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NORM INEQUALITIES IN NONLINEAR TRANSFORMS"

g¥,%7( I ﬁﬁ = PBB (Saburou Saitoh)

Abstract
We shall introduce the recent paper [17]. In the paper, we show the
existence of natural norm inequalities in some general nonlinear trans-
forms of reproducing kernel Hilbert spaces and as its applications we
derive typical concrete norm inequalities in the nonlinear transforms.

1. General principles

Let E be an arbitrary nonvoid abstract set and let Hx(F) be a Hilbert ( possibly
finite-dimensional ) space admitting a reproducing kernel K (p, q) on E. Then, the

Hilbert space Hg(F) is composed of complex-valued functions f(p) on E such
that

(1.1) K(-,q) € Hx(E) for any fixedq € E
and, for any member f of Hg(FE) and for any fixed point q of E,

(12) (f()r K(: q))HK = f(Q)

In general, a reproducing kernel X (p, q) on E satisfying (1.1) and (1.2) is uniquely
determined by the Hilbert space Hg (F) and is a positive matrix in the sense that
for any points {p;}; of E and for any complex numbers {C}};

(1.3) > C;CiK(pjr,p;) 0.
53’
Conversely, a positive matrix K(p,q) on E satisfying (1.3) determines uniquely
a functional Hilbert space ( reproducing kernel Hilbert space = RKHS ) Hg(FE)
satisfying (1.1) and (1.2).
We shall consider the RKHS Hg(FE) as an input functlon spa.ce of the fol-
lowing nonlinear transform

(14) p: fEHK(E)— Y du(p)f()"

n=0
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where {d,(p)} are any functions on E. ’

In this nonlinear transform ¢, we shall show that the images (p( f), [ €
Hg(E), belong to a Hilbert space H which is naturally determined by the nonlinear
transform ¢ and there exits a natural norm mequa.hty between the two norms

() ler and || £1| o -

In order to show these facts we need the three basw ideas of Aronszajn [1]

for reproducing kernels; that is, sums, products and restrictions of reproducing
kernels.

For two positive matrices K1(p, q) and K3(p,q) on E, the sum K3(p,q) =
Ki(p, )+ K2(p, q) is, of course, a positive matrix on E. The RKHS Hg, admitting
the reprodqcing kernel K3(p, q) on E is composed of all functions

(1.5) B f=hHh+f2 (f;€Hg,)
and the norm in Hg, is given by
(1.6) 1y =min{llfillZr,, + N f2liFr, s

where the minimum is taken over all the expressions (1.5) for f

The pIOdu(:t K4(p11p21QI: Q2) Kl(plv ql)K2(p2s ) on (EXE)X(EXE) iS,
of course, a positive matrix on E x E. The RKHS H, admitting the reproducing
kernel K4(p1,p2;q1,42) on E x E is composed of all functions .

(1.7) FP1p2) =) fia(1)fon(p2)  (fim € Hi;)
n=1 '

having finite norms

‘ - : o

(18) MWk, = D2 W mlldig, M f2mllr,, < oo
n=1 } :

The restriction K5(p,q) = K4(p,p; q,q) to the diagonal set E of E x E is a
positive matrix and the RKHS Hy, admitting the reproducing kernel K5(p, q) on
E is composed of all functions f(p) = f(p,p) in (1.7) satisfying (1.8). The norm
in Hg, is given by - .

@) N fllE =minZ|lf1,n||%;Kl 12l

where the minimum is taken over all the expressions (1 7) satisfying (1. 8) for

f(p) = f(p,p) on E.
For a RKHS Hgk on E and for any function s(p) on E,

K,(p,q) = s(p)s(9)K(p,q) on ExE
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~ is the reproducing kernel for the Hilbert space' Hg, comprising of all functions
fs(p) on E which are expressible in the form

fa(P)=f(p)s(p) : on E for fe Hg
and we have the inequality

I fslltre, < 1Nk,

as we see from (1.9).

For n-times sum and n-times product, the circumstances are similar. Hence,
we have, in particular, for any f; € Hk; (j =1,2,...,N)

N N
1.10 . AT <N TIA?
( ) ";fJ"H(E;LI K;) - z_:l "fJ"HKj
= J=
and

(1.11) 1™ Nren < 1N

Hence, we obtain, in general

Theorem. If

o0

3 @)K (p,p) <0 on B

n=0

and if, for f € Hg
" S Ul )*™ < oo,

n=0

then, for the nonlinear transform tp( f) in (1.4),

o(f) = da(p)f(P)"
n=0

converges absolutely on E, and

(1.12) #(f) € Hx,
and
(1.13) N e, $E(Ilfllnx)2“,

n=0
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where Hy is the RKHS admitting the reproducing kernel
Ka(p,q) = ) _ dn(p)dn(@)K(p, )" on E,
n=0 '

which converges absolutely on E x E.

In Theorem, the concrete realization of the norm in the RKHS Hy, is, in
general, involved. See, Hejhal [4] and Saitoh [6] for a profound result for K(z,%)?

in the case of the classical Szegé reproducing kernel K (z,4) and for a prototype
result of Theorem, respectively.
At this moment, recall the fact that if

(1.14) Ka(p,q) < K(p,q) on E;

that is, _
K(p1 Q) - Kd(p1 Q)

is:a positive matrix on F, then we have
Hk, C Hi
(as the classes of functions) and, as we see from (1.5) and (1.6)
Il < Wflme, forall fe H,.

Hence, for some suitable reproducing kernel K (p, q) satisfying (1.14) whose norm
can be determined, in a reasonable way, we can obtain the inequality

le(IZ, < S UL lme)?™,

n=0

in Theorem.

When all the coefficients {d,,} are constants, as a typical reproducing kernel

K(p, q) satisfying (1.14) and a large reproducing kernel for K (p, ), we can consider
the exponential of K (p, q)

exp K(p,g) = 14 Kp, )+ X0 ..

which is a positive matrix on E. Note here that the constants (n!)~! are not
essential in our arguments. Then, we have, in particular
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Corollary 1.1. If {d.(p)} are all constants, we have, in Theorem

e s & < D ldaln(1F a1 )*",
] n=0

if the right hand side converges.

Corollary 1.2. Let

be analytié around z = 0 which converges on the disc {|z| < R}. We define the
analytic function N*(2) on {|2| < R} by

N+(z) Z lan |2™.

We assume that for a reproducing kernel K(p,q) on E,
K@) <R

Then, N*(K(p,q)) converges absolutely on E x E and is a positive matriz on E.
For the RKHS Hy+ (k) admitting the reproducing kernel N +(K (p,q)) and for a
function f in Hy salisfying

N*(I1fllze) < oo,

we have the norm inequality

INGIE s oy < NI

In the theory of nonlinear partial differential equations, we meet nonlinear
transforms, for example, for u(z, t)

u — U + 6uug +Ugzr
and ,
U — U — Ugx + m2_ sinu (m > 0; constant).

For such nonlinear transforms we shall show that similar results are valid as in our
Theorem. ~ ‘
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In order simply to state the result, we shall assume that E is an open interval
on R. Then, for the smoothness of a RKHS H(F), note that if

a(j+jl)K($;y) !~
—— ,7 <
Goiogy | I =m)

are continuously differentiable on Ex E, then for any member f of H K(E), fOG <
n) are also continuously differentiable on E (Krein [5]), and we have

f(n) E HKn,n
and
1™ N gemn < 1y
for the RKHS Hgn.» admitting the reproducing kernel

9’ K (z,y)

-0z oy™ E

K™ (z,y) =

(Saitoh [14]). Hence, for example, in the nonlinear transform
(1.15) ¥ : f € Hx(E) — h1(2)f"(z) + ha(2)f'(z)* + ha(2)| f (=)

for any functions {hj(z)} on E, the images ¥(f) belong to the RKHS Hy+ (k)
admitting the reproducing kernel

(1.16) v* (K(z,y)) = hi(2)h (W) K**(z,y)

+ha ()@ K (z, )2 + ha(z)ha@) K (z, v) K (=, 1)

and we obtain the inequality
(117) I, ey < 13 (4 20 7132)-

In some general linear transform of Hilbert spaces we could get essentially
isometrical identities between the input and the output function spaces (see [9) and
[13]), but in our nonlinear transforms we get norm inequalities, essentially and to
determine the cases making the equalities hold in the inequalities is, in general,
involved, in even the case of a finite dimensional RKHS Hx and we need case by
case arguments to determine the cases. See, for example, {11}, [10] and [6]. However,
for many cases (not always), for the reproducing kernels f(p) = K(p,q)(q € E)
equalities hold in our inequalities. See [10], for example. o
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- Subsequently we shall derive typical norm inequalities in nonlinear transforms by
applying our Theorem to typical reproducing kernels. For other examples, see the
original paper[17] or the articles in References. :

2. The most simple Sobolev Hilbert space
Note that

(2.1) G(z y) _e_":—yl

1 /1 .
_ €(z—y)
T _/;m £+ 1¢I3 &

is the reproducing kernel for the Sobolev Hilbert space S on R comprising of all
real-valued and absolutely continuous functions f(z) on R with finite norms

oo . 3 ,
22) {[ e+ sehi} <o,
(Saitoh [15]). Then, we have
(2.3) K(z,y) = ZG(G«‘ y)"

1 1 i(z-v)
< /( )52+1" i

n :
=D -G(z,y); D=2 E o > 0.
n=1

Hence, for the nonlinear transform of f € S

@(f) =) daf(z)* (dn: constants),
n=1

we have the inequality
1 0o oo 2 oo
= QO dnf(@)) +(_daf(@)")? pdz
5[ {S Y s}
< 3 &Wld [ (7@ + f(=))dz ,.’
S ] [~ e+ seyie)
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-if the right hand side converges.
3. The Bergman-Selberg kernels

For ¢ > 1,

(2
Kq(z, E) = (z_-*(_%q%

is the Bergman-Selberg reproducing kernel on the half plane Rt = {Rz > 0}
comprising of all analytic functions f(z) on Rt with finite norms

1 -
1) 190w, = 5= ., [F PRI dady,

For q = 2, Ky/2(2,7) is the Szegd reproducing kernel on R*-comprising of all
analytic functions f(z) on Rt with finite norms

1 o o]
2 _ 1 V12
(32) 11V, , = gmsop [ 17+ in) P

Then, a member f(z) of Hg, ;2 has nontangential boundary values on the imagi-
nary axis belonging to L, and we have

1 00
2 _ )2
1w, = 57 [Py

(cf. [3]). Note that

3?Ki(z,um) 6  8'Ki(z,m) 120
9z0u ~ (z+uw)t’ 02202  (z+u)8’
?Kyja(z,m) 2 q *Kya(z,m) 24
8z (z+0)°® 0 T 828@@  (z+u)

Hence, for the nonlinear transforms of f € Hg,

dlf, + d2f2)

dif" +dof'f +d3f?,
diff" + da(f')* + daf*,
dif' f" + daf(f')? + ds f5,

and

di(f")? + da(f')® + da(f')2f2 + da S,
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we have the specially simple norm inequalities. We have, for example,

6 ' 1
ZldLf” + dof e, < 1, (Glesf? + 1ol I, ),
and

127 ||d1f" +dof' f+ dsf3||Hx,

1,
< W, (gl + 1o P11, + 1P )
For the nonlinear transforms of f € Hg, ,
dif + dof°, di ' + daf*, di(f')? + dof' f2 + daf®,dr " + dof ' f* + daf®,

and
diff" + do(f')? + daf®,

we have the corresponding and specially simple norm inequaliti&.

4. A transform with nonconstant coefficients

As we see directly by using the Taylor expansion,

K(z u) = __llog 1

1-

is the reproducing kernel for the Hilbert space Hx comprising of a.ll a.nalytlc
functions f(z) on U with finite norms

_].'. ’z2 -}— 2'2 2 % oo
{”//Ulf()ldzdy+21r/w|f( )Pld |} <oo,

(3]). Hence, from the identity

1 _ kG
1-uz

in the transform of Hg functions

f — er’
we have the inequality
1

o Ie‘f“)lzldzl
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| <exp[ // |f(z)|2da:dy+—/ |f(z)|2|d2|]
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