and the solution is \(t (= t*) = (1 + \beta)/(1 + \alpha) \). Hence we have

\[
c = (1 - \alpha)(1 - \text{Kt}^{1/2}) = (1 - \alpha)(1 - \beta)/2.
\]

Hence, replacing \(c(\alpha, \beta; 2, 2) \) in (3.3) by \((1 - \alpha)(1 - \beta)/2 \), we obtain the desired inequality (3.1).

To obtain the particular integer \(s (= (1 + 2\alpha + \alpha \beta)n/\{2(1 + \alpha)\} (1 + \beta)) \), recall the relation (2.5) in the previous section, \(p\lambda u = q\mu v \), which yields the equality sign of (2.4). Put in the equation

\[
p = q = 2, \quad \lambda = (1 - \alpha)t_*^{1/2}/(1 - \alpha^2) = (1 + \beta)^{1/2}/(1 + \alpha)^{3/2},
\]

\[
\mu = (1 - \beta)t_*^{-1/2}/(1 - \beta^2) = (1 + \alpha)^{1/2}/(1 + \beta)^{3/2},
\]

\[
u = n - (1 - \alpha^2)z, \quad v = n - (1 - \beta^2)x.
\]

Then we have

\[
(1 + \beta)^2\{n - (1 - \alpha^2)z\} = (1 + \alpha)^2\{n - (1 - \beta^2)x\}.
\]

If we add the assumption \(x + z = n \), then as the solution of these equations we can obtain the desired \(x = s \).

For the difference of the \(p \)-th power mean and the usual arithmetic mean we have:

Theorem 3.2. Let \(a = (a_1, \ldots, a_n) \) satisfy \(0 \leq m \leq a_k \leq M \) (\(k = 1, 2, \ldots, n \)), and let \(\alpha = m/M \) (\(M > 0 \)). Then we have

\[
(\Sigma a_k^p/n)^{1/p} - \Sigma a_k/n \leq M\{(1 - \alpha^p)/p(1 - \alpha)^q - (\alpha - \alpha^p)/(1 - \alpha^p)\}\]

Proof. Let \(M_1 = M, \ m_1 = m \) and \(b_1 = \ldots = b_n = \beta < 1 \). Then from Theorem 2.1 (2.1) we have

\[
(\Sigma a_k^p)^{1/p}(n\beta^q)^{1/q} - \Sigma a_k\beta
\]
\[\leq n \mathbb{M} \beta \left[\frac{1}{1 - \alpha} + \frac{1}{1 - \beta} \right] - 1 \\
- c(\alpha, \beta; p, q)\left\{ \frac{1}{(1 - \alpha)^{p}} + 1/(1 - \beta)^{q} \right\} - 1 \].

If \(\beta \to 1 \) then \(K = K(\alpha, \beta; p, q) \to K_0 := \{(1 - \alpha)^{p}/p(1 - \alpha)\}^{1/p} \), and the equation (2.2) becomes \((1 - \alpha)(1 - K_0 t^{1/q}) = 0 \) (as \(\beta \to 1 \)), so that \(t \to (1/K_0)^{q} \) by continuity of the solution. Moreover,
\[
c = c(\alpha, \beta; p, q) \to 0
\]
and
\[
c/(1 - \beta)^{q} = (1 - \beta)(1 - K_0 t_{*}^{-1/p})/(1 - \beta)^{q} \to (1/q)\left\{ 1 - K_0 (1/K_0)^{-q/p} \right\} = (1 - K_0^q)/q.
\]

Hence, letting \(\beta \to 1 \) in (3.4), we have
\[
\frac{n^{1/q}(\Sigma a_k^p)^{1/p}}{\Sigma a_k} \leq n \mathbb{M} \left[\frac{1}{1 - \alpha} + \frac{1}{1 - \beta} \right] - 1 - \{1 - K_0 (1/K_0)^{-q/p}/q\],
\]
from which we can obtain the desired inequality.

Corollary 3.3. \((\Sigma a_k^2/n)^{1/2} - \Sigma a_k/n \leq n(M - m)^2/4(M + m) \).

4. Extensions and operator versions.

In this section we extend Theorem 2.1 and furthermore show some operator inequalities connected to the theorem. First we show a weighted version of Theorem 2.1.

Theorem 4.1. Let \(a = (a_1, \ldots, a_n) \) and \(b = (b_1, \ldots, b_n) \) be \(n \)-tuples satisfying
\[0 < m_1 \leq a_k \leq M_1 \quad \text{and} \quad 0 < m_2 \leq b_k \leq M_2 \quad (k = 1, 2, \ldots, n). \]
Suppose that \(\alpha := m_1/M_1 < 1 \) and \(\beta := m_2/M_2 < 1 \). If \(w = (w_1, \ldots, w_n) \) is an \(n \)-tuple of nonnegative numbers with \(w = \Sigma w_k \). Then, we have
\[(\Sigma w_k a_k^p)^{1/p}(\Sigma w_k b_k^q)^{1/q} - \Sigma w_k a_k b_k \]
\[\leq w \mathbb{M} \left[\frac{1}{1 - \alpha} + \frac{1}{1 - \beta} \right] - 1 \]
\[- c(\alpha, \beta; p, q)\left\{ \frac{1}{1 - \alpha^p} + 1/(1 - \beta^q) - 1 \right\} \].
Here $c = c(\alpha, \beta; p, q)$ is defined as in Theorem 2.1, that is, letting
\[
K = \{ (1 - \alpha^p)/p(1 - \alpha) \}^{1/p} \{ (1 - \beta^q)/q(1 - \beta) \}^{1/q},
\]
\[
g(t) = (1 - \alpha)(1 - Kt^{1/p}) \quad \text{and} \quad h(t) = (1 - \beta)(1 - Kt^{1/p}),
\]
we obtain a (unique) positive solution $t = t^*$ of the equation $g(t) = h(t)$, and then we put $c = g(t^*) = h(t^*)$.

Proof. We may assume that all w_k and w are rational numbers. Then, multiplying the both sides of (4.1) by a sufficiently large integer, we may assume that all w_k and w are integers. Hence we can obtain (4.1) from Theorem 2.1.

For convenience sake, from now on we write
\[
F(\alpha, \beta; p, q) = (1 - \alpha)/(1 - \alpha^p) + (1 - \beta)/(1 - \beta^q) - 1
\]
\[
- c(\alpha, \beta; p, q)(1/(1 - \alpha^p) + 1/(1 - \beta^q) - 1).
\]
\[
(0 \leq \alpha < 1, 0 \leq \beta < 1).
\]

Let X be a measure space with a probability measure μ, $\mu(X) = 1$, and let $L^r(X) (r > 1)$ be the set of functions f such that $|f|^r$ is integrable on X. Then we have the following:

Theorem 4.2. Let $f \in L^p(X)$ and $g \in L^q(X)$. Suppose that
\[
0 \leq m_1 \leq f \leq M_1 \quad \text{and} \quad 0 \leq m_2 \leq g \leq M_2,
\]
and that $\alpha := m_1/M_1 < 1$ and $\beta := m_2/M_2 < 1$. Then
\[
(4.2) \quad (\Sigma f^p d\mu)^{1/p} (\Sigma g^q d\mu)^{1/q} - \Sigma fg d\mu \leq M_1 M_2 F(\alpha, \beta; p, q).
\]

Proof. Let $\{X_1, \ldots, X_n\}$ be a decomposition of X, $X_k \in X_k (k = 1, \ldots, n)$. Then from Theorem 4.1 (4.1)
\[
[\Sigma \{f(x_k)\}]^p \mu(X_k)]^{1/p} [\Sigma \{g(x_k)\}]^q \mu(X_k)]^{1/q} - \Sigma f(x_k)g(x_k) \mu(X_k)
\]
\[
\leq M_1 M_2 F(\alpha, \beta; p, q).
\]
Taking the limit of the decomposition, we obtain (4.2).

Let H be a Hilbert space, and let A and B be commuting self-adjoint operators on H. Then there exist commuting spectral families $E^A(.)$ and $E^B(.)$ corresponding to A and B such that for a polynomial $p(A,B)$ (or a uniform limit of polynomials) in A and B [10, p.287]

$$<p(A,B)x, x> = \int \int p(s,t)dE^A(s)E^B(t)x, x> \quad \text{for } x \in H.$$

From this fact we show an operator version of Theorem 2.1 or its extension Theorem 4.2.

Theorem 4.3. Let A and B be two commuting selfadjoint operators on a Hilbert space H satisfying

$$0 \leq m_1 \leq A \leq M_1 \quad \text{and} \quad 0 \leq m_2 \leq B \leq M_2.$$

Suppose that $\alpha := m_1/M_1 < 1$ and $\beta := m_2/M_2 < 1$. Then for a unit vector $x \in H$

$$<A^p x, x>^{1/p} <B^x x, x>^{1/q} - <ABx, x> \leq M_1M_2 F(\alpha, \beta; p, q).$$

Proof. Let $d\mu = d\langle E^A(s), E^B(t) x \rangle = d\|E^A(s)E^B(t)x\|^2$. Then μ is a positive measure on the rectangle $X = [m_1, M_1] \times [m_2, M_2]$ with $\mu(X) = 1$. Hence from Theorem 4.2 we have

$$<A^p x, x>^{1/p} <B^x x, x>^{1/q} - <ABx, x>$$

$$= (\int \int d\mu)^{1/p} (\int \int t^\alpha d\mu)^{1/q} - \int \int std\mu$$

$$\leq M_1M_2 F(\alpha, \beta; p, q).$$
In particular, if we assume $p = q = 2$ then from Theorem 3.1 (3.1)

$$F(\alpha, \beta; 2,2) = (1 - \alpha \beta)^2/(2(1 + \alpha)(1 + \beta)).$$

Hence we have the following:

Corollary 4.4. \(\langle A^2 x, x\rangle^{1/2} < \langle B^2 x, x\rangle^{1/2} - \langle ABx, x\rangle\)

\[\leq M_1M_2 (1 - \alpha \beta)^2/(2(1 + \alpha)(1 + \beta)). \]

We can obtain the following theorem from Theorems 4.3 or 3.2.

Theorem 4.5 (cf [8]). Let \(A \) be a selfadjoint operator on \(H \) such that \(0 \leq m \leq A \leq M \). Suppose \(\alpha := m_1/M_1 < 1 \). Then for any unit vector \(x \in H \)

\[\langle A^p x, x\rangle^{1/p} - \langle Ax, x\rangle \leq M[(1 - \alpha^p)/p(1 - \alpha^{q-1}2\alpha - \alpha^p)/(1 - \alpha^p)] \]

We remark that B. Mond and J. E. Pecaric [8] defined the r-th mean

\[M_{x}^{[r]}(A;w) = (\Sigma w_kA_k^{-r}/\Sigma w_k)^{1/r} \]

for an n-tuple \(A = (A_1, \ldots, A_n) \) of positive operators and for an n-tuple \(w = (w_1, \ldots, w_n), \) and that they established an estimation of the difference \(M_{x}^{[p]}(A,w) - M_{x}^{[r]}(A,w) \).

The inequality (4.4) is compared to the case \(n = 1, r = 1 \).

In [5], F. Kubo and T. Ando introduced the s-geometric mean \(A \# s B \) of two positive operators which is defined by

\[A \# s B = A^{1/2}(A^{-1/2}BA^{-1/2})^sA^{1/2} \quad (0 < s < 1). \]

Now in terms of the geometric mean we want to show an operator version of Theorem 2.1, or a reformulation of Theorem 4.3 (4.2) without the assumption that \(A \) and \(B \) commute, which is to be compared with [4, Theorem 4.6].
Theorem 4.6. Let A and B be positive operators satisfying

$$0 < m_1 \leq A \leq M_1 \quad \text{and} \quad 0 < m_2 \leq B \leq M_2.$$

Suppose that $m_1/M_1 < 1$ and $m_2/M_2 < 1$. Then for any unit vector $x \in H$

$$(4.4) \quad <A^p x, x>_1^{1/p} < B^q x, x>_1^{1/q} - < B^q A^{1/p} x, x> \leq M_1 q G(p; m_1/M_1; q/p, M_1/m_2; q/p),$$

where $G(p; m, M) = (M/q)[\{(1 - (m/M)^p)/(p(1 - m/M))\}^{q-1} - m(1 - (m/M)^{p-1})/(1 - (m/M)^p}].$

Proof. If C is a positive operator such that $0 < m \leq A \leq M$, then from (4.3) ($\alpha = m/M$), we have

$$<C^p x, x>_1^{1/p} - <C x, x> \leq M q[\{(1 - \alpha^p)/(p(1 - \alpha))\}^{q-1} - (\alpha - \alpha^p)/(1 - \alpha^p)]$$

$$= G(p; m, M).$$

Replacing x by $x/||x||$ in the above inequality, we have

$$<C^p x, x>_1^{1/p} < x, x>_1^{1/q} - <C x, x> \leq G(p; m, M)<x, x>$$

for any vector $x \in H$. Furthermore, replace C by $(B^{-q/2} A^p B^{-q/2})^{1/p}$ and x by $B^{q/2} x$. Then we have

$$(4.5) \quad <A^p x, x>_1^{1/p} < B^q x, x>_1^{1/q} - <B^q/2 (B^{-q/2} A^{1/p} B^{-q/2})^{1/p} B^{q/2} x, x> \leq G(p; m', M')<B^{q/2} x, x> \leq M_1 q G(p; m', M').$$

for some constants m' and M' such that

$$0 < m' \leq (B^{-q/2} A^p B^{-q/2})^{1/p} \leq M'.$$

To settle m' and M', note

$$m_1^{p/p} M_2^{q/q} \leq B^{-q/2} A^{q/2} B^{-q/2} \leq M_1^{p/p} M_2^{q/q}\quad \text{or} \quad m_1 M_2^{q/p} \leq (B^{-q/2} A^{q/2} B^{-q/2})^{1/p} \leq M_1 M_2^{q/p}.$$

Hence, putting $m' = m_1 M_2^{q/p}$ and $M' = M_1 M_2^{q/p}$ in (4.5), we obtain the desired inequality (4.4).
We remark that in [4] the difference of the p-th power type inequality connected to (4.4), that is,
\[<A^p x, x> - <A \#_{1/p} B x, x> \]
was estimated by using a result in M. Fujii, T. Furuta, R. Nakamoto and S. Takahasi [1].

References
9. N. Ozeki, On the estimation of the inequalities by the maximum, or minimum values (in Japanese), J. Colledge Arts Ci, Chiba Univ. 5 (1968), 199-203.