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ON WEAK CONVERGENCE TO FIXED POINTS OF
NONEXPANSIVE MAPPINGS IN BANACH SPACES

RIRKE KRERRZEE VAT LHEF A & (Tomonari Suzuki)
WREIEKRE - REREHEITFEMIER =18 ¥F (Wataru Takahashi)

ABSTRACT. In this paper, we prove the following weak convergence theorem: Let
C be a nonempty closed convex subset of a uniformly convex Banach space £
which satisfies Opial’s condition or whose norm is Fréchet differentiable. Let T be
a nonexpansive mapping from C into itself with a fixed point. Suppose that {z,} is
given by r; € C and zn41 = anT BTz, + (1 — Bn)zs] + (1 — ay)z, for all n > 1,
where {an} and {8,} are sequences in [0, 1] such that Yo" | @4(1 — @) = co and
limsupfBn < 1, or } oo, anffn = oo and limsup B, < 1. Then {z,} converges

— . n— .
wneaﬁy to a fixed point of T. This is a generaliz:tion of the results of Tan and Xu,
and Takahashi and Kim.

1. INTRODUCTION

Let E be a real Banach space and let C be a nonempty closed convex subset of E.
Then a mapping T from C into itself is called nonexpansive if || Tz — Ty|} < ||z — |
for all z,y € C. For a mapping T from C into itself, we denote by F(T) the set of
fixed points of T. Now, we consider the following iteration scheme: z; € C' and

(1) Try1 = @n T (BrT 2, + (1 = Bo)za] + (1 — ap)z, foralln >1,

where {a,} and {3,} are sequences in {0, 1]. Such an iteration scheme was introduced
by Ishikawa [3]; see also Mann [4]. Recently Tan and Xu [8] proved the following
interesting result (Corollary 1): Let C be a nonempty closed convex subset of a
uniformly convex Banach space E which satisfies Opial’s condition or whose norm is-
Fréchet differentiable and let T' be a nonexpansive mapping from € into itself with a
fixed point. Then for any initial data z; in C, the iterates {z,} defined by (1), where
{an} and {B.} are chosen so that 302, an{l — an) = 00, 12, Ba(l — @) < o0 and.
limsup B, < 1, converge weakly to a fixed point of T. On the other hand, Takahashi

n—oo

and Kim [7] proved the following (Corollary 2): Let C, E and T be as above and
suppose a, € [a,b] and B, € [0,8], or a, € [a,1] and B, € [a,d] for some a, b with
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0 < @ < b < 1. Then for any initial data z; in C, the iterates {z,} defined by (1)
converge weakly to a fixed point of T. Note that Tan and Xu’s result is applicable
to the case of a, =1 —1/n and 3, = 1/n for all n > 1, while Taka.hash1 and Kim’s
result is applicable to the case of a, = 8, = 1/2 foralln > 1.

In this paper, motivated by these two results, we prove the following weak conver-
gence theorem: Let C, E and T be as above and suppose 22, a,(1 — a,) = oo and
hm 1 SUp Bn <1, 0r Zn=1 anfn = 0o and hm Sup Bn < 1. Then for any initial data z;

in C' the iterates {z,} defined by (1) converge weakly to a fixed point of 7. Compare
this w1th Tan and Xu'’s result [8] and Takahashi and Kim’s result [7].

2. PRELIMINARIES

Let E be a Banach space. For each ewith0<e < 2, we define the modulus é(¢)
of convexity of E by

. + . |
st =inf {1~ o <1l < 1, - 2 ).
Note that 4 is nondecreasing and

lz —yll
Az + (1 — Ny|| < max{||z]|, |ly [I—ZA 1-2A '6(
I+ (1= Nl < maxtlel Iyl |1 23— ) & ( Lot
for every z,y € E\ {0} and X € [0,1]; see [2]. E is called uniformly convex if §(c) > 0
for all € > 0. The norm of E is called Fréchet differentiable if for each z € E with
len =1, lim ”:L‘-i— ty”
. t—'

see [2]. E is said to satisfy Opial’s condition [5 [5] if for any sequence {z,} in E such
that {z,} converges weakly to z € E, lim inf 2, —2|| < liminf ||z, —y| forally € E
with y # z. All Hilbert spaces and £°( 1 < p < oo) satisfy Opla,l s condition, while L?

with 1 < p < co and p # 2 do not. The following lemma was proved by Relch [6];
see also [7]. ) .

- exists and is attained umformly iny € E with ||y|| = 1;

Lemma 1. Let C be a nonempty closed convez subset of a uniformly convex Banach
space E whose norm is Fréchet differentiable and let {Tl,T2,T3, -} be a sequence
of nonezpansive mappings from C into itself such that Moey F(T},) is nonempty. Let

z€Cand S, = T,T,_1---Ty for alln > 1. Then the set (ﬂ 2, 0{Smz : M >
n}) ( oo F(T )) consists of at most one point, where co{szv :m > n} is the
closure of the convex hull of {S,.z : m > n}. .

3. WEAK CONVERGENCE THEOREM

In this section, we prove the following theorem Wthh generahzes the results of Tan
and Xu [8] and Ta.kahashl and Kim [7]. :
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Theorem. Let C be a nonempty closed convez subset of a uniformly convez Banach

space E which satisfies Opial’s condition or whose norm is Fréchet differentiable. Let

T be a nonerpansive mapping from C into itself with a fized point. Suppose that {z,}

is given by 1 € C and Tp41 = 0T [BTzn + (1 — Br)z,] + (1 — o)z, for alln > 1,

where {an} and {B.} are sequences in [0,1] such that 12, an(l — a,) = o and

limsup 8, < 1, or 152, anfn = 00 and limsup B, < 1. Then {z,} converges weakly
n—00

n—+co

to a fized point of T.

Before proﬁng it, we need some definitions and lemmas. We denote by N the
set of positive integers. Let I be an infinite subset of N. If {\,} is a sequence of
nonnegative numbers, then we denote by {Xi : ¢ € I} the subsequence of {A,}.

Lemma 2. Let {)\.} and {u,} be sequences of nonnegative numbers such that 32,
An =00 and 3572 Anptn < 00. Then for € > 0, there exists an infinite subset I of N

such that 3{); : j € N\ I} < ¢ and the subsequence {u;: i € I} of {un} converges
o 0.

Proof. For each ¢ > 0, first take pp € N w1th Yomepot1 Antin < €/2. From Y32 =
oo and 322, A pun < 00, we have hmmf fin = 0. So, there exists p; € N such tha,t

P1 > Do, Pp, < 1 and

Z{)\m i>m}< 5o 22 o
Similarly we can take ps,ps,--- € N such that pp > pe_y, g, < 1/k and

Do {pii>m) <
for all £ =2,3,---. Define

> 1
I={1,2,--- 7P0}U(U {n:pk_l < n < pg, fn <E})
k=1

Then, {pi:1 € I}.is a subsequence of {u,} such that p; — 0. We also have

. o 1
S €N\ =3 Y i <n S ppn 2 1)
k=1

k

£

(k+1)- 2641

Putting Sy = {n : pr—y < n < px, gtn > 1/k}, we have

1 .
EZ{ATL in € Sk} <D im0 € Sk} < Y {Aipi 15 > pe-r}
<

k- 2k
and hence

Z{/\j:jEN\I}Si-e—k= .
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This completes the proof. [

Lemma 3. Let {/\ } and {u.} be sequences of ﬁonnegatwe numbers such that A,y <
An + tn for all n € N. Suppose there ezists a subsequence {u; : ¢ € I} of {un} such
that p; = 0, \; > a and L {p;: j e N\ I} <oco. Then )\, = a.

Proof. F1xe>Oandtakenoelsuchthat 1A —a|<eandpt<efora]lz>noand
Y{u;:j>ne,j eN\I} <e. FornEN\IWlthn>n0,puttmgk max{i € I :
z<n}a.nd€ mm{zEI i > n}, we have

n-1
’\n_<_/\n—l+/‘n—l S"'S/\k"’Zﬂj S)\k+ﬂk+esa+35

i=k

and
— ;
A 2 A1 — P = 2 A — Zp,>z\g—e>a—-2€>a 3e.

y=n

So, we obtain the desired result. [

Lemma 4. Let C be a closed convex subset of a uniformly conver Banach space E
and let T be a nonezpansive mapping from C into itself with a fized point. Suppose
that {z.} is given by z, € C and 2,43 = a,T [B. Tz, + (1 = Bo)zn] + (1 — ap)zy for
alln € N, where an, B, € [0,1]. Then the following hold:

() If 20, an(l — an) = 0o and limsup Bn < 1, then lim Tz, — z.|| =0;

(if) if 302, anfB, = 0o and limsup ﬂn <1, then hm [|T:1:n —z,|| =0.

n—oo

Proof. We may assume that there exists b € (0,1) such that 8, < bforall n € N.

Fix w € F(T) and put y, = B, T2y + (1 — Bn)z, for all » € N. Then by the definition
of {z.}, we have

[€ntr — wll = lenTyn + (1 — an)z, — w]|
< an'“Tyn —w|| +(1- an)|lz, — w|
< @nllgn — wlf + (1 — an)l|zn — wi] |
= an|BnTTn + (1 = Ba)zn — wl| + (1 — a)||zn — v
< en(Bal| Tz — wl[ + (1 = Bu)lizn — w|) + (1 — @n)||zn — w]
< |lzn — w|

and hence the limit of {||z, —wl|} exists. Putc = Jim ||z, —w||. i ¢ =0, then (i) and
(ii) hold. So, we assume that ¢ > 0. We first prove ( )- From ||Ty, — w|| < ||z, — wl|
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for all. n € N, we obtain

2t — wll = llan(Tyn — ) + (1 — a)(z2 — )]
SH%rwdql—m%U—@J.éegzilﬂﬂﬂ.

I — w
Since
hon = wll = llenea —wil
SR
Z 2c-an(l—ap)-6 (H)

for all n € N, we have

3 an(l — an) - 5»(M),< .

n=1 “‘Iﬂ - w”

By Lemma 2, there exists an infinite subset I; of N such that
(2) a1 -e):jeN\L} <o

and {6 (Hﬁh_‘ﬂﬂ) ‘1€ 11} converges to 0. Since ¢ = lim ||z, — w|| > 0, we obtain

Jlzi =] n-—+00

{ITy: — z;|| : < € I} converges to 0. From

1Tz — zifl < [[T2i — Tyl + | Ty: — |
< o —wll + 1Ty — 4|
= Bil|lTz; — zif| + | Ty: — 4]
STz — zif| + | Ty — zill,

we obtain

1 |
limsup ||T'z; — z;|| < limsup | Ty; — z:|| = 0.

t—00 t-—+00 (1 - b)

Hence we have

(3) lim (| T'z; — o] = 0.
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Since

ITZn41 = Tagall |
S| Tznt1 — T(anTzn + (1 = en)za)|| + | T(@nTzn + (1 = @n)zn) — Tzl
+|Tza = (@nTzn + (1 — an)aa)l| + llonTzn + (1 — @n)Tn — Tnsa|
L 2flanTzn + (1 = 0n)Zn = o[l + |@n T + (1 — @n )20 — 24|
-+ (1= an)||Tzn — za|
= 20, ||T2 — Tyn|| + || T 20 — za||
< 2anf[zn = ynl| + [[T2n — 2|
= (1 4 2006, ||Tzn — | |

and

ITznt1 = Znsall : s

< ”Tzn+1 - T(anTyn + (1 - an)?/ﬂ)“.'*‘ ”T(anTyn + (1 - an)yn) - Tyn”
+ [ Tyn — (@nTyn + (1 — an)yn)l| + llenTyn + (1 — an)yn — Tnsa|

< 2lenTyn + (1 = n)yn = Znsall + e Tyn + (1 — @n)yn — yall
+ (1 = an)||Tyn ~ yull

= 2(1 — aw)llom ol + [ 70 el

L2(1 = ap)llzn = ynll + |Tyn = Tzall + I T2s — yall

<201 = ap)l|zn = gall + lgn — zall + ”Tzn ~ ¥all

= (1 +2(1 — a)Bu)||Tzr — 20| |

for all » € N, we obtain

(4) IT2nt1 = Zapall < (1 + den(l = @2)Bo) || TTn — Znl-

Since {||Tz,—zx||} is bounded, from Lemma 3, (2), (3) and (4), we obtain Jim | Tz,—
z,|| = 0. We next prove (ii). From ||Tz, — w|| < ||z, — w|| for all n € N, we obtain

[nss = 0]l < aallgn = ]l + (1 = @n)[2n — w]
= Qal|Ba(T 20 — ) + (1 = ) (20 — )] + (1 = at)l|n — ]
allee — wlt 11 — oy s (1 Tzn — 24
< anlen =l 120 - - (2250 )|
+ (1 - an)“mn - w“
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From

llzn — wl| = [[2ns1 — wl|

> 2|z — || - anfBa(l — Ba) - § (M)

lzn — w“

|Tzn — wnll)
>2c-0,Pn(1 -0 -5(———-——
S A e
for all n € N, we have _
> B, -6 (——-——-—-——”T""" ~ “’"") < co.
n=1 “Zn

By Lemma 2, there exists an infinite subset 7, of N such that

(5) Y {a8;:5 € N\ L} < oo

and {é UT”—__&H :1 € I} converges to 0. Since ¢ = lim ||z, — w|| > 0, we obtain
[lei—wl| n—oco ' ;

(6) Iim |Tz; — z;]| = 0.

Since {||Tz,—z,||} is bounded, from Lemma 3, (4), (5) and (6), we obtain Pite: [[Ta:n
za||=0. O

Proof of Theorem. Note that by Lemma 4 and Browder [1], a weak subsequential limit
of the sequence {z,} is a fixed point of T Since E is reflexive and {z,} is bounded,
to complete the proof, we prove that {z,} has at most one weak subsequential limit.
In the case that E satisfies Opial’s condition, we assume that 2; and 2, are two
distinct weak sequential limit of the subsequence {z; : 1 € I} and {z; : j € J} of
{mn} respectively. We obtain

lim ||z, — 2 = lim |z: — zl|| < hm z: = z2|l = lim [jz, — 2z
= bl =l < Jim lle; — 2l = Jim [l — 2.

This is a contradiction. In the case that the norm of E is Fréchet differentiable, for
each n € N, we define a nonexpansive mapping 7,, from C' into itself by

To(z) = T[Tz + (1 = Bn)z] + (1 — ap)z.

Then {z,} can be written as z,,; = T, T,,_1 - - - Ty, and F(T) C F(T,)foralln € N.
Let z be a subsequential limit of {z,} and put S, = T, T,_; --- T} for all » € N. Then
z € ( 0 1¢0{Snz : m > n}) ( . F(T, )) So, by Lemma 1, {zn} has at most
one Weak subsequential hmlt This completes the proof. [

As direct consequences of Theorem, we obtain the following corollaries.
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Corollary 1 (Tan and Xu [8]). Let C be a nonempty closed conver subset of a
uniformly convex Banach space E which satisfies Opial’s condition or whose norm is
Fréchet differentiable. Let T be a nonezpansive mapping from C into itself with a fired
point. Suppose that {x,} is given by z; € C and T4y = 0, T [BuTzn + (1 — Bp)zn] +
(1 — ap)zn for all n € N, where a,,B, € [0,1] such that T2, an(l — a,) = o
Yome1 Bn(l — an) < 00 and limsup B, < 1, Then {z,} converges weakly to a fized

point of T.

Corollary 2 (Takahashi and Kim [7]). Let C be a nonempty closed convez subset
of a uniformly convez Banach space E which satisfies Opial’s condition or whose norm
is Fréchet differentiable. Let T' be a nonexpansive mapping from C into itself with a
fized point. Suppose that {z,} is given by z; € C and .41 = o, T[B Tz, + (1 — o)
To|+(1—an)z, for alln € N, where a,, B, € [0,1] such that e, € [a,b] and B, € [0,B]
or an € [a,1] and B, € [a,b] for some a, b with0 < a < b < 1. Then {z,} converges
weakly to a fized point of T.

Proof. 1t is obvious that limsup 8, < b < 1. In the case of a, € [a,b] and 8, € [0, 8],

n—+oo

we obtain Y07, an(1 — an) > 32, a(1 — b) = co. In the case of o, € [a,1] and
B € [a,b] we obtain 302, a,f, > T2, a? = co. This completes the proof. [
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