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Exponential Ordering on Bounded Self-Adjoint Operators
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1. RESULTS

Let A, B be bounded selfadjoint operators in a Hilbert space . In [Ha], the notion of exponential
ordering is introduced as the one defined by e4 < eB. In this article, we consider an infinitesimal
version of it: Consider the condition

e"4 < "B for some k > 0,
which is equivalent to the following one by Léwner-Heinz’ inequality: there is a positive real ¢ such
that
er < B for all 0 € & < Ko

By the last expression, we see that the condition in fact defines an order relation in the set of bounded
selfadjoint operators, which is weaker than the exponential ordering in [H] and will be referred to as
infinitesimal exponential ordering in what follows.

By power series expansion in the exponential functions, the last condition is further equivalent to

2
B—A+ 5(32 — A+ %(33 — A% +-..>0 for sufficiently small k > 0,

which particularly implies the operator inequality A < B: the infinitesimal exponential ordering is
finer than the ordinary ordering.

If B — A is invertible, the converse implication is apparently true as remarked in [FJKT].

We here deal with the case when the kernel of B — A is non-trivial and prove that the infinitesimal
exponential inequality forces simultaneous decomposability of operators A, B with respect to the
kernel projection P of B — A, i.e., AP = PA and PB = BP.

When the Hilbert space H is finite-dimensional, this gives the following characterization of the
infinitesimal exponential ordering: Let A and B be hermitian n x n matrices. The condition

e"d < B for some « > 0

is then equivalent to require PA = AP, PB = BP and A < B.

Since a generic operator inequality A < B (under the assumption that ker(B — A) # 0) does not
satisfy the reducing property PA = AP, PB = BP, we have plenty of examples of operator inequality
A < B without satisfying the infinitesimal exponential order relation.

2. PROOFS

With the notation in the previous section, express the operators A, B and P in a matrix form

_f[a b _fa ¥V _{0 0
G =D 6
with respect to the orthogonal decomposition # = (1 — P)H + PH. By the choice of P, we have
(B—-A)P=0,ie.,c =c¢c, ¥ =5 and
a=a+h
with k an injective selfadjoint operator on (1 — P)H.
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Using these matrix expressions, we have
2
B— A+ (B - 4%+ 5 (B° - A7)
(At 5((a+ k)2 — a®) + S ((a+ h)3 — a4+ bR + hbb*)  §hb+ 5 ((a + h)?b — a?b + hbc)
B Eb*h + £(b*(a + h)? — b*a® + cb*h) £ b*hb
and hence the following expression for (e"2 — e*4)/x:
h(k) ?hb + k2 f(k)
Eb*h+ k2f(k)"  %5b0%hb+ kPr(k)/)’
where r(x), h(k) and f(k) are operator-valued analytic functions of x with A(0) = A.
Now the infinitesimal exponential order relation is equivalent to
C = h(k) d%hb+.«:"”f(ls:)
T A& R+ k2f(k)* b hb+ &3r(k)
and we need to prove b = 0 from this condition.
By reducing the operator C to the subspace (1 — P)H + Cn with 7 a normalized vector in PH, we
may assume that PH is one-dimensional, i.e.,
b, f(k) € (1= P)H = L(Cn,(1-P)H) and r(k) €C.

We shall derive a contradiction if b # 0 by a series of arguments.
For each € > 0, let e, be the spectral projection for h corresponding to the interval {€, +00). By

) >0 for sufficiently small £ > 0

reducing the operator C' by (%‘ (1)), we obtain the operator inequality
he(k) L2heb + k2 fe(K) .
= ficientl 1l k>
Ce (%b"he +K2f (k)" =7 (blhb) + K3r(x) >0 for sufficiently small x > 0,

where he(k) = ech(k)ee and fe(k) = ecf(k). Note here that he(k) = he + O(x) is invertible on ecH
for sufficiently small x > 0 and (b}hb) > 0 (h being injective and b # 0).

We now seek for a suitable eigenvector of C, for small £ > 0 as an analytic perturbation of the
selfadjoint operator k..

To avoid notational complications, we first deal with the following problem: Let 6 be a positive
invertible operator on a Hilbert space X, 3 be a non-trivial vector in K and v be a real number. For
a sufficiently small k > 0, consider the bounded self-adjoint operator

¢ KB
kB* K2y

on the Hilbert space K @ C and we seek for an eigenvector which converges to the vector 001 € K& C

projectively as x goes to 0.

The eigenrelation
with £ € K and y € C is equivalent to the equations
(A — &)y = k(BI§)
(A= £*7)0 + £°867)€ = A(A = K*7)€.

(Note that, for A = x2v, the above equations imply (£|0€) = x2v(£[€) and hence (6 being invertible)
€ = 0 together with y = 0 for small k > 0, i.e., if A is an eigenvalue, A # K35.)
We here assume that the vector £ has the expression

€= Zzne""'lﬂ with z,, € C.
n>0
The eigenrelation for £ is then satisfied if

(A = k27)208 + k2(BIE)B + (A = k29) D 207" B = AA = k77) D za107"5.

n>1 n>1
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Since the family {#~"8},>0 is linearly independent for a generic 6, we try to solve the equation by
comparing the coefficients of §~"3: the equation for ¢ is (formally) satisfied if

(A= K2 y)zo+ .7 Y za(8l07"718) =0

n>0
(A = K29)20 = A(A — £29)T0n1 (n>1).
Since A — k24 # 0, the above requirements are reduced to -

A=Ky k2D (BIOTTIHAN =0

n>0
with
E=z0 ) A"07"7I8.
n>0
We now rewrite the equation for A into the form
A
2

K

T Y= Laxo(BlETIB)A
Since (816-""18) < ||B]12||6~]|**!, the formal power series

w

z
- ano(ﬂlﬂ“"“ﬁ)z"

of z is convergent in a neighborhood of 0 € C and, for ¥ # (B8|6~!8), it is univalent near z = 0
and z can be expressed as an analytic function of w. Thus, if v # (B]6~'8), we have an absolutely
convergent power series expression

A(r?) = Z Ank?, A =v—(Bl67'0)
n>1

for sufficiently small k > 0 so that it satisfies the equation for A.
Now the formal expression

£ =zg z /\(K2)n0—n—lﬂ
n>0
turns out to be absolutely convergent for small & > 0 as A(k?) = O(x?) and ||0="=18|| < ||6=1{|*+]|8]|.
As a conclusion, if v # (8]0~13), then the selfadjoint operator

(& 2)

has an eigenvector of eigenvalue x2u(x2) with the analytic function p(k?) of «? determined by the
equation :
v = (B16718) = 3 (B0~ B) (R m)™ = -

n>1

To apply these analyses to the case K = e.H, 8 = he(k), 8 = heb/2+4kfe(k) and vy = (b]hb) /6+KT(K),
we need to make a closer look into the behavior of y when ¢ and & converge to 0 in a suitable way.
To simplify the notation, we set

po=(BI07'8) -~y and  p,=(Bl67"7'B) forn>1.
Then the deﬁning.equation of u takes the form
> park™u = —p.
n>0
Lemma 1. Ezpress h(k) = h + kg(k) with g(x) an operator-valued analytic function of k and set
F=sup{|lf(x)I0 <« <1}, G=sup{llg(x)l;0 <k <1}, R=sup{r(x);;0<x <1}

Then we have )

¢e— Gk’

Ihe(x) =Ml <



and, forn > 1,
< IRbl/4 + Fjhb)| + F?
"= (e = Gr)rt+1

whenever Gk < ¢, kK <lande< 1.

Proof. By Neumann series expansion,

he(k)™t = h7N(1+ kge(k)R7) ™t = A7 IZ —Kkge(k

n>0

which gives the estimate

e I el 1 < 3 (25) =

n>0 n>0

proving the first inequality.

To obtain the second inequality, we estimate (3|60=13) — (b]hb)/4 as follows:

(61626) = Bl

= | b+ ALOIhel) (G + ) — 618D

1 -1 K
< 5 [0 a9 + I
e EE L ppe =+ P

- 4">1 en—1 e— Gk

— Gk’

The third inequality is of a similar taste and comes from

2
= (%—Gne+Fl|hb“+ F%) - £

pn < i(heblhe(")—n—lheb) + "I(heblhe( )_n-lfe |+ K*(fe(k )Ihe(”)_"—lfe("))

together with the first inequality.

Lemma 2. We can find a positive real § = §(h,b, F,G) < 1 such that

1 ||hb||?
> =
71 = B TR
whenever 0 < €< 4, 0< k<8 and 0 < k/(e — Gk)? < 4.

Proof. This follows from

(810726) = §(blhehe(k)"?heb) + KRe(heblie(m) 7 fe(x)) + K2 (fe() Ihe() fo()

1 ”h b”2 Hh “ K - F2 x?
= 4]l(x)I? ~ - Gr)? (e—Gr)?’
Here we used the operator inequality Hh(;c)||“1 < he(x)~?! in the second line.

We now combine all these to get

1 1 2 1 2 2
-— ot bl F
oo = 75018 < R+ 187+ (FIBIP + Plbb+ F7) —

= | FOIhelhelm)™ = h7)h) + KRe(heblhe() ™ £o(x)) + K2 (Lol )lhe() ™ Fel)

2
2
A e

44
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Lemma 3. Let & = €*. Then there are positive reals § = §(h,b,F,G) <1 and M = M(h,b,F,G) > 1
such that, if e <., then py < M p1> M~ and

pn n lMﬂ 1 < 1

P 1
forn>1.

Proof. By the previous'lemmds, we can find M > 1 such that pg < M and p; > M~ for sufficiently
small € > 0. The third inequality is trivial if n = 1. For n > 2, the estimate
Fllr|P? F2||h]|2) (M)
l[Abll lhblf> /) (€ — Gr)n+t
FllR? |, F2AIZY Mr—tedns
=2 (i + £ + ) T g
shows that the left-hand side converges to 0 uniformly in n > 2 when € goes to 0. O

+4

%’—n”‘lM"'l <2 (nhu2 +4
1

From the inequality
K:n+1

(e— Gk)?

4n+2

pnh:an" S Mpllfn+l S M (“ ” +F”hb”+F2)

hbj?
=M(” I +F|[hb||+F2) <

(1 — Ge3)?
Z pn,c2ntﬂ.
n>0
defines a real analytic function ¢(t) for |t| < M. From the inequality,

— Z npnm2ntn——1

for n > 1, the power series

n>1
Z Pl’c2 _ Z npn'c2nMn-—1
n>2
> it = 3 puw
n>2

et (o ).

the function ¢(t) is strictly increasing in —M < t < M for sufficiently small ¢ > 0, whence the
equation ¢(t) = —t has a unique solution g = p, in the interval (—M,0).
The inequality

2
pLK
e+ pol < 37 pnk®ul* € Y pak®™ M™ < Mpy Y k™ = M ——

1—-&
n>1 n>1 n>1
then shows that !
li = — lim = ——(blhd) < 0
E;rgou Jim po 12( |hb)

and therefore
A = 62l < (blhb)w2

for sufficiently small k = 4.

Now the estimate

1 1
A6 2Bl = SIAP IR ()™ (heb + 26 fe(k))I]
blhb)" 2n
< <%|lhbll+ F) élfé%ﬁ

shows that the summation
E — Z A"H‘"_lﬂ

n>0
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in e.H is absolutely convergent for sufficiently small x = € and the previous arguments on analytic

perturbations prove that & gives rise to an eigenvector of C. of eigenvalue k2., which contradicts

with the assumption C. > 0 because p <0 for sufficiently small € > 0 for k = €4,

3. EXAMPLES
For a pair of bounded self-adjoint operators (A, B) satisfying A < B, we set
k(A, B) = sup{x > 0;¢"4 < "B},
which has the following obvious properties:
k(A+cl,B+cl) = «(A,B) if cis areal number.
k{cA,cB) = Lk(A, B) if ¢ is a positive real.
k(UAU*,UBU*) = k(A,B) if U is a unitary operator.

When A and B are 2 x 2 hermitian matrices, after the composition of these three operations, the
pair (A, B) takes the form

2 . . 2 _ .
A= ((1) g>’ B:A( cos® @ cos@sm@)_,‘_ﬂ( sin“ 8 cos@sm@)

cosfsinf  sin?8 —cosfsinf cos? 6

with A, u reals except for the trivial case that A is a scalar matrix (use the angle representation of
two projections).
The condition of majorization A < B is then equivalent to

0 < Asin?8 + pcos? 6 < M,

which particularly implies A > 0, x> 0.
Now the following is easy to check:

Proposition 4. Assume that cos@sind # 0. Then, for A > 0, p > 0, we have

k(A,B) = 400 ifand only if A > 1 and p > 1.
0< k(A,B) < +o0o ifand only if A\ —1)(u—1) < 0, Asin® 8 + pcos? 8 < \p.
k(A,B) =0 if and only if (A — 1)(u — 1) < 0, Asin® 8 + pcos? 6 = p.
For example, choose sin 8 = cosf = 1/+/2 and
1 1 3 1
-1 _ = _ = -1 - =
MERTe M =3Tn

for n > 3. Then

majorates A with the limit

. 272 1
B‘JL“O‘OB"‘?,‘(l 2)

and these satisfy k(A, B,) > 0, (4, B) = 0.
Now we are ready to construct an example of bounded self-adjoint operators A’ < B’ with no
infinitesimal exponential order relation and having the trivial kernel for the difference B’ — A’: Let

A’ < B’ be defined on the Hilbert space @ C? by

n>3
#=®(; 5. B=@s
0 0/’ n
n>3 n>3

Then clearly ker(B’ — A’) = {0}. If k = k(A4',B’) = inf{k(A, Bn);n > 3} > 0, &4 < e*Bn for any
n > 3 and therefore, by taking the limit n — oo, em < e®B | which is impossible because k(A,B) = 0.
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