<table>
<thead>
<tr>
<th>項目</th>
<th>内容</th>
</tr>
</thead>
<tbody>
<tr>
<td>タイトル</td>
<td>共鳴によるパターン形成:波動現象におけるパターンの生成と特性</td>
</tr>
<tr>
<td>著者</td>
<td>藤村 薫</td>
</tr>
<tr>
<td>Citation</td>
<td>数理解析研究所講究録 1030: 11-15</td>
</tr>
<tr>
<td>Issue Date</td>
<td>1998-04</td>
</tr>
<tr>
<td>URL</td>
<td>http://hdl.handle.net/2433/61844</td>
</tr>
<tr>
<td>Type</td>
<td>Departmental Bulletin Paper</td>
</tr>
<tr>
<td>Textversion</td>
<td>publisher</td>
</tr>
</tbody>
</table>
1:2 共鳴によるパターン形成

鳥取大学工学部 藤村 薫 (K. Fujimura)

1 はじめに

O(2) 対称性の下での波数比 1 : 2 の定常モード間共鳴は 60 年代初頭から研究が行われ、3 次で打ち切った振幅方程式

\[\dot{z}_1 = \sigma_1 z_1 + \beta_1 \bar{z}_1 z_2 + \lambda_{11} |z_1|^2 z_1 + \lambda_{21} |z_2|^2 z_1, \]
\[\dot{z}_2 = \sigma_2 z_2 + \beta_2 z_2^2 + \lambda_{12} |z_1|^2 z_2 + \lambda_{22} |z_2|^2 z_2. \] \(\text{(1)} \)

の解についての理解はとりわけ 80 年代後半に深まった. [3, 10, 1]

方程式 (1) の平衡解としては自明解の他に

1. pure mode: \(z_1 = 0, \ z_2 \neq 0 \)
2. mixed mode: \(|z_1| \cdot |z_2| \neq 0, \ \arg z_2 - 2 \arg z_1 = n\pi. \)
3. traveling wave: \(|z_1| \cdot |z_2| \neq 0, \ \arg z_2 - 2 \arg z_1 \neq n\pi. \)

が存在し、これらが不安定となるばあいには standing wave, homoclinic orbit 等が安定に存在することもあり得ることが知られている。さらに、非線形縮退の影響についても研究が行われてきた. [8, 9, 6] これらの解は、1 次元の空間パターンの形成を予測しているが、1:2 共鳴による 2 次元パターン (planform) の形成は未解決の問題である。

水平面内に等方な場における planform の形成の問題についても、60 年代から解析が始められたが、群論を用いた組織的な解析によって、正 6 角形格子の上での定常モードの発生, Hopf モードの発生等に関する理解が 80 年代半ばに飛躍的に進展した. [2, 7] ごく最近になって、正 6 角形格子の上でのモード相互作用や共鳴相互作用の解析も始められた。例えば、M.Renardy は 2 つの Takens-Bogdanov 点がぶつかる場合を調べ、Y.Renardy, M.Renardy & Fujimura は Takens-Bogdanov 分岐を 2 流体系について調べた. [11, 12] また、Daumont, Kassner, Misbah & Valance と Silber & Proctor は独立に波数比 1 : \(\sqrt{3} \) の共鳴を解析した. [4, 14]

本研究では、正 6 角形格子の上での 1 : 2 定常モード間共鳴を解析し、O(2) 対称性の下で (1) によって予測された 1 次元パターンが正 6 角形格子の上でも果たして安定に実現されるのかを調べる。
2 2層 Rayleigh-Bénard系

Proctor & Jonesは薄い伝導性の固体で仕切られた2層 Rayleigh-Bénard系において、共鳴が厳密に間接モード間に生じることを明らかにし、振幅方程式 (1) の解の分岐を詳細に論じた。[10] ここでは、彼らの解析を2次元に拡張することによって、どのようなplanformが形成されるのかを調べることにする。

水平面を \((x, y)\) とし、これと垂直に \(z\) を重力方向と反対とする。\(z = 0\) と \(d/D\) に2枚の水平な板が置かれている、厚さゼロの伝導性の固体の板が \(z = d\) に挿入されているものとする。ここで、\(D\) は2層の厚さの比に対応する。下の層を添字1、上の層を2で表すと、適当な無次元化と圧力項の消去を行えば速度と温度擾乱に対する方程式が次のように求められる。

\[
[P^{-1}_j C_j \partial_t - \nabla^2](\hat{v}_{jx} - \hat{u}_{jy}) = - \partial_x(\hat{v}_j \cdot \nabla)\hat{u}_j + \partial_y(\hat{v}_j \cdot \nabla)\hat{v}_j,
\]

\[
P^{-1}_j C_j \partial_t \nabla^2 \hat{w}_j - \nabla^4 \hat{w}_j + R_j K_j \nabla^2 \hat{T}_j = -[\nabla^2(\hat{v}_j \cdot \nabla)\hat{w}_j - \partial_{xx}(\hat{v}_j \cdot \nabla)\hat{u}_j - \partial_{yz}(\hat{v}_j \cdot \nabla)\hat{v}_j],
\]

\[
C_j \partial_t \hat{T}_j - \nabla \cdot \hat{T}_j = - (\hat{v}_j \cdot \nabla)\hat{T}_j,
\]

\[
\nabla \cdot \hat{v}_j = 0.
\]

方程式には8つの無次元パラメーターが含まれている：\(C_1 = 1, C_2 = \kappa_1/\kappa_2, P_j\)はPrandtl数、\(R_j\)はRayleigh数、\(K_1 = 1, K_2 = D^4\)である。

境界条件は次のように課す：

\[
\hat{v}_j = d\hat{w}_j/dz = 0 \text{ at } z = 0, 1, \text{ and } 1 + D^{-1},
\]

\[
\hat{T}_j = 0 \text{ at } z = 0 \text{ and } 1 + D^{-1},
\]

\[
\hat{T}_1 = G \hat{T}_2 \text{ and } C_2 d\hat{T}_1/dz = G d\hat{T}_2/dz \text{ at } z = 1.
\]

ここで \(G = D^4 R_2 \kappa_2 \nu_2 \alpha_1 / R_1 \kappa_1 \nu_1 \alpha_2\) は動粘性率、\(\alpha_j\)は熱膨張率である。

3 振幅方程式

正 6 角形格子上での相互作用を解析するためには、

\[
e^{\pm i\gamma x}, \ e^{\pm i\gamma(-\frac{1}{2}x + \frac{\sqrt{3}}{2}y)}, \ e^{\pm i\gamma(-\frac{1}{2}x - \frac{\sqrt{3}}{2}y)},
\]

\[
e^{\pm 2i\gamma x}, \ e^{\pm 2i\gamma(-\frac{1}{2}x + \frac{\sqrt{3}}{2}y)}, \ e^{\pm 2i\gamma(-\frac{1}{2}x - \frac{\sqrt{3}}{2}y)}
\]

に比例するモードの振幅 \(x_1, x_2, x_3, y_1, y_2, y_3\) の挙動を調べればよい。中心多様体定理に基づく方法を用いることによって、3次振幅方程式を

\[
\dot{x}_1 = \sigma_1 x_1 + \delta_1 x_2 x_3 + \beta_1 x_1 y_1 + [\kappa_{11}|x_1|^2 + \kappa_{12}(|x_2|^2 + |x_3|^2)]x_1
\]

\[
+ [\mu_{11}|y_1|^2 + \mu_{12}(|y_2|^2 + |y_3|^2)]x_1 + \nu_1 x_1 y_2 y_3 + \xi_1 x_2 x_3 y_1 + \eta_1 (x_2 x_3 y_3 + x_2 x_3 y_2),
\]

\[
\hat{v}_j = d\hat{w}_j/dz = 0 \text{ at } z = 0, 1, \text{ and } 1 + D^{-1},
\]

\[
\hat{T}_j = 0 \text{ at } z = 0 \text{ and } 1 + D^{-1},
\]

\[
\hat{T}_1 = G \hat{T}_2 \text{ and } C_2 d\hat{T}_1/dz = G d\hat{T}_2/dz \text{ at } z = 1.
\]

ここで \(G = D^4 R_2 \kappa_2 \nu_2 \alpha_1 / R_1 \kappa_1 \nu_1 \alpha_2, \nu_j\) は動粘性率、\(\alpha_j\)は熱膨張率である。
\[\dot{y}_1 = \sigma_2 y_1 + \delta_{2\overline{y}\overline{y}_3} + \beta_2 x_1^2 + \left[\kappa_{21} |x_1|^2 + \kappa_{22} (|x_2|^2 + |x_3|^2) \right] y_1 \\
+ [\mu_1 |y_1|^2 + \mu_{22} (|y_2|^2 + |y_3|^2)] y_1 + \nu_2 x_1 \overline{x}_2 \overline{x}_3 + \xi_2 (\overline{x}_2 y_2 + \overline{x}_2 y_3) \]

(5)

のように求める。 (5) の導出の詳細は省略するが、例えば Fujimura にここで行ったのと類似の導出法についての記述がある。 [5]

さて、Proctor & Jones の論文の Table 1 から \(P_1 = P_2 = 1, \ R_1 = 1401.8, \ r = 1.0607, \ \gamma = 2.9150, \ D = 2.0977 \) の場合に厳密に臨界モード間の共鳴が生じることが分かった。数値的に求めた \(G = 1, \ C_2 = 1 \) に対する振幅方程式 (5) の係数の値を次に示す。

\(\beta_1 \)	-1.007878
\(\delta_1 \)	3.784774 \times 10^{-5}
\(\kappa_{11} \)	-1.425602 \times 10^{2}
\(\kappa_{12} \)	-3.919632 \times 10^{2}
\(\mu_{11} \)	-1.247519 \times 10^{1}
\(\mu_{12} \)	-6.859292 \times 10^{1}
\(\nu_1 \)	-1.005418 \times 10^{2}
\(\xi_1 \)	-9.586705 \times 10^{1}
\(\eta_1 \)	-2.520508 \times 10^{2}
\(\beta_2 \)	9.409176 \times 10^{1}
\(\delta_2 \)	-2.166117 \times 10^{-4}
\(\kappa_{21} \)	1.349366 \times 10^{2}
\(\kappa_{22} \)	3.381498 \times 10^{3}
\(\mu_{21} \)	-1.191662 \times 10^{2}
\(\mu_{22} \)	-1.568293 \times 10^{2}
\(\nu_2 \)	2.350675 \times 10^{4}
\(\xi_2 \)	2.672699 \times 10^{3}

4 振幅方程式の平衡解

2 層 Rayleigh-Bénard 系において存在が確認された平衡解を以下に示す。 (ここでは平衡解の網羅的な分類を意図していないので、以下に含まれていないいくつかのクラスの解も (5) の平衡解として一般には存在可能である) まず、全体的にいえることとして、(2) に含まれる線形作用素は自己関連であるため、(5) の 2 次の非線形項の係数のうち \(\delta_1 \) と \(\delta_2 \) は 0 となる。 \(x_n = r_n e^{i\theta_n}, \ y_n = z_n e^{i\theta_n} \) とおく。

1. pure mode: \(x_n = 0 \) for \(n = 1, 2, 3 \) なるものをここでは pure mode と呼ぶ。このとき存在可能なパターンは、上下の対称性、もしくは、自己関連の線形作用素を有する正 6 角形格子上での定常モードによって形成されるパターンと同じである。

 (a) roll (R): \(y_1 \neq 0, \ y_2 = y_3 = 0. \)

 (b) hexagon (H): \(y_1 = y_2 = \pm y_3 \neq 0. \)

 (c) patchwork quilt (PQ): \(y_1 = y_2 \neq 0, \ y_3 = 0. \)

2. mixed mode: \(\Sigma |x_n| \neq 0, \Sigma |y_n| \neq 0 \) であるものを mixed mode と呼ぶ。このとき、1:2 共鳴の影響が形成されるパターンに現れる。

 (a) mixed roll (M): \(r_1 z_1 \neq 0, \ r_2 = r_3 = z_2 = z_3 = 0, \ \theta_1^m - 2\theta_1^m = n\pi. \) このモードは \(O(2) \) 対称性の下での 1:2 共鳴における mixed mode と同一である。
Figure 1: 2層 Rayleigh-Bénard 系における分岐ダイアグラム

(b) traveling wave (TW): \(r_1 z_1 \neq 0, r_2 = r_3 = z_2 = z_3 = 0, \theta_1^y - 2\theta_1^x \neq n\pi. \)
このモードは \(O(2) \) 対称性の下での 1: 2 共鳴における traveling wave と同一である。

(c) mixed hexagon (MH): \(r_1 = r_2 = r_3 \neq 0, z_1 = z_2 = z_3 \neq 0. \)

(d) mixed rectangle (MRA): \(x_n, y_n \in \mathbb{R}, x_1 = x_2 \neq x_3, y_1 = y_2 \neq y_3. \) 一見, pure mode との関連から mixed patchwork quilt が存在するように思えるが, 実はそのためにはある種の縮退が条件となり, ここで考えている系では mixed patchwork quilt は存在しない。

(e) rectangular roll (RAR): \(x_n, y_n \in \mathbb{R}, x_1 = x_2 = 0, x_3 \neq 0, y_1 = y_2 \neq y_3. \)

(f) steady asymmetric mode (SA): \(x_n, y_n \in \mathbb{R}, x_1 \neq 0, x_2 = x_3 = 0, y_1 \neq y_2 \neq y_3. \)

(g) oscillatory asymmetric mode (OA): \(x_n, y_n \in \mathbb{C}, r_1 \neq r_2 \neq r_3, z_1 \neq z_2 \neq z_3, \theta_1^y - 2\theta_1^x \neq n\pi, \theta_2^y - 2\theta_2^x \neq n\pi, \theta_3^y - 2\theta_3^x \neq n\pi, \theta_1^x + \theta_2^x + \theta_3^x \neq n\pi, \theta_1^y + \theta_2^y + \theta_3^y \neq n\pi. \)

振幅方程式 (5) は厳密に 1: 2 共鳴の生じる臨界点において導かれているため, 方程式に含まれる線形振幅率 \(\sigma_1 \) と \(\sigma_2 \) はいずれもゼロである。さて, 物理的な制御パラメーター
とを例えば Rayleigh 数や厚み比 D のような量を摂動して分岐の描像を求める代わり
に、ここでは、増幅率 σ_1 と σ_2 をそれぞれ $\sigma_1 = 10^{-4}\cos \theta$, $\sigma_2 = 10^{-4}\sin \theta$ とおいて θ
を $[0, 2\pi]$ の間で変化させることにする。そのとき得られた分岐ダイアグラムを Fig.1 に示
す。横軸は θ/π である。ここに示されたブランチの他にもいくつかのブランチが存在する
が、それらをすべて示すとダイアグラムが非常に複雑になるため、いくつかのあまり本質的
でないブランチは省略した。

さて、Fig.1 のブランチの内で、安定なものは pure mode の一部と mixed hexagon
の一部、それに traveling wave の一部である。それ以外のすべてのブランチは不安定であ
ると結論される。Runge-Kutta スキームを用いた (5) の数値積分によると、安定なブラ
ンチが存在しない領域では、Proctor & Jones によって見つけられた noisily periodic
orbit, カオス解、準周期的 mixed rectangle のいずれかが安定に存在することが明らかに
になった。また、$O(2)$ 対称性の下で求められる (1) の分岐解として得られていた mixed
mode は、正 6 角形格子上での相互作用の問題では不安定であることが結論された。

References