ON WEAK CONVERGENCE TO FIXED POINTS OF NONEXPANSIVE MAPPINGS IN BANACH SPACES

筑波大学·大学院経営システム科学 東京工業大学・大学院情報理工学研究科 鈴木 智成 (Tomonari Suzuki)

高橋 涉 (Wataru Takahashi)

ABSTRACT. In this paper, we prove the following weak convergence theorem: Let C be a nonempty closed convex subset of a uniformly convex Banach space E which satisfies Opial's condition or whose norm is Fréchet differentiable. Let T be a nonexpansive mapping from C into itself with a fixed point. Suppose that $\{x_n\}$ is given by $x_1 \in C$ and $x_{n+1} = \alpha_n T \left[\beta_n T x_n + (1-\beta_n) x_n\right] + (1-\alpha_n) x_n$ for all $n \ge 1$, where $\{\alpha_n\}$ and $\{\beta_n\}$ are sequences in [0,1] such that $\sum_{n=1}^{\infty} \alpha_n (1-\alpha_n) = \infty$ and $\limsup \beta_n < 1$, or $\sum_{n=1}^{\infty} \alpha_n \beta_n = \infty$ and $\limsup \beta_n < 1$. Then $\{x_n\}$ converges weakly to a fixed point of T. This is a generalization of the results of Tan and Xu, and Takahashi and Kim.

1. Introduction

Let E be a real Banach space and let C be a nonempty closed convex subset of E. Then a mapping T from C into itself is called nonexpansive if $||Tx - Ty|| \le ||x - y||$ for all $x, y \in C$. For a mapping T from C into itself, we denote by F(T) the set of fixed points of T. Now, we consider the following iteration scheme: $x_1 \in C$ and

(1)
$$x_{n+1} = \alpha_n T[\beta_n T x_n + (1 - \beta_n) x_n] + (1 - \alpha_n) x_n \text{ for all } n \ge 1,$$

where $\{\alpha_n\}$ and $\{\beta_n\}$ are sequences in [0,1]. Such an iteration scheme was introduced by Ishikawa [3]; see also Mann [4]. Recently Tan and Xu [8] proved the following interesting result (Corollary 1): Let C be a nonempty closed convex subset of a uniformly convex Banach space E which satisfies Opial's condition or whose norm is Fréchet differentiable and let T be a nonexpansive mapping from C into itself with a fixed point. Then for any initial data x_1 in C, the iterates $\{x_n\}$ defined by (1), where $\{\alpha_n\}$ and $\{\beta_n\}$ are chosen so that $\sum_{n=1}^{\infty} \alpha_n (1-\alpha_n) = \infty$, $\sum_{n=1}^{\infty} \beta_n (1-\alpha_n) < \infty$ and $\limsup \beta_n < 1$, converge weakly to a fixed point of T. On the other hand, Takahashi and Kim [7] proved the following (Corollary 2): Let C, E and T be as above and suppose $\alpha_n \in [a, b]$ and $\beta_n \in [0, b]$, or $\alpha_n \in [a, 1]$ and $\beta_n \in [a, b]$ for some a, b with

This research is supported by University of Tsukuba Research Project.

¹⁹⁹¹ Mathematics Subject Classification. Primary 47H10, Secondary 47H09, 47H17. Key words and phrases. Fixed point, Nonexpansive mapping, Ishikawa iteration.

 $0 < a \le b < 1$. Then for any initial data x_1 in C, the iterates $\{x_n\}$ defined by (1) converge weakly to a fixed point of T. Note that Tan and Xu's result is applicable to the case of $\alpha_n = 1 - 1/n$ and $\beta_n = 1/n$ for all $n \ge 1$, while Takahashi and Kim's result is applicable to the case of $\alpha_n = \beta_n = 1/2$ for all $n \ge 1$.

In this paper, motivated by these two results, we prove the following weak convergence theorem: Let C, E and T be as above and suppose $\sum_{n=1}^{\infty} \alpha_n (1-\alpha_n) = \infty$ and $\limsup_{n\to\infty} \beta_n < 1$, or $\sum_{n=1}^{\infty} \alpha_n \beta_n = \infty$ and $\limsup_{n\to\infty} \beta_n < 1$. Then for any initial data x_1 in C, the iterates $\{x_n\}$ defined by (1) converge weakly to a fixed point of T. Compare this with Tan and Xu's result [8] and Takahashi and Kim's result [7].

2. PRELIMINARIES

Let E be a Banach space. For each ε with $0 \le \varepsilon \le 2$, we define the modulus $\delta(\varepsilon)$ of convexity of E by

$$\delta(\varepsilon) = \inf \left\{ 1 - \frac{\|x+y\|}{2} : \|x\| \le 1, \|y\| \le 1, \|x-y\| \ge \varepsilon \right\}.$$

Note that δ is nondecreasing and

$$\|\lambda x + (1 - \lambda)y\| \le \max\{\|x\|, \|y\|\} \left[1 - 2\lambda(1 - \lambda) \cdot \delta\left(\frac{\|x - y\|}{\max\{\|x\|, \|y\|\}}\right)\right]$$

for every $x,y\in E\setminus\{0\}$ and $\lambda\in[0,1]$; see [2]. E is called uniformly convex if $\delta(\varepsilon)>0$ for all $\varepsilon>0$. The norm of E is called Fréchet differentiable if for each $x\in E$ with $\|x\|=1$, $\lim_{t\to 0}\frac{\|x+ty\|-\|x\|}{t}$ exists and is attained uniformly in $y\in E$ with $\|y\|=1$; see [2]. E is said to satisfy Opial's condition [5] if for any sequence $\{x_n\}$ in E such that $\{x_n\}$ converges weakly to $z\in E$, $\liminf_{n\to\infty}\|x_n-z\|<\liminf_{n\to\infty}\|x_n-y\|$ for all $y\in E$ with $y\neq z$. All Hilbert spaces and $\ell^p(1< p<\infty)$ satisfy Opial's condition, while ℓ^p with ℓ^p with ℓ^p and ℓ^p and ℓ^p and ℓ^p and ℓ^p are also [7].

Lemma 1. Let C be a nonempty closed convex subset of a uniformly convex Banach space E whose norm is Fréchet differentiable and let $\{T_1, T_2, T_3, \cdots\}$ be a sequence of nonexpansive mappings from C into itself such that $\bigcap_{n=1}^{\infty} F(T_n)$ is nonempty. Let $x \in C$ and $S_n = T_n T_{n-1} \cdots T_1$ for all $n \geq 1$. Then the set $\left(\bigcap_{n=1}^{\infty} \overline{co} \{S_m x : m \geq n\}\right) \bigcap \left(\bigcap_{n=1}^{\infty} F(T_n)\right)$ consists of at most one point, where $\overline{co} \{S_m x : m \geq n\}$ is the closure of the convex hull of $\{S_m x : m \geq n\}$.

3. WEAK CONVERGENCE THEOREM

In this section, we prove the following theorem which generalizes the results of Tan and Xu [8] and Takahashi and Kim [7].

Theorem. Let C be a nonempty closed convex subset of a uniformly convex Banach space E which satisfies Opial's condition or whose norm is Fréchet differentiable. Let T be a nonexpansive mapping from C into itself with a fixed point. Suppose that $\{x_n\}$ is given by $x_1 \in C$ and $x_{n+1} = \alpha_n T \left[\beta_n T x_n + (1-\beta_n) x_n\right] + (1-\alpha_n) x_n$ for all $n \geq 1$, where $\{\alpha_n\}$ and $\{\beta_n\}$ are sequences in [0,1] such that $\sum_{n=1}^{\infty} \alpha_n (1-\alpha_n) = \infty$ and $\limsup_{n\to\infty} \beta_n < 1$, or $\sum_{n=1}^{\infty} \alpha_n \beta_n = \infty$ and $\limsup_{n\to\infty} \beta_n < 1$. Then $\{x_n\}$ converges weakly to a fixed point of T.

Before proving it, we need some definitions and lemmas. We denote by \mathbb{N} the set of positive integers. Let I be an infinite subset of \mathbb{N} . If $\{\lambda_n\}$ is a sequence of nonnegative numbers, then we denote by $\{\lambda_i : i \in I\}$ the subsequence of $\{\lambda_n\}$.

Lemma 2. Let $\{\lambda_n\}$ and $\{\mu_n\}$ be sequences of nonnegative numbers such that $\sum_{n=1}^{\infty} \lambda_n = \infty$ and $\sum_{n=1}^{\infty} \lambda_n \mu_n < \infty$. Then for $\varepsilon > 0$, there exists an infinite subset I of $\mathbb N$ such that $\sum \{\lambda_j : j \in \mathbb N \setminus I\} \le \varepsilon$ and the subsequence $\{\mu_i : i \in I\}$ of $\{\mu_n\}$ converges to 0.

Proof. For each $\varepsilon > 0$, first take $p_0 \in \mathbb{N}$ with $\sum_{n=p_0+1}^{\infty} \lambda_n \mu_n \leq \varepsilon/2$. From $\sum_{n=1}^{\infty} \lambda_n = \infty$ and $\sum_{n=1}^{\infty} \lambda_n \mu_n < \infty$, we have $\liminf_{n \to \infty} \mu_n = 0$. So, there exists $p_1 \in \mathbb{N}$ such that $p_1 > p_0$, $\mu_{p_1} < 1$ and

$$\sum \{\lambda_j \mu_j : j > p_1\} \le \frac{\varepsilon}{2 \cdot 2^2}.$$

Similarly we can take $p_2, p_3, \dots \in \mathbb{N}$ such that $p_k > p_{k-1}, \mu_{p_k} < 1/k$ and

$$\sum \left\{ \lambda_j \mu_j : j > p_k \right\} \le \frac{\varepsilon}{(k+1) \cdot 2^{k+1}}$$

for all $k = 2, 3, \cdots$. Define

$$I = \{1, 2, \dots, p_0\} \bigcup \left(\bigcup_{k=1}^{\infty} \left\{ n : p_{k-1} < n \le p_k, \mu_n < \frac{1}{k} \right\} \right).$$

Then, $\{\mu_i : i \in I\}$ is a subsequence of $\{\mu_n\}$ such that $\mu_i \to 0$. We also have

$$\sum \{\lambda_j : j \in \mathbb{N} \setminus I\} = \sum_{k=1}^{\infty} \sum \left\{ \lambda_n : p_{k-1} < n \le p_k, \mu_n \ge \frac{1}{k} \right\}.$$

Putting $S_k = \{n : p_{k-1} < n \le p_k, \mu_n \ge 1/k\}$, we have

$$\frac{1}{k} \sum \{\lambda_n : n \in S_k\} \le \sum \{\lambda_n \mu_n : n \in S_k\} \le \sum \{\lambda_j \mu_j : j > p_{k-1}\}$$

$$\le \frac{\varepsilon}{k \cdot 2^k}$$

and hence

$$\sum \{\lambda_j : j \in \mathbb{N} \setminus I\} \le \sum_{k=1}^{\infty} \frac{\varepsilon}{2^k} = \varepsilon.$$

This completes the proof. \Box

Lemma 3. Let $\{\lambda_n\}$ and $\{\mu_n\}$ be sequences of nonnegative numbers such that $\lambda_{n+1} \leq 1$ $\lambda_n + \mu_n$ for all $n \in \mathbb{N}$. Suppose there exists a subsequence $\{\mu_i : i \in I\}$ of $\{\mu_n\}$ such that $\mu_i \to 0$, $\lambda_i \to \alpha$ and $\sum \{\mu_j : j \in \mathbb{N} \setminus I\} < \infty$. Then $\lambda_n \to \alpha$.

Proof. Fix $\varepsilon > 0$ and take $n_0 \in I$ such that $|\lambda_i - \alpha| \le \varepsilon$ and $\mu_i \le \varepsilon$ for all $i \ge n_0$ and $\sum \{\mu_j : j > n_0, j \in \mathbb{N} \setminus I\} \le \varepsilon$. For $n \in \mathbb{N} \setminus I$ with $n > n_0$, putting $k = \max\{i \in I : i \in I\}$ i < n and $\ell = \min\{i \in I : i > n\}$, we have

$$\lambda_n \le \lambda_{n-1} + \mu_{n-1} \le \dots \le \lambda_k + \sum_{j=k}^{n-1} \mu_j \le \lambda_k + \mu_k + \varepsilon \le \alpha + 3\varepsilon$$

and

$$\lambda_n \ge \lambda_{n+1} - \mu_n \ge \dots \ge \lambda_{\ell} - \sum_{j=n}^{\ell-1} \mu_j \ge \lambda_{\ell} - \varepsilon \ge \alpha - 2\varepsilon > \alpha - 3\varepsilon.$$

So, we obtain the desired result.

Lemma 4. Let C be a closed convex subset of a uniformly convex Banach space E and let T be a nonexpansive mapping from C into itself with a fixed point. Suppose that $\{x_n\}$ is given by $x_1 \in C$ and $x_{n+1} = \alpha_n T \left[\beta_n T x_n + (1-\beta_n)x_n\right] + (1-\alpha_n)x_n$ for all $n \in \mathbb{N}$, where $\alpha_n, \beta_n \in [0,1]$. Then the following hold:

- (i) If $\sum_{n=1}^{\infty} \alpha_n (1 \alpha_n) = \infty$ and $\limsup_{n \to \infty} \beta_n < 1$, then $\lim_{n \to \infty} ||Tx_n x_n|| = 0$; (ii) if $\sum_{n=1}^{\infty} \alpha_n \beta_n = \infty$ and $\limsup_{n \to \infty} \beta_n < 1$, then $\lim_{n \to \infty} ||Tx_n x_n|| = 0$.

Proof. We may assume that there exists $b \in (0,1)$ such that $\beta_n \leq b$ for all $n \in \mathbb{N}$. Fix $w \in F(T)$ and put $y_n = \beta_n T x_n + (1 - \beta_n) x_n$ for all $n \in \mathbb{N}$. Then by the definition of $\{x_n\}$, we have

$$||x_{n+1} - w|| = ||\alpha_n T y_n + (1 - \alpha_n) x_n - w||$$

$$\leq \alpha_n ||T y_n - w|| + (1 - \alpha_n) ||x_n - w||$$

$$\leq \alpha_n ||y_n - w|| + (1 - \alpha_n) ||x_n - w||$$

$$= \alpha_n ||\beta_n T x_n + (1 - \beta_n) x_n - w|| + (1 - \alpha_n) ||x_n - w||$$

$$\leq \alpha_n (\beta_n ||T x_n - w|| + (1 - \beta_n) ||x_n - w||) + (1 - \alpha_n) ||x_n - w||$$

$$\leq ||x_n - w||$$

and hence the limit of $\{\|x_n-w\|\}$ exists. Put $c=\lim_{n\to\infty}\|x_n-w\|$. If c=0, then (i) and (ii) hold. So, we assume that c > 0. We first prove (i). From $||Ty_n - w|| \le ||x_n - w||$ for all $n \in \mathbb{N}$, we obtain

$$||x_{n+1} - w|| = ||\alpha_n (Ty_n - w) + (1 - \alpha_n)(x_n - w)||$$

$$\leq ||x_n - w|| \left[1 - 2\alpha_n (1 - \alpha_n) \cdot \delta \left(\frac{||Ty_n - x_n||}{||x_n - w||} \right) \right].$$

Since

$$\begin{aligned} \|x_n - w\| - \|x_{n+1} - w\| \\ &\geq 2\|x_n - w\| \cdot \alpha_n (1 - \alpha_n) \cdot \delta\left(\frac{\|Ty_n - x_n\|}{\|x_n - w\|}\right) \\ &\geq 2c \cdot \alpha_n (1 - \alpha_n) \cdot \delta\left(\frac{\|Ty_n - x_n\|}{\|x_n - w\|}\right) \end{aligned}$$

for all $n \in \mathbb{N}$, we have

$$\sum_{n=1}^{\infty} \alpha_n (1 - \alpha_n) \cdot \delta \left(\frac{\|Ty_n - x_n\|}{\|x_n - w\|} \right) < \infty.$$

By Lemma 2, there exists an infinite subset I_1 of N such that

(2)
$$\sum \{\alpha_j(1-\alpha_j): j \in \mathbb{N} \setminus I_1\} < \infty$$

and $\left\{\delta\left(\frac{\|Ty_i-x_i\|}{\|x_i-w\|}\right): i\in I_1\right\}$ converges to 0. Since $c=\lim_{n\to\infty}\|x_n-w\|>0$, we obtain $\{\|Ty_i-x_i\|: i\in I_1\}$ converges to 0. From

$$||Tx_{i} - x_{i}|| \leq ||Tx_{i} - Ty_{i}|| + ||Ty_{i} - x_{i}||$$

$$\leq ||x_{i} - y_{i}|| + ||Ty_{i} - x_{i}||$$

$$= \beta_{i}||Tx_{i} - x_{i}|| + ||Ty_{i} - x_{i}||$$

$$\leq b||Tx_{i} - x_{i}|| + ||Ty_{i} - x_{i}||,$$

we obtain

$$\limsup_{i\to\infty} \|Tx_i - x_i\| \leq \limsup_{i\to\infty} \frac{1}{(1-b)} \|Ty_i - x_i\| = 0.$$

Hence we have

$$\lim_{i\to\infty}||Tx_i-x_i||=0.$$

Since

$$||Tx_{n+1} - x_{n+1}||$$

$$\leq ||Tx_{n+1} - T(\alpha_n Tx_n + (1 - \alpha_n)x_n)|| + ||T(\alpha_n Tx_n + (1 - \alpha_n)x_n) - Tx_n||$$

$$+ ||Tx_n - (\alpha_n Tx_n + (1 - \alpha_n)x_n)|| + ||\alpha_n Tx_n + (1 - \alpha_n)x_n - x_{n+1}||$$

$$\leq 2||\alpha_n Tx_n + (1 - \alpha_n)x_n - x_{n+1}|| + ||\alpha_n Tx_n + (1 - \alpha_n)x_n - x_n||$$

$$+ (1 - \alpha_n)||Tx_n - x_n||$$

$$= 2\alpha_n ||Tx_n - Ty_n|| + ||Tx_n - x_n||$$

$$\leq 2\alpha_n ||x_n - y_n|| + ||Tx_n - x_n||$$

$$= (1 + 2\alpha_n \beta_n)||Tx_n - x_n||$$

and

$$\begin{aligned} \|Tx_{n+1} - x_{n+1}\| &\leq \|Tx_{n+1} - T(\alpha_n Ty_n + (1 - \alpha_n)y_n)\| + \|T(\alpha_n Ty_n + (1 - \alpha_n)y_n) - Ty_n\| \\ &+ \|Ty_n - (\alpha_n Ty_n + (1 - \alpha_n)y_n)\| + \|\alpha_n Ty_n + (1 - \alpha_n)y_n - x_{n+1}\| \\ &\leq 2\|\alpha_n Ty_n + (1 - \alpha_n)y_n - x_{n+1}\| + \|\alpha_n Ty_n + (1 - \alpha_n)y_n - y_n\| \\ &+ (1 - \alpha_n)\|Ty_n - y_n\| \\ &= 2(1 - \alpha_n)\|x_n - y_n\| + \|Ty_n - y_n\| \\ &\leq 2(1 - \alpha_n)\|x_n - y_n\| + \|Ty_n - Tx_n\| + \|Tx_n - y_n\| \\ &\leq 2(1 - \alpha_n)\|x_n - y_n\| + \|y_n - x_n\| + \|Tx_n - y_n\| \\ &\leq 2(1 - \alpha_n)\|x_n - y_n\| + \|y_n - x_n\| + \|Tx_n - y_n\| \\ &= (1 + 2(1 - \alpha_n)\beta_n)\|Tx_n - x_n\| \end{aligned}$$

for all $n \in \mathbb{N}$, we obtain

(4)
$$||Tx_{n+1} - x_{n+1}|| \le (1 + 4\alpha_n(1 - \alpha_n)\beta_n)||Tx_n - x_n||.$$

Since $\{\|Tx_n-x_n\|\}$ is bounded, from Lemma 3, (2), (3) and (4), we obtain $\lim_{n\to\infty} \|Tx_n-x_n\|=0$. We next prove (ii). From $\|Tx_n-w\|\leq \|x_n-w\|$ for all $n\in\mathbb{N}$, we obtain

$$||x_{n+1} - w|| \le \alpha_n ||y_n - w|| + (1 - \alpha_n) ||x_n - w||$$

$$= \alpha_n ||\beta_n (Tx_n - w) + (1 - \beta_n) (x_n - w)|| + (1 - \alpha_n) ||x_n - w||$$

$$\le \alpha_n ||x_n - w|| \left[1 - 2\beta_n (1 - \beta_n) \cdot \delta \left(\frac{||Tx_n - x_n||}{||x_n - w||} \right) \right]$$

$$+ (1 - \alpha_n) ||x_n - w||.$$

From

$$\begin{aligned} \|x_n - w\| - \|x_{n+1} - w\| \\ &\geq 2\|x_n - w\| \cdot \alpha_n \beta_n (1 - \beta_n) \cdot \delta \left(\frac{\|Tx_n - x_n\|}{\|x_n - w\|} \right) \\ &\geq 2c \cdot \alpha_n \beta_n (1 - b) \cdot \delta \left(\frac{\|Tx_n - x_n\|}{\|x_n - w\|} \right) \end{aligned}$$

for all $n \in \mathbb{N}$, we have

$$\sum_{n=1}^{\infty} \alpha_n \beta_n \cdot \delta \left(\frac{\|Tx_n - x_n\|}{\|x_n - w\|} \right) < \infty.$$

By Lemma 2, there exists an infinite subset I_2 of N such that

(5)
$$\sum \{\alpha_j \beta_j : j \in \mathbb{N} \setminus I_2\} < \infty$$

and $\left\{\delta\left(\frac{\|Tx_i-x_i\|}{\|x_i-w\|}\right): i\in I_2\right\}$ converges to 0. Since $c=\lim_{n\to\infty}\|x_n-w\|>0$, we obtain

$$\lim_{i\to\infty}||Tx_i-x_i||=0.$$

Since $\{\|Tx_n-x_n\|\}$ is bounded, from Lemma 3, (4), (5) and (6), we obtain $\lim_{n\to\infty} \|Tx_n-x_n\|=0$. \square

Proof of Theorem. Note that by Lemma 4 and Browder [1], a weak subsequential limit of the sequence $\{x_n\}$ is a fixed point of T. Since E is reflexive and $\{x_n\}$ is bounded, to complete the proof, we prove that $\{x_n\}$ has at most one weak subsequential limit. In the case that E satisfies Opial's condition, we assume that z_1 and z_2 are two distinct weak sequential limit of the subsequence $\{x_i: i \in I\}$ and $\{x_j: j \in J\}$ of $\{x_n\}$ respectively. We obtain

$$\lim_{n \to \infty} ||x_n - z_1|| = \lim_{i \to \infty} ||x_i - z_1|| < \lim_{i \to \infty} ||x_i - z_2|| = \lim_{n \to \infty} ||x_n - z_2||$$

$$= \lim_{j \to \infty} ||x_j - z_2|| < \lim_{j \to \infty} ||x_j - z_1|| = \lim_{n \to \infty} ||x_n - z_1||.$$

This is a contradiction. In the case that the norm of E is Fréchet differentiable, for each $n \in \mathbb{N}$, we define a nonexpansive mapping T_n from C into itself by

$$T_n(x) = \alpha_n T[\beta_n Tx + (1 - \beta_n)x] + (1 - \alpha_n)x.$$

Then $\{x_n\}$ can be written as $x_{n+1} = T_n T_{n-1} \cdots T_1 x_1$ and $F(T) \subset F(T_n)$ for all $n \in \mathbb{N}$. Let z be a subsequential limit of $\{x_n\}$ and put $S_n = T_n T_{n-1} \cdots T_1$ for all $n \in \mathbb{N}$. Then $z \in \left(\bigcap_{n=1}^{\infty} \overline{co}\{S_m x : m \geq n\}\right) \cap \left(\bigcap_{n=1}^{\infty} F(T_n)\right)$. So, by Lemma 1, $\{x_n\}$ has at most one weak subsequential limit. This completes the proof. \square

As direct consequences of Theorem, we obtain the following corollaries.

Corollary 1 (Tan and Xu [8]). Let C be a nonempty closed convex subset of a uniformly convex Banach space E which satisfies Opial's condition or whose norm is Fréchet differentiable. Let T be a nonexpansive mapping from C into itself with a fixed point. Suppose that $\{x_n\}$ is given by $x_1 \in C$ and $x_{n+1} = \alpha_n T \left[\beta_n T x_n + (1-\beta_n)x_n\right] + (1-\alpha_n)x_n$ for all $n \in \mathbb{N}$, where $\alpha_n, \beta_n \in [0,1]$ such that $\sum_{n=1}^{\infty} \alpha_n (1-\alpha_n) = \infty$, $\sum_{n=1}^{\infty} \beta_n (1-\alpha_n) < \infty$ and $\limsup_{n\to\infty} \beta_n < 1$, Then $\{x_n\}$ converges weakly to a fixed point of T.

Corollary 2 (Takahashi and Kim [7]). Let C be a nonempty closed convex subset of a uniformly convex Banach space E which satisfies Opial's condition or whose norm is Fréchet differentiable. Let T be a nonexpansive mapping from C into itself with a fixed point. Suppose that $\{x_n\}$ is given by $x_1 \in C$ and $x_{n+1} = \alpha_n T[\beta_n T x_n + (1 - \beta_n) x_n] + (1 - \alpha_n) x_n$ for all $n \in \mathbb{N}$, where $\alpha_n, \beta_n \in [0, 1]$ such that $\alpha_n \in [a, b]$ and $\beta_n \in [0, b]$ or $\alpha_n \in [a, 1]$ and $\beta_n \in [a, b]$ for some a, b with $0 < a \le b < 1$. Then $\{x_n\}$ converges weakly to a fixed point of T.

Proof. It is obvious that $\limsup_{n\to\infty} \beta_n \leq b < 1$. In the case of $\alpha_n \in [a,b]$ and $\beta_n \in [0,b]$, we obtain $\sum_{n=1}^{\infty} \alpha_n (1-\alpha_n) \geq \sum_{n=1}^{\infty} a(1-b) = \infty$. In the case of $\alpha_n \in [a,1]$ and $\beta_n \in [a,b]$ we obtain $\sum_{n=1}^{\infty} \alpha_n \beta_n \geq \sum_{n=1}^{\infty} a^2 = \infty$. This completes the proof. \square

REFERENCES

- 1. F. E. Browder: "Nonlinear operators and nonlinear equations of evolutions in Banach spaces", Proc. Sympos. Pure Math., 18-2, Amer. Math. Soc. Providence, R.I., 1976.
- 2. J. Diestel: "Geometry of Banach spaces-selected topics", Lecture Notes in Math., Vol. 485, Springer-Verlag, Berlin, Heidelberg, and New York, 1975.
- 3. S. Ishikawa: "Fixed points by a new iteration method", Proc. Amer. Math. Soc., 44 (1974) 147-150.
- 4. W. R. Mann: "Mean value methods in iteration", Proc. Amer. Math. Soc., 4 (1953) 506-510.
- 5. Z. Opial: "Weak convergence of the sequence of successive approximations for nonexpansive mappings", Bull. Amer. Math. Soc., 73 (1967) 591-597.
- 6. S. Reich: "Weak convergence theorems for nonexpansive mappings", J. Math. Anal. Appl., 67 (1979) 274-276.
- 7. W. Takahashi and G. E. Kim: "Approximating fixed points of nonexpansive mappings in Banach spaces", to appear in Math. Japonica.
- 8. K. K. Tan and H. K. Xu: "Approximating fixed points of nonexpansive mappings by the Ishikawa iteration process", J. Math. Anal. Appl. 178 (1993) 301-308.
- (T. Suzuki) GRADUATE SCHOOL OF SYSTEMS MANAGEMENT, THE UNIVERSITY OF TSUKUBA, 3-29-1 OTSUKA BUNKYO-KU, TOKYO 112, JAPAN E-mail address, T. Suzuki: tomonari@gssm.otsuka.tsukuba.ac.jp
- (W. Takahashi) DEPARTMENT OF MATHEMATICAL AND COMPUTING SCIENCES, TOKYO INSTITUTE OF TECHNOLOGY, OHOKAYAMA, MEGURO-KU, TOKYO 152, JAPAN E-mail address, W. Takahashi: wataru@is.titech.ac.ip