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Lower Estimates of Dimensions for Quasi Periodic Orbits
| MRk% - TH P E—B (Koichiro Naito)

1. Introduction

Let X be a Banach space with its norm denoted by || - || and consider a X-valued
quasi-peripdic function: “

F(t) = g(wit, wat,- - ',wnt,t) |

where g has period T in each of its arguments separately and the frequencies are
not rationally related. In our previous papers [5], [7],[6] assuming that ¢ is Holder
continuous with exponent é; € (0, 1] and, using Diophantine (simultaneous) approx-
imation, we have shown that the fractal dimension of its orbit is majorized by the
value (n + 1)/6;.

The Hausdorff and fractal dimensions of orbits or attractors in nonlinear dynam-
ical systems have been investigated by several authors to specify chaotic or strange
properties or to estimate complexity of systems (cf. [3],[4], [8], [10]). While there have
been various arguments on chaotic behavior, we can note that quasi-periodic states
occupy some important positions as gateways in routes to chaos. In the present pa-
per, using the simultaneous Diophantine approximation for the frequency parameters
wy, Wy, ... with “badly approximable” property, we can estimate the lower bounds of
the fractal dimensions of quasi-periodic orbits. Having shown that the lower bound
of its fractal dimension is given by the value n/§, where é; is an exponent in an
inverse Holder’s inequality, we can propose that the two parameters §, n are essential
for chaotic behavior or complexity of system. -

As remarkable examples of the quasi-periodic functions, which satisfy our condi-
tions, we investigate a Weierstrass-type (abr. W-type) function given by

h(t) — Z(/\k)—sei27rAkt(pk
k=1

for some constants A > 1, 0 < § < 1 and an orthonormal system {yx} in a Hilbert
space. The real or complex valued Weierstrass functions were studied and its fractal
dimensions of its graph were calculated in the 2-dimensional space (cf. [3]). Here,
in the setting of an infinite dimensional space, we obtain ranges for the dimension
of the orbit ¥ of h(t) according to the algebraic properties of the parameter A as
follows:
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(i) If X = (p)!/" for a prime number p and n > 2, Dp(X) =n/s.

(i1) If X = (g/p)¥/™ for positive integers p,q: q > p and n >-1,

n logp
<Dr(¥) < = —_ ).
n < Dr( )_'6(1+logq—logp)

(iii) If A is a transcendental real number, Dr(X) = oo.

~*Since orthonormal systems are given by eigenfunctions of a differential operator
in various P.D.E. examples, we investigate an abstract differential equation on a
Hilbert space with its perturbation term given by a W-type function. Under a
condition for harmonization between the frequency parameters and the eigenvalues
of the differential operator, we estimate the dimension of its quasi-periodic attractor.
Furthermore, in view of the case (iii) above, we can conclude that an arbitrarily small
change of the parameter A in the W-type function converts any finite dimensional
quasi-periodic attractor to the one which is chaotic (Dr(Z) = 00).

The plan of this paper is as follows: We show in section 2 that the dimension of
the orbit for the quasi-periodic function ¢ is greater than n/é; when the irrational
numbers wy, w, ... satisfy badly approximable conditions. In section 3 we apply this
estimate to the W-type functions which take the values in a separable Hilbert space.
In section 4 we investigate an abstract differential equation with its perturbation
term given by a W-type function and give a condition for harmonization.

2. Fractal dimensions of quasi-periodic orbits

The purpose of this section is to estimate the upper and the lower bound of the
fractal dimension for the orbit of a quasi-periodic function.

Let N.(A), € > 0, denote the minimum number of balls of X radius € which is
necessary to cover a subset A of X. The fractal dimension of A, which is also called
the box dimension of A (cf. [3] or [10] ), is the number

Dp(A) = lim log No(4)

. 2.1
=0 logl/e (21)

To estimate the lower bound of the dimension we need the following alternative
expression given by '

Dip(A) = lim log Le(A)

=0 logl/e (22)

where L.(A) is the maximum number of mutually disjoint balls of X with radius ¢
and centers in A. If X is finite dimensional, it is known that Dp(A) = Dp(A) (see
chapter 3 of [3]). In the infinite dimensional case we can show the following lemma.
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Lemma 1. Let A be a subset of X and assume that there exist constants K,9 > 0:
Lo(A) > Ke™® [resp. L.(A)< Ke™®]. (2.3)

Then we have
Dr(A) 29 [resp. D(4) <9).

Proof. In view of the definitions (2.1) and (2.2), consider mutually disjoint balls
with radius 6: Bs(z:),2 = 1,...,Ls(A) : z; € A and open balls with radius §/2:
Uj,j = 1,..., Nsj3(A), which cover A. Then we can choose an open ball Uj, for each
center z; € Bs(x;), which satisfies

T; € Uj'-VC Bg(:L‘,'), UJ". n Uj'., =@ if 1 75 7.

Tt follows that
Ls(A) < Nsja(A).

Thus we can estimate

Dr(4) = lim lﬁg—lj\g—fg(eﬁ
Z lim lOg Lge(A) .
e—0 —loge

-9
> lim log K(2¢)
e—0 — log €

= 4.

Next, consider again the disjoint balls Bs(z;),7 = 1, ..., Ls(A) : 7; € A. Then, since

Ly
d(.’l), U B,s(.’l?,)) <$é

=1
for every z € A, we have

Ls
A C U Bgs(il),').

=1
It follows that
Nys(A) < Ls(A).

'Thus, applying the similar estimate as above, we can obtain the converse inequality.
a

Remark 1. It is obvious that Lemma 1 also holds by substituting L.(A), Dr(A) by
' N.(A), Di(A), respectively. Furthermore, if there exist constants K;, K, > 0 such
‘that : '

?

Kie7? < L.(A) 'g Ko™
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then, following the argument of the proof, we can easily show that

Dr(A) = Di(A).

Consider a function g(,---,-) : R™! — X, which satisfies the following condi-
tions.

(G1) The function g has period T in each of its arguments separately;

g(tl + Tat27' o 7tn+1) = g(tl>t2 + T7t37' : )
= =g(t,tay oyt ‘*fT) =g(t1, * tnt1)-

(G2) gis Holder continuous; there exist constants¢; > 0,0< §; <1,:=1,---,n+1
and a small constant €¢ > 0 such that :

. n+1
”g(t17t27 T atn+1) - g(tll)tlzy e 1t:;,+1)” S (4] Z ‘ti - ti'l& ' (24)
- =1 .

for |t; —tl] <&, t=1,---,n+1.

Consider an n-tuple of irrational numbers wy, ws,-:-,w,, which are rationally
independent. Then the simultaneous approximation for these irrational numbers
gives the sequences l;,ry; € N,i =1,2,---,; and k = 1,- -, n, which satisfy

1 .
|lwy, — 1ei] < I k= 1,---,n. (2.5)
i | |
(See [9].) We need the assumptions on the growth rate of the denominators /;.
(D1) There exist positive constants K3, K, : K2 > K; > 1 such that

I{llj—-l < lJ < Kglj_l fOI‘j = 1,2, et : (26)

Here we introduce the definition of the almost periodicity and our previous result.

A function f : R — X is called almost periodic if for each ¢ > 0 there exists

I. > 0 such that for every a € R there exists an element o € [a,a + [.] with the
property ‘ S

lfE+a)—f@)||<e forall teR. : (2.7)

Here the point « is called an e-almost period and [, is called an inclusion length for
e-almost period. '

Lemma 2. ([5]) Let f : R — X be an almost periodic function, which satisfies a
Holder condition: there exists a constant 6 : 0 < 6 <1 such that

sup M;=co<oo._ 28

tseR s |t —8[°
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If the inclusion length for e-almost period of the function f(t) satisfies the following
estimate A

1< Ke? (2.9)

for some K > 0 and ¥ > 0, then the fractal dimension of its orbit ¥ := Uer f(¢)
satisfies

Dp(z)-gw%. e (2.10)

Define a quasi-periodic function f : R — X by

F(t) = g(wnt, - ,wnt,t)

and denote ¥ = Ucp f(t). Let 3 = min{é;,---,6n41}, 72 be the secondary mini-
mum, and put 43 = max{61,---,6n4+1}. Then, we can estimate the upper bound of
the dimension by slightly modifying the results in [6]. :

Lemma 3. Assume (G1), (G2) and (D1), then we have

- 1 n
Dr(¥) < — 4 —. ' 2.11
F( ) N1 Ve ( )

In the present paper we consider the estimate of the dimension from below. As-
sume that the function ¢ satisfies the following condition.
(G3) There exist constants c; >0 and y; : 0 < p; <1, 4=1,---,n+1, such that

A n+1
lg(ti,t2, s tag1) — g(t1, 5, -t )l 2> €2 E |t; — t]* (2.12)

i=1

for |t,-—t§|‘<%, t=1,---,n+1. ‘
 Here we assume that the n-tuple of irrational numbers {w;,ws, -+, wy, } are badly
approximable (cf. [9]):

(D2) There exists a constant k(n) > 0, which depends on only the n-tuple and
satisfies the following inequality

max |lwy — 7| > k(n)(=)s | (2.13)

1<k<n

o~ —

for every positive integers [, r.

In case n = 1, that is, when an irrational real number « is badly approximable,
the partial quotients in the continued fraction expansion are bounded (see [9]). In
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the simultaneous approximation case, we can show that the condition (D2) yields
(D1). (See [6] or [7] for the proof.)

Lemma 4. The condition (D2) yields the condition (Dl)

Remark 2. If {w;,ws,-+,w,} are any numbers in a real algebraic number field of
degree n+1 such that {1, w;,w,,- -+ ,w,} are linearly independent over the rationals,
then {wy,w,,:--,w,} are badly approximable (see Theorem III, p.79 in [1]).

Let »; = max{p1, ", fns1}, and v, = max{{p1, ", finy1} — {ni}} and v3 =
min{p1,* -+, fnt1}. Then we can show the lower estimate.

Lemma 5. Assume (G1), (G3) and (D2). Then the fractal dimension of the
orbit ¥ of f(t) satisfies

(Z) > max{ + o + — } (214)

Now we obtain the upper and lower estimate of the dimension by Lemma 3, 4
and 5.

Theorem 1. Assume (G1)-(G3) and (D2). Then
1 1 1 n

max{ + —,— + } <Dp(¥) < —+—. (2.15)
n N2 v
Consequently, if § := 6, =+ =6, = py = +++ = pi,,
n+1
Dr(%) = I

We give the proof of Lemma 5 by using the definition (‘2.2).

Proof of Lemma 5. Let € > 0 be a small constant and put

| . 261m
UM = ma,x{ul,’. - ’/‘t’ﬂ}7 € — (_c_z_)l/l-l +1.
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Then, take large natural numbers L., S, € N given by
L. = [e(n)(2¢) ],  e(n) = (k(n)es) i T"
T ‘
where [-] indicates the integer part of a real number. In the subset {f(¢) : ¢ € [0, TL.]}

of X, take the points, which are considered as the centers of the mutually disjoint
balls with radius ¢, as follows.

o ={f(Tm+¢&):0<m<L,0<1<L 8, mle NU{0}}.

Put 7 =Tm+¢&lL, 7" =Tm' + LU, L,I,m,m e NU{0}:0<m'<m <L, 0<U'<
[ < S.. First we cinsider the case where ! = I’ and m > m'. Note that 0 < £ < T'/2.
Then, using (G1) and (G3), we can find the natural numbers p;, k = 1, ..., n, which
satisfy '

1F(r) = F()I = Ng(wir,war,- <+ war,7) — g(wr 7', wor’, - -+ ,w, ', )|
n ‘
> Z c2THM |wgm — wpm' — pi|#™
k=1 :
where

! 1 .
Iwk(m—m)——pk|<§, k=1,..,n,
hold. It follows from (D2) that

15 = £ 2 3 caT g (m — m') — pyl™
k=1
1

2 k(n)(T)(——
> k(n)c(T)L7#M/™ > 2¢

)uM/n

where, for the minimum number ppin of {p1,- -, s},

| e i T>1
o) = { T if 0<T <1.

Next, if | # ', we have
If(r) = F()N 2 ealé( = T) |+
> cdhrt > 2e,

Thus the e-balls, which have the centers in ¥y, are mutually disjoint. Since the lower
bound of L.(X): the maximam numbers of the disjoint balls is given by

L(Z) > L.xS.

—n___1
> KE KM "‘ﬂ+1,
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it follows from the definition (2.2) and Lemma 1 that

logl. n 1

Dr(¥) > lim = )
r(2) 2 ¢lo —loge  pmM  pasr

Using the change of variation s = t/wy for each £ = 1,---,n, and applying the
argument above to the function ‘

w; 1
f(S) = g(wis, Tt 7w;c—13v Saw;c+13’ te aw:zs’w;cs)a wzl' = —1'7 w;c =T
Wy Wk
we obtain
n 1
Dr(X) > —® + —
kv PR
for each k =1,---,n+ 1 where ,ug;) = max{ft1, -, Mk, k41> " "> Mng1}. Since
. 1 1 1 |
max{—g + —} = max{-~ + —, — + -},
kotuy o Mk vi vz 1 Vs
we obtain the conclusion. O

3. Weierstrass type functions

In this section we investigate Weierstrass type (abr. W-type) functions and esti-
mate the dimensions of the orbits. Let H be a separable Hilbert space with its norm

also denoted by || - || and {¢:} be a complete orthonormal system in H. First we
consider a H-valued W-type function A : R — H defined by

h(t) = g:()\k)—éei%)\"t('ok (3.1)

for some constants A > 1, 0<6< 1.

Lemma 6. The function h(t) satisfies |
I1A(t) = RN < dult —t')°, (3.2)
Ih(t) — h(E)| 2 dalt —'|° 3 (3.3)
fort,t' € R: |t —t'| < (2A)~! and dy = dy(,8),dz = d5(), 6).

Proof. Since |t —#'| < (2X)7!, there exists an integer N such that

A-(N+) -N

<t—t]< /\T | (3.4)
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Using the above inequality and
2rMV|t =t | <7, |e? =1 < ||, for |9| <,

we obtain
IA()) = REOIE = () lemes) _ g2
k=1
N oo
< 2()\2")'6(2#)\’“)2# . t,l‘z + Z 4()\%)—5
k=1 k=N+1
Ar2 \2N(1-6) A\-2(N+1)5

2
S Toomey -t BT
It follows from (3.4) that

: w2926 : 4 . 226 ,
1) = BOIP < [y + 1l — £
< dp—ep -

Next, assume that t,¢' € R satisfy(3.4), then, applying an elementary inequality
: .U 2
le? — 1| > 2|sin 5[ > -9, —-m<d<m,
vy

we obtain
| | ‘ N ; bk !
”h(t) . h(tl)”2 > Z(A%)-—&le&m\ (-t _ 1|2
) - k=1
/\—2N6] e 2N (1—t') _ 1|2

AV

v

2
/\—2N6(-7;27r/\N(t _ tl))2
2 4. 226/\2(5—1)“ _ tl|25. 0

Remark 3. Since we can take dy = 229151 it is obvious that d; > d,.

Let {4;} be a periodic sequence of real numbers such that
0<6j$1’, 6j+n= 7 J=12,---,

and use the similar notations of its minimum and maximum numbers as those in the
previous section;

Nn= m-in{‘sla te 7571}7 Y2 = Inin{{‘sly T ’5n} - {71}}3
n = max{6i,---,6,}, va = max{{6y,--+,6,} — {1 }}.
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Now we consider the following Weierstrass type function:

u(t) = SO (AF) e 2N iy,
k=1 ‘

Theorem 2. Let p be a positive and square free integer, that is, p cannot be devided
by the square of a prime and put A\ = pn n > 2. Then the fractal dimension of the
orbit ¥ = Uer h(t), given by the W-type functwn k(t) of (3.1), satisfies

n—1 l n-1 1 n—1
max - + <Dpr(¥) < —+ 3.5
(ot 4 S DR < -+ 2 (3.5)
Obviously, if 6 :== 6y =--- = §,,,
n
D = —.

Proof. The function h: R — X is given by
= > (p*) " expli2nprtlpy.
k=1
Using functions g; : R — H,j =1,...,n, defined by
gJ(t Z p 121rp'“+ t¢nm+j,A ] = 1,,n
m=0

and considering a residue class (mod n), we can describe the function h(pt) as follows.

oo ko ) k n _j&' .
u(pt) = Y _(p=) % expli2rp=ttlpr = Y p~ = gi(pnt).
k=1 j:l

Since g;(t + %) = ¢;(t) and it follows from lemma 6 that each g;(t) satisfies Holder’s

conditions corresponding to (3.2) and (3.3), we can apply the argument in section 2
by the following correspondence.

T = p—l, wl = pl/n, w2 = p2/n‘) b wﬂ—l = p(""l)/", f(t) = h(pt)'

It followé from Theorem 1 that

} < Dr(l ulpt)) = Dr(lJ u(®))

b
Vl 71 1_/1 V2 tGR tER
1 n-1

" Y2

INA

b)
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since wy, Wy, ..., Wy—1 are badly approximable (cf. [1]). O

For some other cases of the parameter A we can show the following theorem by
applying Lemma 2.

Theorem 3. Let A > 1. Then we have the following estimation for the. fractal
dimension of the orbit & given by the W-type function u(t).

(1) If A = (¢/p)'/", n € N, q,p: q > p are positive integers, then

P4 —08P (3.6)

n < Dp(¥) <
= P )‘71 log g —logp

Consequently, if A € N; we have
1

1<Dp(X) L —.
T

(i1) If X is a transcendental real number, then

Dr(Z)=oco. | (3.7)

Proof. [(i)] First we prove the case n = 1. Let P, denote an orthogonal projection
from H to the N-dimensional subspace spanned by {1, ...,y }. Then, since P, is
nonexpansive,

. ”PNU—PNUII < ”u'—v”7 u,v € H,

and the projections of every covering of ¥ also cover the subset P, %, it follows from
the definition of the fractal dimension that -

Dp(PyX) < Dr(Z). (3.8)
Since
AN, o, (I\k1
Pyu(t) = 3 (=)™ expli2m (=) tlpr
' k=1 p . p
and each function in the summation is smooth (consequently, § = 1) and has a period
of a rational value, P,u(t) has a periodic orbit in the N-dimensional subspace. It

follows that o
1 = Dp(P,X) < Dr(X).
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To show the second inequality in (3.6) we calculate the inclusion length of the

almost periodic function u(t). For a given small constant ¢ > 0, there exists a large
number N:

l[u(t) — P,u(t)]] < % Vt € R.

Note that P,u(t) has period 7 := p"/q, then we can estimate the inclusion length
I, ~ p™ /q by using the following inequality

lutt+7) —u@ll = llu(t +7) = Pyu(t +7) + Pyu(t) — u(®)]

IA

Since we can take the large number N, which satisfies

_ * g,
lu(t) — Pyu@)|® = Z (£)-2a < Z G
k=N+1 p k=N+1 p
o (g/p)?0m g
1-(¢/p)~ 4’

we have
2(g/p)~VH1)m
>

£ ci\p, ,6 g_N’YI.
\/W> (P, g )(p)

loge™l¢y
n(log g — logp)’
Thus it is sufficient to choose a large number

It follows that
N >

loge™¢y

N, =
' y(log g — logp)

I+1,

then we have .
I, < p™ < ¢y(p, g, 8)eMToEa-logm)

Applying Lemma 2 with Lemma 6, we obtain the second inequality of (3.6).
In case A = (¢/p)/", n > 2, we have .

u(t) = E( )R/ eXP[Zzﬂ( Lykingii,
_ k=1 P
Using the functions y;(t),7 = 1,...,n deﬁned by
o= (dy=m8; . 0 (I\m -
yj(t) = Z (;) ! exp[227r(;) t]somn+,77

m=0
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we can describe .

‘ : . q._; n q\i/n

u(t) = 3 hi(t) = Do(2) Ty ((2)im).
=1 i=1 P p

Since the terms of P ;(t) for each j are periodic with the periods {(p/q)"™, (p/q)*+0/™,

ey (p/@)N1+U/M} we note that, for each j, P, h;(t) is periodic with its period

plV =140/ [¢i/™ and smooth (6 =1). Thus, applying Theorem 1, we have '

n < Dp( U PnNu(t)) < DF(E)

Next we show the second inequality. Let Q], J = 1,..,n be a projection on

the subspace spanned by {pnm4; : m = 0,1,2,...}. Then, considering a change of
variation T = (¢q/p)’/™t, we have

Qsu((Dyr) = (D5 expfoa( e

It follows from (i) that we can estimate

q,. 1 log p
D u(t)) =D u((=)r)) < —(1 4+ ———).
P Quult) = Pr(UQuul()r) < -1+ 50—
On the other hand, by using e-covering balls of Q;X on each subspace Q;H with
its number denoted by N;(e), we can construct /ne-balls of & with its number
II7_, N;(e). It follows from the definition of fractal dimensions that

Dr(S) = De(3 Q%) < 3 Dr(@;%),

i=1

which yields the second inéquality.
[(i)] If X is a transcendental real number, A, k = 1,2, ... are also transcendental

and {A, A2, ..., AN, ...} are linearly independent over the rationals. Since each term of
Pyu(t) is periodic with its period A=7,j =1, ..., N, we have

N = Dr(|J Pyu(t)) < Dr(Z)

for arbitrarily large N. 0

4. Example of quasi-periodic attractor
We consider a linear abstract equation on a separable Hilbert space H:

du .
E-I—Au:f(t), t>0,

u(0) = up. ' (4.1)
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We assume that A is a selfadjoint positive definite operator with dense domain D(A)
in H, and that A™! exists and is compact. Then it is well known that there exist

eigenvalues X; and corresponding elgenfunctlons ; of the operator A satisfying the
following condltlons

0< A <A< <A<, lim A = o0,

j—o0
A(Pj - AJ(PJ? .7 = 1a2)"'7

{¢j(-)} forms a complete orthonormal system in H.

Here we assume that the perturbation f*(t) takes values in D(A)*. Thus we
consider (4.1) in the distribution sense. (In [2] we can find the various examples
in the control theory where the perturbations or the control functions are given in
the distribution sense.) Denote the inner product in H by (-,-) and the dual pair
between D(A) and D(A)* by < -,- >. Define a W-type function f : R — H by

o - 127k
F@) =Y (p ke g,
k=1

where g > 1, {6x} is the n-periodic sequence: 0 < 6 < 1 and the subsequence {jx}
will be determined later. We consider a D(A*)-valued functions f* given by

oo

f*(t) = Z(ﬂ_sk)k)‘j i2mutt Pik>

k=1

which means that, for u = 732, u;p; € D(A),

< frus= S (um )R, ey, (4.2)
k=1
Taking the dual pairs with ¢;, in (4.1) and applying elementary calculations, we can

show that the solution u(t) converges to the following W-type function us(t) in H
ast — 00

Yoo t) = -6k k___Jk_____eﬂ'tru"t(P_ .
()= S0 ™

In fact, for the ordinary dlfferentlal equations

. - i2muk
i () = —Xju;, (8) + p=0%E N, €2,
Ujk(O) = Uj.,09 k= 1, 2,

where u(t) = Y uk(t)@r, we have

—Sk/\
A, t K Ik 2rpkt A t
* Uj 0 + k{e — ek}

(1) = e~ R ] 2
u]k() € A3k+227"ﬂ
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It follows that

U(t) — uolt 2S°°u- L______
() = O < 3% = 32

—6kk ) ‘ ‘
l2 —2,\]k n Z |uj,0:|2e"2’\jt =0
ik}
as t — oo.
To harmonize the frequency parameter p* with the eigenvalue );,, considering a
suitable parameter y = p'/™ for a prime integer p and a natural number n, we choose
a subsequence ji, which satisfies

“k < C’\jk . (4 3)

for some constant C > 0. Then, applying the proof of Lemma 6 with the following
estimate ] )\

‘ <
V1+@2rC) T X, +z27w
we can show that the W-type function g(¢), defined by

-l < | (4.4)

- .
3 - A m

gl(t) - p 6lm ! t l exp[z27rp +1t]so]nm+l’
m=0 » A.711.m+l + 22

satisfies Holder’s conditions corresponding to (3.2) and (3.3). Then we can put

!
Uso(pt) =Y p~ = gi(prt).
=1

Thus, applying the proof of Theorem 2, we obtain the following theorem.

Theorem 4. Under the perturbation f*(t) of the W-type function given by (4.2)
with the parameter p = p'/™ for a prime integer p and the subsequence Aj., which
satisfies (4.8), system (4.1) admits a quasi-periodic global attractor ¥ = g Uoo(t)
which satisfies ‘

max{Zt 4 12l Ly ep el nzl
n M V2 " 24! Y2
Obviously, if 6 : =6, =--- =6,
n
Dr(X) = —.
F(Z) 5

Remark 4. As the condition for harmonization it is sufficient to assume that

u*
limsup — < C < oo,

k—oo Jk
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since we can also obtain (4.4).

Remark 5. Applying Theorem 3, we can classify the dimensions of the quasi-
periodic attractors by using the algebraic properties of the parameter A. In view of
Theorem 3-(iii), we can conclude that an arbitrarily small change of the parameter

A in the W-type function converts any finite dimensional quasi-periodic attractor to
the one which is chaotic (Dp(X) = o0).
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