R^N 上の楕円型問題の解について

平野 載倫 (Yokohama National University)

1. Introduction . この講演では、次の楕円型問題の正値解の存在を考える。

(P)
$$\begin{cases} -\Delta u + u = g(x, u), & u > 0, & \text{in } \mathbb{R}^N \\ u \in H^1(\mathbb{R}^N), & N \ge 2 \end{cases}$$

where $f: R^N \to R$ and $g: \Omega \times R \to R$ is continuous with g(x,0) = 0 for $x \in \Omega$. 楕円型問題 (P) については、過去 1 0 年間の間に、その解の存在と性質について多くの研究がなされている。最近、 半線形楕円型問題

$$\begin{cases} -\Delta u + u = Q(x) \mid u \mid^{p-1} u, & x \in \mathbb{R}^N \\ u \in H^1(\mathbb{R}^N), & N \ge 2 \end{cases}$$

の正値解については、1 < p for N = 2, $1 for <math>N \ge 3$, および、Q(x) が positive bounded continuous function という条件下で、何人かの研究者によって、結果が得られている。 Q(x) が radial function で ある場合には、問題 (P_Q) は無限個の解を持つことが得られる。これは、解を radial functions の中から探すことにより、常微分方程式に帰着させることによって得ることができる。 (cf. [1]). Q(x) が必ずしも radial でない場合には、領域が無限であることにより、comact 性の欠如という問題に突き当たる。 すなわち、Sobolev type の compact embedding が成り立たない為に、解の存在が容易に示せないということになる。この問題は、P.L. Lions (cf. [6,7]) によって、いわゆる concentrate compactness method という方法によって部分的に解決された.この方法によれば、 P_Q のような問題は、適当な条件下で解くことができる。

P.L.Lions は彼の方法を用いて次のような結果を得た: Assume that

$$lim_{|x|\to\infty}Q(x)=\overline{Q}(>0) \ \ {\rm and} \ \ Q(x)\geq \overline{Q} \ {\rm on} \ R^N,$$

then problem (P_Q) has a positive solution.

この結果は次のような観察に基づいている。 すなわち、問題 P_Q の ground state level c_Q , すなわち

$$I_Q(u) = rac{1}{2} \int_{R^N} (|\nabla u|^2 + |u|^2) dx - rac{1}{p+1} \int_{R^N} Q(x) u^{p+1} dx$$

の lowest critical level が ground state level $c_{\overline{Q}}$, すなわち $I_{\overline{Q}}$ の lowest critical level よりも小さい. このようなときには、我々は concentrate compactness method を用いること

ができる。 問題 (P) についても同様の議論ができる。すなわち、 $g:R^N \times R \to R$ が条件 $\lim_{|x| \to \infty} g(x,t) = t^p$ を満たし、

$$I(u) = \frac{1}{2} \int_{\mathbb{R}^N} (|\nabla u|^2 + |u|^2) dx - \int_{\mathbb{R}^N} \int_0^{u(x)} g(x, t) dt dx,$$

 $u \in H^1(\mathbb{R}^N)$, \mathcal{O} least critical level $c_1 \mathcal{D}^{\mathfrak{T}}$

$$I^{\infty}(u) = \frac{1}{2} \int_{\mathbb{R}^{N}} (|\nabla u|^{2} + |u|^{2}) dx - \frac{1}{p+1} \int u^{p+1} dx.$$

のそれよりも小さいとする。このとき、適当な条件下で,(P) の正値解の存在は Ding & Ni[4] や Stuart[10] 等によって示されている。また, 最近 Cao[2] は (P_Q) の正値解について, $c_Q \leq c_{\overline{Q}}$ を満たす場合について, $\lim_{\|x\|\to\infty}Q(x)=\overline{Q}$ かつ $Q(x)\geq 2^{(1-p)/2}\overline{Q}$ on R^N という条件下で証明している。

 $c_Q=c_{\overline{Q}}$ が成り立つ場合には,concentrate compactness method を用いることができないので、証明が難しい.一方、 gが $Q(x)t^p$ という形で与えられていない場合は, Lagrange's method が 使えない為に,新たな困難が生じる。 (P_Q) に関しては,解を得る為には, minimizing problem

$$\inf\{I_Q(u):u\in V_\lambda\},$$

$$V_{\lambda} = \{ u \in H^{1}(\mathbb{R}^{N}), u > 0, \int_{\mathbb{R}^{N}} Q(x)u^{p+1}dx = 1 \}$$

の解を求めればよかった。すなわち、得られた解、u に対して c を適当に選べば、cu が (P_Q) の解となる。 Lagrange's method は残念ながら一般の g にたいしては有効に働かない。我々の方法は、こうした一般の場合にも有効となるものである。 すなわち、 g が $g(0)=0, g(t)\to t^p$ as $t\to\infty$ を満たす場合に問題 (P) の解を考えることができる。 また、 nonhomoginous な場合:

$$\begin{cases} -\Delta u + u = |u|^{p-1} u + f, & x \in \mathbb{R}^N \\ u \in H^1(\mathbb{R}^N), & N \ge 3 \end{cases}$$

ここで p>1 for N=1, 1< p<(N+2)/(N-2) for $N\geq 3,$ も同様の文脈で考えることができる。 nonhomogeneous な場合については, Zhu[12] が解の存在を考えている。 [12] において少なくとも 2 つの正値な(P)の解が次の条件下で存在することが示されている。すなわち、 $f\in L^2(R^N)$ は L^2 -norm が十分に小さく、 exponential decay

$$f(x) \le Cexp\{-(1+\epsilon) \mid x \mid\}, \quad \text{for } x \in \mathbb{R}^N.$$

を持つ。我々の結果は, $f \in L^q(\mathbb{R}^N)$ (q = (p+1)/p)が正値であれば, その decay の速度については条件がいらない。

この講演では、次のような結果に対するアプローチを示す。

以下では,y $|\cdot|_q$ は $L^q(R^N)$ のノルムをあらわす。. $g:R^N \times R \to R$ にたいしては次のような条件を仮定する。

(g1) There exists a positive number
$$d < 1$$
 such that
$$-dt + (1-d)t^p \le g(x,t) \le dt + (1+d)t^p$$
 for all $(x,t) \in \mathbb{R}^N \times [0,\infty)$;

(g2) there exists a positive number
$$C$$
 such that $|g_t(x,0)| < 1$ and $0 < t^2 g_{tt}(x,t) < C(1+t^p)$ for all $(x,t) \in \mathbb{R}^N \times [0,\infty)$;

$$\lim_{|x| \to \infty} g(x,t) = |t|^{p-1} t$$

uniformly on bounded intervals in $[0, \infty)$,

where 1 < p for N = 2 and $1 for <math>N \ge 3$, and $g_t(\cdot,\cdot)$ stands for the derivative of g with respect to the second variable.

この講演では次のような結果について述べる.

Theorem 1. (g2) および (g3) を仮定する. このとき、 $d_0 > 0$ が 存在して, もし (g1) が $d < d_0$ なる値に対して成立するならば (P) は正値解を持つ.

 (P_f) , に関しては次の結果が成り立つ.

Theorem 2. C > 0 について 各 $f \in L^q(\mathbb{R}^N)$ が $f \ge 0$ かつ $|f|_q < C$ を満たすならば, (P_f) は少なくとも二つの解を持つ.

以下では,上記の定理の証明の概略を与える。

2. Preliminaries. We just give a sketch of a proof of Theorem 1 to show that how the singular homology theory works for the proof of existence of positive solutions. We put $H = H^1(\mathbb{R}^N)$. Then H is a Hilbert space with norm

$$||u|| = (\int_{\mathbb{R}^N} (|\nabla u|^2 + |u|^2) dx)^{1/2}.$$

The norm of the dual space $H^{-1}(R^N)$ of H is also denoted by $\|\cdot\|$. B_r stands for the open ball centered at 0 with radius r. We denote by $\langle\cdot,\cdot\rangle$ the pairing between $H^1(R^N)$ and $H^{-1}(R^N)$. For each r>1, the norm of $L^r(R^N)$ is denoted by $|\cdot|_r$. For simplicity, we write $|\cdot|_*$ instead of $|\cdot|_{p+1}$. For $u\in H$, we set $u^+(x)=\max\{u(x),0\}$. We denote by C_p the minimal constant satisfying

$$|u|_* \le C_p ||u|| \qquad \text{for } u \in H. \tag{2.1}$$

It is easy to check that critical points of I are solutions of (P). It is also obvious that nonzero critical points of I^{∞} are solutions of (P) with $g(t) = t^p$ for $t \geq 0$. For each functional F on H and $a \in R$, we set $F_a = \{u \in H : F(u) \leq a\}$. We put

$$M = \{u \in H \setminus \{0\} : ||u||^2 = \int_{R^N} ug(x, u) dx\}$$
$$M^{\infty} = \{u \in H \setminus \{0\} : ||u||^2 = \int_{R^N} u^{p+1} dx\}$$

For the proof of the following two propositions are crucial:

Proposition 2.1. There exists positive number $d_0 < \tilde{d}_0$ and ϵ_0 satisfying that if (g1) holds with $d \leq d_0$, then for each $0 < \epsilon < \epsilon_0$,

$$H_*(I_{c+\epsilon}^{\infty}, I_{\epsilon}^{\infty}) = H_*(I_{c+\epsilon}, I_{\epsilon})$$

where $H_*(A, B)$ denotes the singular homology group for a pair (A, B) of topological spaces(cf. Spanier[8]).

Proposition 2.2. For each positive number $\epsilon < \epsilon_0$,

$$H_q(I_{c+\epsilon}^{\infty}, I_{\epsilon}^{\infty}) = \left\{ egin{array}{ll} 2 & \mbox{if } q = 0, \ 0 & \mbox{if } q
eq 0. \end{array}
ight.$$

Here we give a proof for Proposition 2.2.

We set

$$T_{u_{\infty}}(M^{\infty}) = \{ \lim_{t \to 0} (c(t) - u_{\infty})/t : c \in C^{1}((-1, 1); M^{\infty}) \text{ with } c(0) = u_{\infty} \},$$

$$C = C_{-} \cup C_{+} = \{ -\tau_{x} u_{\infty} : x \in R^{N} \} \cup \{ \tau_{x} u_{\infty} : x \in R^{N} \}$$

and

$$T_{u_{\infty}}(\mathcal{C}) = \{ \lim_{t \to 0} (u_{\infty}(\cdot + tx) - u_{\infty}(\cdot))/t : x \in \mathbb{R}^N \}.$$

It follows from the definition of M^{∞} that the codimension of $T_{u_{\infty}}(M^{\infty})$ in H is one. It is also obvious that $\dim T_{u_{\infty}}(\mathcal{C}) = N$. We denote by \widetilde{H} the subspace such that $H = \widetilde{H} \oplus T_{u_{\infty}}(\mathcal{C})$. For each r > 0, we set $B_r^0 = B_r \cap \widetilde{H}$. Here we consider the linealized equation

$$(L) \qquad \qquad -\Delta u + u - h(x)u = \mu u, \qquad u \in H, \mu \in R,$$

where $h(x) = p \mid u_{\infty}(x) \mid^{p-1}$ for $x \in R^N$. Since $-\Delta$ is positive definite and h(x)I is compact, we find by Freidrich's theory that the negative spectrums of $A = -\Delta - h(x)I$ are finite and each eigenspace corresponding to a negative eigenvalue is finite dimensional. Then each eigenspace corresponding to a nonpositive eigenvalue of $L = -\Delta + I - h(x)I$ is finite dimensional. Then there exists $c_0 > 0$ and a decomposition $H = H_- \oplus H_0 \oplus H_+$ such that $H_0 = \ker(L)$ and L is positive(negative) definite on $H_+(H_-)$ with

$$\langle Lv, v \rangle \ge c_0 \| v \|^2 (\le -c_0 \| v \|^2)$$
 for $v \in H_+(H_-)$.

Since each $u \in \mathcal{C}$ is a solution of problem (P_{∞}) , we can see that $T_{u_{\infty}}(\mathcal{C}) \subset H_0$.

Lemma 2.3. $dim H_{-} = 1$.

Proof. Since I^{∞} attains its minimal on M^{∞} at u_{∞} , we have that $T_{u_{\infty}}(M^{\infty}) \subset H_{+} \oplus H_{0}$. Then since the codimension of M^{∞} is one, we find that $\dim H_{-} \leq 1$. On the other hand, we have

$$\langle Lu_{\infty}, u_{\infty} \rangle = \int_{\mathbb{R}^{N}} (|\nabla u_{\infty}|^{2} + |u_{\infty}|^{2} - p |u_{\infty}|^{p+1}) dx$$

$$< \int_{\mathbb{R}^{N}} (|\nabla u_{\infty}|^{2} + |u_{\infty}|^{2} - |u_{\infty}|^{p+1}) dx = 0.$$
(2.2)

Then we have that $\dim H_{-} \geq 1$. This completes the proof.

In the following we denote by φ an element of H_- with $\|\varphi\|=1$. Here we note that since $h \in C^{\infty}(\mathbb{R}^N)$, each solution u of (L) is in $C^1(\mathbb{R}^N)$. It then follows that if u has the form

$$u(r,\theta) = \psi(r)\xi(\theta_1,\dots,\theta_{n-1}),$$
 with $\xi \not\equiv \text{const.},$

in spherical coordinate, ψ satisfies that $\psi(0) = 0$.

We denote by H_r the set of all radial functions in H and by (L_r) the problem (L) restricted to H_r . Then, in spherical coordinates, the problem (L_r) with $\mu > 0$ is reduced to

$$\psi''(r) + \frac{n-1}{r}\psi'(r) + (h-1)\psi = -\mu\psi(r), \qquad r > 0, \psi \in C_r, \tag{2.3}$$

$$\frac{d\psi(r)}{dr}(0) = 0, (2.4)$$

where $C_r = \{ \psi \in C[0, \infty) : \lim_{r \to \infty} \psi(r) = 0 \}.$

We next consider nonradial solutions of (L). In case of nonradial functions, the problem (L) is deduced to

$$\psi''(r) + \frac{n-1}{r}\psi'(r) + ((h-1) - \frac{\alpha_k}{r^2})\psi(r) = -\mu\psi(r), \qquad r > 0,$$
 (2.5)

$$\psi(0) = 0 \tag{2.6}$$

where $\psi \in H_r$, $\alpha_k = k(k+n-1)$, $k = 1, 2, \cdots$. Note that α_k are the eigenvalues of Laplacian $-\Delta$ on S^{n-1} , the unit sphere, and the dimension of the eigenspace S_k associate with α_k is

 $\rho_k = \binom{k+n-2}{k} \frac{n+2k-2}{n+k-2}.$

That is there exists smooth functions $\{\varphi_{k,i}: i=1,\dots,\rho_k\}$ defined on S^{n-1} such that $S_k = span\{\varphi_{k,1},\dots,\varphi_{k,\rho_k}\}$, and the functions $u=\psi(r)\varphi_{k,i}(\theta)$ are the solutions of (L). By using (2.5) and (2.6), we can see

Lemma 2.4. $dim H_0 \leq N + 1$.

Here we recall that H has a decomposition $H = \widetilde{H} \oplus T_{u_{\infty}}(\mathcal{C})$ and then $H = \tau_x \widetilde{H} \oplus \tau_x T_{u_{\infty}}(\mathcal{C})$ for each $x \in \mathbb{R}^N$. Then since \mathcal{C}_{\pm} are smooth N-manifolds, we have that there exists $r_0 > 0$ such that

$$\tau_x((-1)^i u_\infty + B_{r_0}^0) \cap \tau_y(u_\infty + B_{r_0}^0) = \phi \tag{2.7}$$

for all $x,y\in R^N$ with $x\neq y$, and i=0,1. Here we consider a restriction $I^\infty\mid_{u_\infty+\widetilde{H}}$ of I^∞ on $u_\infty+\widetilde{H}$. Then from Lemma 3.2 and Lemma 3.3, we have by Gromoll-Meyer theory[3] that there exists subspaces H_1 $H_{2,1}$, $H_{2,2}$ of \widetilde{H} , a positive number $r_1< r_0$, a mapping $\beta\in C^1((H_{2,2}\cap B^0_{r_1}),R)$ and a homeomorphism $\psi:u_\infty+B^0_{r_1}\to u_\infty+\widetilde{H}$ such that $\widetilde{H}=H_1\oplus H_{2,1}\oplus H_{2,2}$ and

$$I^{\infty} \mid_{u_{\infty} + \widetilde{H}} (\psi(u)) = c - ||u_1||^2 + ||u_{2,1}||^2 + \beta(u_{2,2})$$
(2.8)

for each $u \in u_{\infty} + B_{r_1}^0$ with $u = u_{\infty} + u_1 + u_{2,1} + u_{2,2}$, $u_1 \in H_1$, $u_{2,i} \in H_{2,i}$, i = 1, 2. It follows from Lemma 2.3 that $H_{2,2}$ is one dimensional. Noting that $T_{u_{\infty}}(M) \subset H_0 \oplus H_+$ and u_{∞} is the minimal point of I^{∞} on M, we have by choosing r_1 sufficiently small that $\beta(t\varphi_2)$ is strictly increasing as |t| increases in $[-r_1, r_1]$, where $\varphi_2 \in H_{2,2}$ with $||\varphi_2|| = 1$.

Since I^{∞} is even, it is obvious that I^{∞} has the form (2.8) on $-(u_{\infty} + B_{r_1}^0)$. We also note that for each $x \in R^N$, (2.8) holds for each $u \in \tau_x(u_{\infty} + B_{r_0}^0)$ with ψ replaced by $\tau_{-x} \circ \psi$.

Proof of Proposition 2.2. By the deformation property(cf. theorem 1.2 of Chang[3]) and the homotopy invariance of the homology groups, we have

$$H_q(I_{c+\epsilon}^{\infty}, I_{c-\epsilon}^{\infty}) \cong H_q(I_c^{\infty}, I_{c-\epsilon}^{\infty}), \text{ and}$$

$$H_q(I_c^{\infty} \backslash \mathcal{C}, I_{c-\epsilon}^{\infty}) \cong H_q(I_{c-\epsilon}^{\infty}, I_{c-\epsilon}^{\infty}) \cong 0.$$

From the exactness of the singular homology groups,

$$H_{q}(I_{c}^{\infty}\backslash\mathcal{C}, I_{c-\epsilon}) \to H_{q}(I_{c}^{\infty}, I_{c-\epsilon}^{\infty}) \to H_{q}(I_{c}^{\infty}, I_{c}^{\infty}\backslash\mathcal{C})$$
$$\to H_{q-1}(I_{c}^{\infty}\backslash\mathcal{C}, I_{c-\epsilon}^{\infty}) \to \cdots$$

we find

$$0 \to H_q(I_c^{\infty}, I_{c-\epsilon}^{\infty}) \to H_q(I_c^{\infty}, I_c^{\infty} \backslash \mathcal{C}) \to 0.$$

That is

$$H_q(I_c^{\infty}, I_{c-\epsilon}^{\infty}) \cong H_q(I_c^{\infty}, I_c^{\infty} \backslash \mathcal{C}).$$

Noting that $\cup \{\tau_x(\pm u_\infty + B_{r_1}^0) : x \in \mathbb{R}^N\}$ are disjoint open neighborhoods of \mathcal{C}_{\pm} respectively, and that I^{∞} is invariant under the translations τ_x , we find from the excision property and (2.8) that

$$\begin{split} H_*(I_{c+\epsilon}^{\infty}, I_{\epsilon}^{\infty}) & \cong H_*(I_{c}^{\infty}, I_{c}^{\infty} \backslash \mathcal{C}) \\ & \cong H_*(I_{c}^{\infty} \cap (\cup_{i=\pm 1} \cup_{x} \tau_x(iu_{\infty} + B_{r_1}^{0})), \\ & I_{c}^{\infty} \cap (\cup_{i=\pm 1} \cup_{x} \tau_x(iu_{\infty} + B_{r_1}^{0}) \backslash \mathcal{C})) \\ & \cong H_*(u_{\infty} + B_{r_1}^{1}, (u_{\infty} + B_{r_1}^{1}) \backslash \{u_{\infty}\}) \\ & \oplus H_*(-u_{\infty} + B_{r_1}^{1}, (-u_{\infty} + B_{r_1}^{1}) \backslash \{u_{\infty}\}) \\ & \cong H_*([0, 1], \{0, 1\}) \oplus H_*([0, 1], \{0, 1\}). \end{split}$$

This completes the proof.

- **3. Proof of Theorem 1.** We next consider a triple $(U, K, \epsilon) \subset H \times H \times R^+$ satisfying the following conditions:
- $(1) U \cap (-U) = \phi;$
- (2) $\{\tau_x u_\infty : |x| \ge r\} \subset intK$ for some r > 0;
- (3) $cl(I_{c+\epsilon} \cap K) \subset int(I_{c+\epsilon} \cap U);$
- (4) $H_{N-1}(I_{c+\epsilon} \cap U) = 1, \quad H_1(I_{c+\epsilon} \cap U) = 0;$
- (5) I_{ϵ} is a strong deformation retract of $I_{c+\epsilon} \setminus (K \cup (-K))$;
- (6) $H_{N-1}((I_{c+\epsilon} \cap U)\backslash K) = 2$ or $H_0((I_{c+\epsilon} \cap U)\backslash K) \ge 2$ holds.

Proposition 3.1. There exists a triple $(U, K, \epsilon) \subset H \times H \times R^+$ which satisfies (1) - (6).

We omit the proof of Proposition 3.1.

Lemma 3.2. Suppose that there exist a triple $(U, K, \epsilon) \subset H \times H \times R^+$ satisfying (1)-(6). Suppose in addition that $H_{N-1}((I_{c+\epsilon} \cap U) \setminus K) \geq 2$. Then $H_N(I_{c+\epsilon}, I_{\epsilon}) \geq 2$.

Proof. We put $\widetilde{K} = K \cup (-K)$. Since I_{ϵ} is a strong deformation retract of $I_{c+\epsilon} \setminus \widetilde{K}$, we find that

$$H_q(I_{c+\epsilon}\backslash \widetilde{K}, I_{\epsilon}) \cong H_q(I_{\epsilon}, I_{\epsilon}) \cong 0.$$

Then from the exactness of the singular homology groups of the triple $(I_{c+\epsilon}, I_{c+\epsilon} \setminus \widetilde{K}, I_{\epsilon})$ we have

$$0 \to H_q(I_{c+\epsilon}, I_{\epsilon}) \to H_q(I_{c+\epsilon}, I_{c+\epsilon} \setminus \widetilde{K}) \to 0.$$

That is

$$H_q(I_{c+\epsilon}, I_{\epsilon}) \cong H_q(I_{c+\epsilon}, I_{c+\epsilon} \setminus \widetilde{K}).$$

From (1), we find

$$H_q(I_{c+\epsilon}, I_{c+\epsilon} \setminus \widetilde{K}) \cong H_q(W, W \setminus K) \oplus H_q(-W, (-W) \setminus (-K))$$

where $W = I_{c+\epsilon} \cap U$. Then since $H_{N-1}(W \setminus K) \geq 2$, we have from (4) and the exactness of the sequence

$$\to H_q(W, W \backslash K) \to H_{q-1}(W \backslash K) \to H_{q-1}(W) \to H_{q-1}(W, W \backslash K) \to \tag{3.1}$$

with
$$q = N$$
 that $H_N(I_{c+\epsilon}, I_{\epsilon}) \cong H_N(W, W \setminus K) \oplus H_N(W, W \setminus K) \geq 2$.

Lemma 3.3. Suppose that $(U, K, \epsilon) \subset H \times H \times R^+$ satisfies (1) - (6). Suppose in addition that $H_0(I_{c+\epsilon} \cap U) = H_0((I_{c+\epsilon} \cap U) \setminus K) = 1$. Then $H_1(I_{c+\epsilon}, I_{\epsilon}) = 0$ or $H_0(I_{c+\epsilon}, I_{\epsilon}) = 2$ holds.

We can now prove Theorem 1.

Proof of Theorem. Let (U, K, ϵ) be the triple constructed above. We have by Proposition 2.1 and Proposition 2.2 that $H_1(I_{c+\epsilon}, I_{\epsilon}) = 2$ and $H_q(I_{c+\epsilon}, I_{\epsilon}) = 0$ for $q \neq 1$. Now suppose that $(I_{c+\epsilon} \cap U) \setminus K$ is disconnected. Then since $H_0((I_{c+\epsilon} \cap U) \setminus K) \geq 2$, we find by Lemma 3.2 that $H_N(I_{c+\epsilon}, I_{\epsilon}) = 2$. This is a contradiction. On the other hand, if $U \setminus K$ is connected, then $H_0(U \setminus K) = 1$. Then by Lemma 3.3, we have $H_1(I_{c+\epsilon}, I_{\epsilon}) = 0$ or $H_0(I_{c+\epsilon}, I_{\epsilon}) = 2$. This is a contradiction. Thus we obtain that there exists a positive solution of (P).

REFERENCES

- [1] Berestycki H. & Lions P. L., Nonlinear scalar field equations, I, II, Archs ration Mech. Analysis 82(1982), 313-376.
- [2] Cao D-M, Positive solutions and bifurcation from the essential spectrum of a semi-linear elliptic equations on \mathbb{R}^N , Nonlinear Analysis TMA 15(1990), 1045-1052.
- [3] Chang K. C, indefinite dimensional Morse theory and its applications, Séminaire de Mathématiques Supérieures no 97, Univ. de Montreal (1985).
- [4] Ding W. Y. & Ni W. M., On the existence of positive solutions of a semilinear elliptic equation, Archs ration Mech. Analysis 91(1986), 283-307.
- [5] Kwong M. K., Uniquness of positive solutions of $\Delta u u + u^p = 0$ in \mathbb{R}^N , Archs ration Mech. Analysis 105(1989), 243-266.

- [6] Lions P.L., The concentration-compactness principle in the calculus of variations, the locally compact case. Part I, Ann. Inst. H. Poincaré Analyses non Linéaire 1(1984), 109-145.
- [7] Lions P.L., The concentration-compactness principle in the calculus of variations, the locally compact case. Part II, Ann. Inst. H. Poincaré Analyses non Linéaire 1(1984), 223-283.
- [8] Spanier E, Algebraic Topology, McGraw-Hill, New York (1966).
- [9] Strauss W. A., Existence of solitary waves in higher dimensions, Communs math. Phys. 55(1977), 149-162.
- [10] Stuart C. A., Bifurcation from the essential spectrum for some noncompact nonlinearities, to appear
- [11] Zhu, Xi-Ping, Multiple entire solutions of a semilinear elliptic equation, Nonlinear Analysis TMA 12(1988), 1297-1316.
- [12] Zhu, Xi-Ping, A perturbation result on positive entire solutions of a semilinear elliptic equations, J. Diff. Equ. 92(1991), 163-178.