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0zeki’s method on Holder’s inequality

BELURHBE SRk — (Saichi Izumino)

Abstract. Ozeki’s method means applications of the following two
facts at the same time : (1) A convex funtion on an n-dimensionl cube
attatins its maximum at a vertex of the cube. (2) For given two n-tuples
(or n-dimensional vectors) of nonnegative numbers,if they are rearranged
nutually in an opposite ordering,then the corresponding inner product is
not larger than the initial one. In the preceding paper, using Ozeki’s
method, we succeded in estimating the differennce on both sides of
Cauchy’s inequality. In this paper we again make use of the method and
show a complementary inequality on the difference derived from Holder’s
inequality. We also discuss some appli-cations and an operator version

related to the complementary inequality.

1. Introduction. Let
a = (ai,...,as) and b = (bi,...,bn)
be n-tuples of real numbers satisfying
0<m:=ZaxsM: and 0<m:=bx=M: (k = 1,2,...,n).

Then as a complementary inequality connected to Cauchy’s inequality, the
following one holds [4]:
(1.1) (T:=) Zax’2bx’® -(Z axbx)® £ (n*/3)(M:1M: - mim:)°*.

It is Ozeki [9] who initiated to try such an estimation. He prese-
nted an inequality [7][9]:
(1.2) T £(n?/4)(M:M: - mim.)?,

though it was somewhat incorrect. Essentially by the same technique as
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Ozeki devised the revised inequality (1.1) was deduced.

Consider T = T(a,b) as a function defined in the product [m:,M.]"
X [m2,M2]" of n-dimensional cubes [m:,M:]* and [m:,M:]". Then Ozeki’s
original idea for the estimation was making good use of the following
two properties of T(a,b).

(i) T(a,b) is a separately convex function with respect to a and
b, so that the maximum of T(a,b) is attained at <(a,b), each of a and
b being an extremal point, that is, a vertex of the corresponding
n-dimensional cube [6].

(ii) Define ¢- =(¢-1,...,C-a) and ¢ = (€ 15...5€ n) be the re-

arrangements of ¢ (ci...,Ccn) 1in decreasing order and in increasing
order, respectively. Then for a = (ai,...,a.) and b = (bi,...,ba)
we have Za-xb"x = Z axbx and Zaxb-x £ 2 axbe [2], so that
(1.3) T(a-,b”") = T(a,b) and T(a",b-) = T(a,b).
Take the difference
S(a,b):= (Zax?)'"?(Zbx?)*”* - Z axbx
obtained from the square-root type Cauchy’s inequality,or more generally,
the difference
(1.4) Se(a,b):= (Zax®)*"(Zbx?)'* - Zaxbx,
p>1, q>1, 1/p + 1/q = 1,
which is derived from Holder’s inequality. Then we come to a new problenm
to estimate it. Fortunately, the function S:(a,b) 1is again separately
convex with respect to a and b, and similar inequalities as in (1.3)
hold for S;(a,b) instead of T(a,b).

In this paper we show an inequality on the difference S,(a,b),which
gives an upper bound of S.(a,b), applying Ozeki’s method. We also
discuss some applications and an operator version connected to the ineg-
uality.

Throughout this paper we assume that p>1, ¢>1, 1/p + 1/q = 1.
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2. Difference from Holder’s inequality. In this section we prove

Theorem 2.1. Let a = (ai,...;as) and b =(b:i,...,bn) ~be n-

tuples satisfying |
0<m:=Zaxrs<M:. and 0<m:=bx=M: (k = 1,2,...,n).
Suppose that a := m:/M:< 1 and B := m:/M:< 1. Then we have
(2.1) (Zax?)/?(Zbe?)'/* - 2 axbx
< nMiM:[(1-a)/(l-a?®) + (1-8)/(1-8°) -1
-c(a,B;p,){1/(1-a®) + 1/(1-8°) - 1}].

Here ¢ = ¢c(a,B8 ;p,q) is defined as follows; letting

K =K(a,B;p,0) = {(1-a®)/p(l-a)}""{(1-8*)/a(1-8)}'7,

g(t) = (1 - a)(l - Kt*7%) and h(t) = (1 - 8)(1 - Kt '/7),

ve obtain a (unique) positive solution t = t« of the equation g(t)=
h(t), that is, |

(2.2) (1 - a)(l - Kt*7%) = (1 - B)(1 - Kt~ */®),

and then we put

¢ = (1- a)(l-Kte'/9) (= (1 - B)(1 - Kta™'7)).

Before we begin the proof, we remark that the inequality (2.1) is.
still holds (or has a meaning by taking a limit) if we replace the rest-
rictions 0 < m:.0 < m:, @« < 1 and A< 1 by vweaker ones 0=Zm.,

0L m:, 02 a=<1 and 02068 =<1 .in the theorenm.

Proof of the theorem. Write
Se(a,b):= (Zax?)'/"(Zbx?)'* - Z axbu,
lallo = (Zax®)'?®, Iblla=(Zbe?)® and <a,b> = Z axbk.
Then [lall» and |Ibla satisfy the usual norm conditions, and:
<a,b> 1is a bilinear function. ‘Hence we see that
So(a,b) = lallslblle - <ab>

is a separately convex function with respect to a and b. Furthermore,



e easily see that

Hence S.(a,b) has the same properties (i) and (ii) as

Se(a-,b”) = S:(a,b) and

application of 0zeki’s method.

Note that an extremal point of

of whose components is m

or

[m,M]"

Sp(a_:b—) = Sp(a,b).

T(a,b)
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for

is precisely a point, each

M. Hence vwe may seek the maximum of S

S,(a,b) among (a,b) of the following two types:
/\j\/\ ‘ n—s
Case I. a = (M1,...,M1,m:,...,01), 0=s=<n,
t n—-t
T — A
b:(IIlz,...,IIIz,Mz,...,Mz), OétSn,
and
l/‘\j\/\ //.:;\5.——\
Case II. a = (m:1,...,m1,M1,...,M1), 0<s=n,
t n-—t1
/-\J\——\

b

,/\J\/—\
(Mz,...,Mz,lllz,...,mz), OStén.

Each of the Cases I and II is again divided into two cases according to

t<s and

a = I

and

s= t.

B

Case I(1):

Then

For convenience sake, assume M. = M. =
= m, for simplicity. Now we begin with
Let 0£t=<s=<n and let

t s—t n-—s
e
= (1, ,1,1,..,1,a,...,a),
t s—t n—s
A S AN
=(ﬁ)'-"531,---,1, 1, ...,1)

S={s + (n-s)a’}?{tg* + (n - t)}*7°
-{tB8 + (s -t)+(n-s)al.

Putting

X

.2 =

n- s,

we then have

1,

and write



(2.3) (x +y+ a®2)?(B°x +n-x)"7"-(Bx+y+ az)

(7]
1]

z =2 0, x2 0, z+x £ n.
In order to estimate S, we note the inequality
u'/*v'7®* < u/p + v/q, for uz2z20, v =0,

or its slight extension

(2.4)  w'/Pvi7e = (1/(pA))7(1/(qu)) 7t (pA W) P (quv)t/®
S (/AN (1 /(qu ) (Au + uv), A>0, u>0.
We remark that the equality sign in the above inequality holds when
(2.5) pAu = quv.
Now if we put
A = (l-a)t*?/(1-a®), u (1-8)t *7*/(1-8 %) for t>0 ,

n - (1_6 q)xr

and u=n-(l-a®)z, v
then from (2.4) we have
(2.6) {n - (1-a®)z}'/"{n - (1-8 *)x}'/°
s{(1-a®)t " /p(1-a) P {(1-8 )t /a(1-8)} 7 X
[{(l-a)n/(1-a®)-(1-a )z}t'7? +{(1-8)n/(1-8*)-(1-8)x}t /"]
=H(l-a®)/p(l-a)}'"*{(1-8°)/a(1-8 )}/ X
{(1-a)nt*7*/(1-a®) + (1-8)nt™'/"/(1-8 )
- (l-a)zt'”* - (1-8)xt™ 7"}
= K{nt'/*/Ka + 0t *7?/Ks - (l-a)zt'’® - (1-B)xt™'/*}.
Here
Ke = (1-a®)/(1-a), Ke = (1-8°)/(1-8)
and K = (Ka/p)'7""(Ks/q)'7".
By the way we remark that from the mean value theoren

Ke/p = 6 o771 and Ke/q = 6 5°° 1
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{n - (1-a®)z}*?"{n - (1-89)x}*"* + (1-a)z + (1-8)x - n,

for some 6 . and 6O s such that a <6 .<1 and <6 .<1, so that

K < 1, and furthermore
(2.7) K= (6.771)"(0,°7 1) > a'/tg'.

Now it follows from (2.3) and (2.6) that
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(2.8) S S nK{t'/°/Ke + t"'/*/Ks} -0
+ (l-a)(1-Kt*"7*)z + (1-8)(1-Kt™'7®)x.
It is convenient to write F(z,x;t) the right side of the above
inequality, that is,
F(z,x;t)= nK{t""*/K« + t"'7?/Ks} - n
+ (1-a)(1-Kt*7%)z + (1-8)(1-Kt~*7*®)x.
Though the variables 2z and x are discrete, for a moment we assume
that they are continuous. Let
A ={(z,x); z =2 0, x 2 0, z +x = n},
and for a fixed t>0, let ¢: be the maximum of F(z,x;t) for (z,x)E
A. Then it is our task to seek the minimum ¢ of ¢+ = @ (t) for
t>0.

Since F:(z,x) = F(z,x;t) is a linear (or precisely, affine) .
function on the triangle A, it attains its maximum- ¢ . at one of the
vertexes (0,0), (n,0) and (0,n) of A. Since (0<) K < 1, we see
that at least one of

g(t) = (1 - a)(1l - Kt*7¢) and h(t) = (1 - B8)(1 - Kt™'/7)
is nonnegative (for any t>0), so that either
Fi(n,0) = F:(0,0) + g(t) or F«(0,n) = F«(0,0) + h(t)
is not smaller than F.(0,0). Hence, putting G(t) = F¢(n,0)/n and
H(t) = F+(0,n)/n, we have

¢ (t)(= ¢+) = max{F:(z,x); (z,x) € A }

max{F:(n,0), F+(0,n)}

n max{G(t), H(t)}.
By definition we see that

(2.9) G(t) = Fe(n,0)/n = K(t"7°/Ka + t7*77/Ks) - 1 + g(t)

K{a?t'*/Ka + t7'"?/Ks} - a,

and

(2.10) H(t) = F+(0,n)/n = K(t'/%/Ka + t7'7?/Ks) - 1 + h(t)
= K{t"*/Ka + Bt '/"/Ks} - B .



Let te = qksa "®/pK. and tz = qk.B */pKs. Then te> tu,- and by an
elementary calculation we see following facts. -
(i) G(t) is decreasing for (0< )t< te,increasing for t>4ts and
min:>oG(t) = G(te) = 0,
(ii) H(t) is decreasing for (0<)t<ts,increasing for t>ts and
min:>oH(t) = H(tw) = 0,
(iii) L(t):= G(t) - H(t) (= g(t) - h(t)) 1is decreasing, and
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lim¢»o L(t) = o0 , limt»e L(t) = -co. Hence the equation L(t)=0,

that is,
(2.11) (1 - a)(1l - Kt*%) = (1 - B)(1 - Kt '/7)

has a unique solution,which we denote by t«. (We can see that ta<ts«+<ts.)

Hence we see that the minimum @ o (= ¢ /n) of the function ¢ (t)/n
= max{G(t), H(t)} is attained at t = t« .
In order to express the minimum @ in terms of t« ,or a

parameter close to it, put (ef.(2.11))

c = (1 - a)(l - Kts'7%) (= g(ts)= h(t«) = (1 - B)(1 - Kt«"'77)).

Then since
Kte'79 =1 -¢/(1 - a) and Kt '7/® =1-¢/(1 - 8),
we have, from (2.9) (or (2.10)),
$o = G(ts) (= H(ts))

= K(ts'"%/Ka + t« '7"/Ks) - 1 + g(ts)

= (1/Ka){1 - ¢/(1 - a)} + (1/Ks){1 - ¢/(1 - B)} -1+c

= 1/Ka + 1/Kg = 1 - ¢/(1 - a))ka - ¢/(1 - B)Ks + ¢

= (1-a)/(1-a”) + (1-8)/(1-8°%) - 1

- c{l/(1-a?®) + 1/(1-8"°) - 1}.

This yields the desired inequality (2.1) with the assumption M. = M.

Next we consider the following

Case I (_ii): Let 0=£s=ZtZ£n and let

=1.
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s ‘t”—s | . n—t
o N S~
a:(lx )1sa"-")aaa.) ,a),

o’
1]

(B,....8,8,...,8, 1, ...,1).
Then
S={s+ (n-s)a”}'7?{(n-t) + tg}°
-{sB + (t-s)afB + (n-t)al.
Putting x =s, (y =t -s) and z =n - t, we have
(2.12) § = {na”® +(1-a®)x}'*{nB* + (1-8%)z}'/"?
-B(l-a)x - a(l-8)z - na B,
z 20, x20, z+x S n.

As in the preceding case, using (2.6),we have
(2.13)  {na® +(1-a®)x}'"{nB* + (1-8 *)z}'/*

S{(1-a®)t **/p(l-a )}/ *{(1-8 )t**/a(1-£)}7* X

[{(1-a)na*/(1-a®)+(1-a)x}t*/? +{(1-8)nB */(1-8 )+(1-8 )z}t /"]

= K{na®t" /K« + 0B *t */?/Ks + (l-a)xt'® + (1-8)zt '/ "},
Hence from (2.12) and (2.13)
(2.14) S £ nk{a®t*/Ka + Bt *?/Ks} - na B

+ (1-a)(Kt*7* - B)x + (1-B8)(Kt™*/" - a)z.
Put F~(x,z;t) the right side of the above inequality. Then for fixed
t>0, the function F~«(x,z) = F"(x,2z;t) 1is linear on A (= {(x,2);
x = 0, z =2 0, x+z =< n}) as in Case I(i). Note here that at least
one of
Kt*7¢ - B8 and Kt"l‘/p -«
is nonnegative; in fact, if we assume that
Kt'7* - 8 <0 and Kt™*7" - a <0 for some t>0,

then (K/a)®< (B /K)%, vhich is impossible, because (K/a)*>(8/K)%,
or equivalently, (K/a)"/(,é?/l(r)q = (K/(a /2B /?))*** > 1, by (2.7).

Consequently, the maximum of F~:¢(x,2z) on the triangle A is

F*¢(n,0) or F~+(0,n) as in the preceding case. Putting G~(t) =
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F*+(n,0)/n and H~(t) = F*+(0,n)/n, we have
(2.15) nax{F~:(x,z); (x,z) € A } = n max{G~(t), H (t)}.

By definition

67(t) = K{{a "t/ /Ke + Bt7?/Ks} - @ B + (1-a)(Kt'/* - 8)
= Kt /K« + KBt V?/ks - B,
and
H'(t) = K{a "t */Ke + Bt7'/?/Ke} - a B + (1-8)(Kt"'" - a)

Ka®t' /K. + Kt ¥?/Ks - «a.
G(t), so

Hence from (2.9) and (2.10) we see G~(t) = H(t) and H™(t)
that we can reduce the remaining discussion in this case to one in the
preceding case. Hence we have the same value ¢ as the minimum of ¢ (t)

= max{F~:(x,2z); (x,2) € A }.

Case II(i): Let 0=2t=<s<n and let

t s—t n-s
a=(a, o N S 2 1),
t s—-t n-— s

ces, B0 B8,850.0,8).

o
1l
—_
—

-

Then
§ ={sa® +(n - s)}'7°{t +(n - t)B*}*/°
-{ta + (s -t)aB + (n-5s)B}.
Put x = t, (y =s -t,) z=n-s. Then
S = {na?® +(1-a®)z}'"{nB°* + (1-8 *)x}'/°
-8 (1-a)z - a(l-B)x - na 8.
If we exchange x and 2z, then we have the same identity (2.12) in Case

I (ii). Hence we have the same upper bound ¢ of § as before.

Case II(ii): Let 0=<s=<t=n and let
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Then
§={sa”+ (n-3s)}{t + (n-t)g}"
- {sa +(t -s)+ (n-t)B1
Putting x =s, (y =t - s,) z = n -t, we have
S={n - (1-a®)x}'"?{n - (1-8%)z}'""* + (1-a)x + (1-8)z - n.
Hence if we exchange x and 2z, then we have the same identity (2.3) in
Case I (i), so that we obtain the same upper bound ¢ of S as before.

This completes the proof.

3. Special cases. In this section we deduce two theorems from

Theorem 2.1

Theorem 3.1. Let a = (ai,...,an.) and b = (bi,...;ba) be n-

tuples satisfying

0Sm:<ax<M: and 0<mn:=Zbx= M. (k = 1,2,...,n).
Suppose M:M:> 0, and put a = m:/M:. and @G =>m2/M2. Then
(3.1) (S =)(Za®)'?(Z2b®)*? - = axby

S n MM (1 - apB)?/{2(1 + a)(1 + B8)}.
If both «a and 8 are rational and n 1is sufficiently large, then
s =(1+2a + ag@)n/{2(1 + a)(1 + B)}

is an integer, 0<s<n, and for a, b such that
(3.2) a1 = ...~ as = M1, @s+1 T ...% @an = Wi,

_bn:MZ,

bl T eee— bs = mz, bs+1

the equality sign in (3.1) is valid.

Proof. We may assume that 0 <a < 1 and 0 <8< 1. Let p =gq
= 2. Then from (2.1) of Theorem 2.1 we have
(3.3) S £ n MiM:[1/(1 + a) + 1/(1 + B)



96

-cla,B8;2,2){1/(1 + a) + 1/(1 + §) - 1}].
It is easy to see that K = K(a,832,2) = (1 + a)'*(1 + f)'7*/2. The
equation (2.11) is then
| (1 - a)(1-Kt'?) = (1 - 8)(1 - Kt™*/?),
and the solution is t (= t«) = (1 + B8)/(1 + a). Hence we have
c = (1~ a)-Kte??) = (1 - a)(1 - 8)/2.
Hence, replacing c(a, B ;2,2)‘in (3.3) by (1 - a)(1 - B8)/2, vwe
obtain the desired inequality (3.1).
To obtain the particular integer s (= (1 + 2a + a 8)n/{2(1 + a)
(1 + 8)}), recall the relation (2.5) in the previous section, pAu =
qu v, which yields the equality sign of (2.4). Put in the equation
p=q=2 A =(-a)t?/(1-a?) = (148)*/(1+a)*"?,
(1-8)t«"*72/(1-8"%) = (1+a)*/(1+8 )%,

n-(l-a?)z, v=n-(1- g%)x.

r
I

=
1

Then we have
(3.4) (148)*{n - (1-a?)z} = (1+a)?*{n -(1-8 ?)x}.
If we add the assumption x + z = n, then as the solution of these

equations we can obtain the desired x = s.

For the difference of the p-th povwer mean and the usual arithmetic

mean we have:

Theorem 3.2. Let a = (a:1,...,an) satisfy 0<m<a.s<M (k =1,2,..
.,n), and let a = m/M (M>0). Then ve have
(3.3) (Zax®/n)'’® - Zax/n
< M{( - a®)/p(l - @)} /g - (a - a®)/(1 - a®)]
Proof. Let M, = M, ma =n and b: = ...= ba = 8< 1; Then from
Theorem 2.1 (2.1) we have | | | '
(3.4) (Zax®)'"(nB %) - Tarf
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< n Mg [(l-a)/(1-a®) + (1-8)/(1-8°) -1
-cla,B;p,a){1/(1-a®) + 1/(1-8°) - 1}].
If 8-> 1 then K =K(a,B8;p,0)> Ko:= {(l-a®)/p(l-a)}'”®, and
the equation (2.2) becomes (1 - a)(l - Kot'’?) =0 (as 8> 1), so
that ts« = (1/Ko)® by continuity of the solution. Moreover,
c = cla,B;p,0)> 0
and
¢/(1-8°) = (1-8)(1 - Kt«"*/")/(1-8%) = (1/a){1 - Ko(1/Ko)7*/"}
| = (1 - Ko")/q.
Hence, letting A —> 1 in (3.4), we have
n'/4 (% ax®)'? - T ax
< n M[(l-a)/(1-a®) + 1/a -1 - (1 - Ko®)/ql.
=0 M[(1-a)/(1-a®) - 1 + {(1-a®)/p(1-a)}*"?/a],

from which we can obtain the desired inequality.

Corollary 3.3. (Zax’/n)'/? - Zax/n = n(M - mn)*/4(M + m).

4. Extensions and operator versions. In this section we extend
Theorem 2.1 and furethermore show some operator inequalities connected:

to the theorem. First we show a weigted version of Theorem 2.1.

Theorem 4.1. Let a = (2:i,...,aa) and b = (b:,...,ba) be n-
tuples satisfying
0<m:<axr<M: and 0<m:=b«=M: (k = 1,2,...,n).
Suppose that a:= m:/M:< 1 and G:= m:/M:< 1. If w = (¥i,...,V¥n)
is an n-tuple of nonnegative numbers with w =2 wx. Then , we have
(4.1) (S weax®)/P( 2 wxbi®)'/% - T wxaxbx
< w MM [(1-a)/(1-a?®) + (1-8)/(1-8°%) - 1
- cla,B;p,0){1/(1-a®) + 1/(1-8°) - 1}].
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Here ¢ = c(a,B8;p,q) 1is defined as in Theorem 2.1, that is,;
letting’
{(l1-a®)/p(l-a)}*?{(1-8 *)/q(1-8 )},
(1 - B)(1 - Kt~*7®),

K

g(t) = (1 - a)(l - Kt*7*) and h(t)
we obtain a (unique) positive solution t = t« of the equation g(t)=

h(t), and then we put c = g(t+«)(= h(ts«)).

Proof. We may assume that all w« and w are rational numbers.
Then,multiplying the both sides of (4.1) by a sufficiently large integer,
we may assume that all w. and w are integers. Hence we can obtain

(4.1) from Theorem 2.1.

For convenience sake, from now on we write
Fla,B;5p,0) = (1-a)/(1-a®) + (1-8)/(1-8°%) - 1
-cla,B5p,0){1/(1-a®) + 1/(1-8%) - 1}.
(0fa<1, 0268<1).

Let X be a measure space with a probability measure u,un(X) =1,
and let L"(X) (r>1)) be the set of functions f such that | f| * is

integrable on X. Then we have the following :

Theorem 4.2. Let f € L”(X) and g € L%(X). Suppose that
0=m:=f<M:. and 0=m:Sgs N,
and that a:= m:/Mi< 1 and B := m./M.< 1. Then
(4.2)  (§£2du)'/® (Sg%du)'® - §fgdu < MM. F(a,B;p,q).

Proof. Let {X:,...,Xa} be a decomposition of X, xx € Xu (k = 1,.
.>n). Then from Theorem 4.1 (4.1)
[Z2{f(x) PP (X)) 1P 2 {g(xe) o u (X)) 179 = S f(xe)g(xe) & (Xi)
s MM F(a,B8;p,4q).
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Taking the limit of the decomposition, we obtain (4.2).

Let H be a Hilbert space, and let A and B be commuting self-
adjoint operators on H. Then there exist commuting spectral families
EA(.) and E®(.) corresponding to A . and B such that for a polynomial

p(A,B) (or a uniform limit of polynomials) in A and B [10, p.28T7]

o o

<p(A,B)x, x> = § § p(s,t)d<E*(s)E*(t)x, x> for x € H.
From this fact we show an operator version of Theorem 2.1 or its

extension Theorem 4.2.

Theorem 4.3. Let A and B be two commuting selfadjoint operators
on a Hilbert space H satisfying
0§m1§A§M1 and 0§m2§B§M2.

Suppose that a:= m:/M:< 1 and B := m:/M:< 1. Then for a wunit

vector x € H
(4.2) <A®x, x>'/® <B9%, x>'7% - <ABx, x> £ M:M: F(a,fB;p,q).

dll E*(s)E®(t)x |l *. Then u

Proof. Let du = d<E*(s)E®(t)x, x>

is a positive measure on the rectangle X [m:,M:]%X [m2,M2] with u (X)

= 1. Hence from Theorem 4.2 we have
<APx, x>'7® <B%, x>'7* - <ABx, x>
= (§§sPdup )t/ (Stedu ) - Sstdu
X X X

< MiM: F(a,B;p,q).
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In particular, if we assume p = q = 2 then from Theorem 3.1 (3.1)
Fla,832,2) = (1 - aB)?/{2(1 + a)(1 + B)}.

Hence we have the following:

Corollary 4.4. <A%x, x>'7% <B’x, x>'7? - <ABx, x>

< MiM: (1 - agB)?/{2(1 + a)(1 + B)}.
We can obtain the following theorem from Theorems 4.3 or 3.2.

Theorem 4.5 (cf [8]). Let A be a selfadjoint operator on H such
that 0 < m < A < M. Suppose a:= m:i/Mi< 1. Then for any unit

vector x € H

(4.3)  <A®x, x>'/? - <Ax, x>

< M{(1 - a®)/p(1l - a)}* " '/a - (a - a®)/(1 - a®)]

‘We remark that B. Mond and J. E. Pecaric [8] defined the r-th mean
Mo PP ( Asw) = (ZweAx™/ 2 wi)'’" for an n-tuple A = (A:,...,An) of
positive operators and for an n-tuple w = (wi,...,¥.), and that they
established an estimation of the difference M.!®7(A,w) - Ma.'7/(A,v¥).

The inequality (4.4) is compared to the case n =1, r = 1,

~In [5], F. Kubo and T. Ando introduced the s-geometric mean A #. B
of two positive operators which is defined by
A #. B = AY2(ATV/PBATYE) AT (0 <s<1).
Now in terms of the geometric mean we want to show an operator version
of Theorem 2.1, or a reformulation of Theorem 4.3 (4.2) without the
assumption that A and B commute, which is to be compared with [4,

Theoremn4.6].
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- Theorem 4.6. Let A and B be positive operators satisfying
0<mi=<A=ZM: and 0<m:=ZB=EM..
Suppose that n:/M:< 1 and m:/M:< 1.  Then for any unit vector

x € H

(4.4) <A®x, x>'7® <B%, x>'7% - <B® #.,,A"x, x>

é M1 G(p; m1/Mz“/”, M1/IBZQ/p),

where G(p;m,M) = (M/q)[{1 - (m/M)*}/p(1 - m/M)]°""
- n{l - (m/M)*"*}/{1 - (n/M)"}.

IA
-
A
=

Proof. If C is a positive operator such that 0 < m
then from (4.3) ( a = n/M), we have
<C*x, x>/ - <Cx, x>

< M[{(1 - a®)/p(l - a)}* " */a - (a - a®)/(1 - a®)]

= G(p;m,M).
Replacing x by x/| x|l in the above inequality, we have
<C*x, x>'/? <x, x>'/* - <Cx, x> £ G(p;m,M)<x, x>

for any vector x € H. Furthermore, replace C by (B ¢/?APB /%)

and x by B%’x. Then we have
(4.5) <A®x, x>'/® <B%, x>'7° - <Ba/2(B 9/2APB~ /%) /PR *x, x>
< 6G(p;m’,M )<B%%, x> = M:® G(p; m",¥)
for some constants. m’ and M such that
0 < m £ (B 9/PAPB /%)Y < M.
To settle m»’ and = M. . note
mlp/qu é B—Q/?’APB—Q/2 é Mlp/ng
or ml/MZQ/p é (B-Q/2APB—‘1/2 )I/P é M1/mz"/p.

Hence,; putting n’ "= m:/M:%*/° and ¥ = M:/m:*"" 1in (4.5), we obtain

the desired inequalty (4.4)
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We remark that in [4] the difference of the p-th power type inequal
ity connected to (4.4), that is ,
<A®x, x> <B%, x>P7% - <A f#.,.Bx, x>*
vas estimated by using a result in M. Fujii, T. Furuta, R. Nakamoto and

S. Takahasi [1].
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