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1. Introduction . ZOFEETIE, ROFBHEMEOLEROGFEEZZZ b,

— Au+u = g(z,u), u>0, inRN
(P) { 1/pN )

we H'(RY), N>2
where f : RY — R and g : Q@ x R — R is continuous with g(z,0) = 0 for x € Q. fEME!
& (P) 122V Tid, A% 1 0 FHOMIZ, ZDHBOFE L HEIZOWTE L ORFREH
INTWV5S, &L, FHEHEAERE '

(Po) {—Au+u=cz(x>|ulp-lu, zeRY

ue H(RY), N>2

DIEEFIZOVWTIE, 1<pfor N=2,1<p< (N+2)/(N—-2)for N >3, BLUV,Q(x)
#% positive bounded continuous function & \* 9 & T T, MAPDOHREEICL o T, #
BT OLN TS, Q(z) % radial function T & AHE 1213, RE (Pp) (3 HREOM
rEOZENELNSE, I, A% radial functions DHFNLEET I LIZX D Fs
FRANCEESRLIZILIZLIoTHRALAIENTE S, (cf [1]). Q(z) 47T L b radial
TZWHEIZIE, HERSERTHH 2 LI2X ), comact DRI E W) HEIZELRE L
%5, bbb, Sobolev type ® compact embedding A3 Y 72 R\ AT, EDOFETEDS
BHICRERVEND S EII R B, - OMER, P.L. Lions(cf[6,7]) I2& > Ty Vb2
concentrate compactness method &\ 9 JFiEIZ & o THAWICBR I NIz, ZOFEIC
LT, Pop ® &9 EEIL, BULREHETTHIZLHNTE S,
P.L.Lions XD 772 AWTKRD & ) R %157-: Assume that

lim |z 0@ (@) = Q(> 0) and Q(z) > Q on RV,
then problem (Pg) has a positive solution.

CORRIIRO L) BBBICESVTVE, Thbb, ME Py ® ground state
level cg, $7%bH

Iow) =3 [ (Vul+|up)ie-—= [ Q@wtias

? lowest critical level 2% ground state level c;, Thabb I5% lowest critical level & n
B/NEN, TDXH e FiTIX, FA T concentrate compactness method Z VA Z &
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BCED, BHE(P) ICoWT bAROBRITED, $4bb, g: RN x R R 4
 limyz 00 9(z, ) = tP ZHHZL, ‘

1 u(x)
I(u)=§/RN(| vu |2+|u|2)d:c—/RN/0 9(, t)dtdz,

u € HY(RY), @ least critical level ¢, 2%

1 ‘ 1
I®(w) =3 /RN(| Vu|? + | u[?)dz — m/uf’“daz.

DENINI/NEVET L, CDLE, BELEHTT,(P) DIEEHRDHFEIL Ding &
Ni[4] % Stuart[10] FIZL > TREINTW B, F72, & Caol2] 1d (Py) DIFMEMRIZDOW
T,cg < o %?ﬁf:?%%b:oh‘f, hm”x“_,oo Q(.’E) = a I Q(ZE) > 2(1_1’)/2@- on RY
EVI)EHTTIHEHL TS,

cQ = cgW¥ LY LY & 1T 1%, concentrate compactness method % Vi 5 Z &AST &
ZVOT, GEAPEL V. —F., ¢ QE@)P L VIHIETEZ LN TR VLA, La-
grange’s method 2% MR BV BIZ, - LWBEPEL L, (Pg) WHLTI, BeEs5

(21X, minimizing problem
inf{Ig(u) :u € V},

= {ue BE)u>0, [ Quwrtias=1)
RN

DEZRONIT LD o7z, TbD, BONLBu LT ¢ ZBHITEL, cu o
(Pg) Mf#EL 725, Lagrange’'s method I3B&R A5 —#D g 1272w L CI3ERICE
BV WADHTER, THL—BROBEICHAEREL2IDTHSB, Thbb, g *F
g(0))=0, g(t) > tPast — oo W/ TIHEICHE (P) DEE2EZ LI LN TES, F
72\ nonhomoginous %54

—Autu=|ulP"tu+f, zeRN
(Pr) {

u€ HY(RN), N>3

CCTp>1for N=1,1<p< (N+2)/(N—-2)for N>3, bFEFOIRTEZ
ZLATT& %, nonhomogeneous ZHEITOVTIZ, Zhu[12] PBOHFELEEE X TV 5,
121 IZBNWTAHLRL LD 2ODEML (P) OBFEKROLET THAET LI LIRINT
Who Thbb, feL?(RY)Id L2~norm #°+4M2/N& | exponential decay

f(z) < Cexp{—(1+¢) |z |} for z € RV.
RO, BADKERIE, fe LYRN)(qg=(p+1)/p) BEMETHIUE, 2D decay DHEE

WZDOWTIEEBEIT S v,
COBEATIE, ROL I LRI TET IO —F 2R,
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- UTTRy | g RILIRN) DI NVEEBLEDT, . g: RV xR — RIZ72WwWL TR
RD &) RFMEERET 5o ‘ »

(g1) There exists a positive number d < 1 such that
—dt + (1 — d)tP < g(z,t) < dt + (1 + d)tP
o for all (z,t) € RN x [0, c0);
(g2) there exists a positive number C such that
| g:(z,0) |< 1 and 0 < t?gy(z,t) < C(1 +tP)
for all (z,t) € RN x [0, 00);
(g3) lim g(z,t) =[¢ [P~ ¢
—o0 ,

|=|

uniformly on bounded intervals in [0, 00),

where 1 < pfor N=2and 1'<p < (N +2)/(N —2) for N > 3, and g;(-.-) stands for
the derivative of g with respect to the second variable.
COFHETIIRD & ) LRHERITOVTHERS.

Theorem 1. (g2) BL W (g3) 2RETH. TDEE, doy >0 P HFHELT, b L (gl)
B d<dole MBI LTHILT 5% 51F (P) ZIEEHZFD. : :
(Pg), \CBI L TIZRDFERHKY LD,

Theorem 2. C >0 I22WT & f € LIRN) A5 £ >0 D | f ;< C %737 b3,
(Py) 3% LD oD RD.

DTFTiE, LROZHOIAHDOEEEL 5 2 5,

2. Preliminaries. We just give a sketch of a proof of Theorem 1 to show that how
the singular homology theory works for the proof of existence of positive solutions. We
put H = H*(RY). Then H is a Hilbert space with norm

luli=(/ (9l +|uf)a),

The norm of the dual space H~1(R") of H is also denoted by || - ||. B, stands for the
open ball centered at 0 with radius 7. We denote by (-,-) the pairing between H'(R)
and H-1(RY). For each 7 > 1, the norm of L"(R") is denoted by | - |,. For simplicity,
we write | - |, instead of | - |p4+1. For u € H, we set ut(z) = max{u(z),0}. We denote
by C), the minimal constant satisfying

|u|«< Cp || u| 'for'ueH. (2.1)
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It is easy to check that critical points of I are solutions of (P). It is also obvious that
nonzero critical points of I°° are solutions of (P) with g(t) = t? for ¢ >-0. For each
functional F on H and a € R, we set F, = {u € H: F(u) < a}. We put

M = {ue H\{0} | u |*= /R ug(w,u)dz}
= {u € H\{0}:|| u H2= /RN up"'ldx} .

For the proof of the following two propositions are crucial:

Proposition 2.1. There exists positive number dy < do and €g satisfying that if (g1)
holds with d < dy, then for each 0 < € < ¢,

H. (Igie,I;”) H*(IC+eaIe)

where H,(A, B) denotes the s1ngu1ar homology group for a pair (A, B) of topological
spaces(cf. Spanier[8]).

Proposition 2.2. For each positive number ¢ < ¢,

1) — 2 ifg=0,
Hyllete I {0 if g # 0.

Here we give a proof for Proposition 2.2.
We set

Tuee (M) = {lim(c(t) — uso)/t : ¢ € C*((=1,1); M™) with ¢(0) = Uoo}s

C=C_UCt ={—-Tztoo IIL‘GRN}U{TmUOO :xERN}
and
T. (C) = {%Lr)r(l)(uoo( +17) — ueo())/t : z € RN},

It follows from the definition of M™ that the codimension of T, (M) in H is one.
It is also obvious that dim7, _(C) = N. We denote by H the subspace such that

H=H& Tu..(C). For each r > 0, we set B® = B, N H. Here we consider the linealized
equation : . :

(L) —Au+u — h(z)u = pu, u€ H,u € R,
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where h(z) = p | ueo(z) [P7! for z € RN. Since —A is positive definite and h(z)I]
is compact, we find by Freidrich’s theory that the negative spectrums of A = —A —
h(z)I are finite and each eigenspace corresponding to a negative eigenvalue is finite
dimensional. Then each eigenspace corresponding to a nonpositive eigenvalue of L =
—A + I — h(z)I is finite dimensional. Then there exists cg > 0 and a decomposition
H = H_ @ Hy ® H, such that Hy = ker(L) and L is positive(negative) definite on
H, (H_) with

(Lo, v) 2 co v * (S —co [0 |”)  for v e Hy(H-).
Since each u € C is a solution of problem (P,), we can see that Ty, _(C) C Hp.
Lemma 2.3. dimH_ =
Proof. Since ‘I * attains its minimal on M at u.,, we have tha;t Ty (M*™) C Hy®H,.

Then since the codimension of M is one, we find that dimH_ < 1. On the other
hand, we have :

{Lttoo, Uoo) =/ (| Vttoo |* + | thoo |* =P | t1eo [PT)dz
: RN

o (2.2)
< / (| Vueo |2 + | %oo |2 — | us |p+1)dx =0.
RN
Then we have that dimH_ > 1. This completes the proof. |
In the followmg we denote by ¢ an element of H_ with || ¢ ||= 1. Here we note

that since h € C®(RY), each solution u of (L) is in C*(RN )- It then follows that if u
has the form _ ‘

u(r, 9) = 1(r)€(61,- - ',9n—1), with & sé const.,

in spherical coordinate, 9 satisfies that 1(0) = 0. ,

We denote by H, the set of all radial functions in H and by (L) the problem (L)
restricted to H,. Then, in spherical coordinates, the problem (L,) with > 0 is reduced
to

W)+ Y (- = ), T>09EC,  (23)
dip(r)
=0 =0, (2.4)

where C, = {¢ € C[0,00) : lim, o0 ¢(r) = 0}. ,
We next consider nonradial solutions of (L). In case of nonradial functions, the
problem (L) is deduced to

v

((h—1) - )¢() —uw(r) - >0, (2.5)
P(0) = (2.6)
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where ¥ € H, , ar = k(k+n—1), k = 1,2,---. Note that ax are the eigenvalues
of Laplacian —A on S, the unit sphere, and the dimension of the eigenspace Sk
associate with oy is -
' _(k+n—-2\n+2k-2
Pk = ( k ) n+k—2"
That is there exists smooth functions {¢pg; : ¢ =1, -, px} defined on S?~! such that

Sk = span{@k,1," - ", Pk,p. }» a0d the functions u = 1(r)px :(6) are the solutions of (L).
By using (2.5) and (2.6) , we can see :

Lemma 2.4. dimHg < N +1.

Here we recall that H has a decomposition H = H @ Ty (C) and then H =

TzH ® 7Ty (C) for each £ € RYN. Then since Ci are smooth N —manifolds, we have
that there exists ro > 0 such that

7o((=1)ttoo + BL) N7y (t1oo + BL) = ¢ @2.7)

for all z,y € RN with = # y, and i = 0,1. Here we consider a restriction I°
’ oo+ H

of I*® on u + H. Then from Lemma 3.2 and Lemma 3.3, we have by Gromoll-Meyer
theory[3] that there exists subspaces Hy Ha 1, Ha 2 of H, a positive number r; < To, a
mapping 3 € C*((Hz2 N BY,), R) and a homeomorphism 9 : ueo + B — s, + H such
that H = Hy @ Hy 1 @ Hy 5 and

I, g (6) = = lun I + || gy [ +6(uz2) (2.8)

for each u € us —FBE1 with © = e + u1 + ug,1 +ug 2, vy € Hi, ug; € Hoj, i =1,2. It
follows from Lemma 2.3 that Hj 5 is one dimensional. Noting that T, (M) C Hy® H,
and u., is the minimal point of I on M, we have by choosing r; sufficiently small
that B(tysz) is strictly increasing as | ¢t | increases in [~r1,r1] where o2 € Ha o Wlth
| o2 = 1.

Since I is even, it is obvious that 1% has the form (2. 8) on —(ue + BY). We
also note that for each z € RN, (2.8) holds for each u € 7, (uoo + B ) with ¢ replaced
by 7_z 0. :

Proof of Proposition 2.2. By the deformation property(cf. theorem 1.2 of Chang][3))
and the homotopy invariance of the homology groups, we have

Ho(I% e, I2,) =2 Ho(I°, I ), and

c+e)“c—e

Hy(IP\C, 12 ) = Hy(I2, 12 ) = 0.

c—e¢)

From the exactness of the singular homology groups ,

Hy(IP\C, I.—.) = Hy(I®,I2,) = H, (I, I®\C)

Cc 17 Cc—e€ c 77¢C

= Hy_1(IP\C,I,) — - -
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we find _ |
0— HlI(Igo’Igie) - Hq(Igo,Igo\C) — 0.
That is ' '
Hy(Ig°,12,) = Hy(I°, I°\C).

Noting that U{7;(tuco + BY) : ¢ € RN} are disjoint open neighborhoods of Cy re-
spectively, and that I°° is invariant under the translations 7., we find from the excision
property and (2.8) that
H. (I3, 1)
> H (12, 12°\C)
= H, (I N (Vizt1 Ug To(fUoo + qu1))7
o 12° N (Uizt1 Up 7o (it + BY)\0))
= Hy (oo + Brlla (Uoo + Bil)\{“oo}) ‘
A ® Hy(~uo + B}l, (—Uoo + B,}l N\{to})
= H.([0,1],{0,1}) ® H.([0,1],{0,1}). -

This completes the proof. ' ’ : ; |

3. Proof of Theorem 1. We next consider a triple (U, K,€¢) C H X H X R* satisfying
the following conditions:

) Un(-0)=¢ o

(2) {2 | z |> 7} C intK for some r > 0;

(3) cl (Ic+e N K) - int(Ic—Fe N U);

(4) Hy_1(Ie4+eNU) =1, Hi(Ie4eNU) = 0;

(5) I, is a strong deformation retract of I..c\(K U (—K));

(6) Hy_1(I.;eNUN\K)=2  or Ho((Ie4+e NU\K) > 2

holds.

Proposition 3.1. There exists a triple (U, K, e) C H x H x Rt which satisfies (1) -

(6).
We omit the proof of Proposition 3.1.

Lemma 3.2. Suppose that there exist a triple (U,K,e) C H x H x RT satisfying
(1)-(6). Suppose in addition that Hy_1((Ic+e NU)\K) > 2. Then Hy (Ieqe, Ic) > 2.

Proof. We put K = KU (—K). Since I is a strong deformation retract of Ic+é\I~{ , We
find that

Hy(I.y \K,I.) = Hy(I, I.) = 0.
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Then from the exactness of the singular homology groups of the triple (I, I c_{_e\I? , Ie)

we have -
0 = Hq(Ioye, Ie) = Hy(Ieqe, Iy \K) — 0.

That is _
Hq(IC-l—ea Ie) = Hq(Ic+ea Ic+e\K)-

From (1), we find
Hy(Ioe; It \K) = Hy(W,W\K) @ Hy(—=W, (-W)\(-K))

where W = I...NU. Then since Hy_1(W\K) > 2, we have from (4) and the exactness
of the sequence

— Hy(W,W\K) = Hy_1(W\K) = Hy_1(W) — Hy_1(W, W\K) — (3.1)
with g = N that Hy (Iese, L) & Hy(W, W\K) ® Hy (W, W\K) > 2. |

Lemma 3.3. Suppose that (U,K,e) C H x H x R* satisfies (1) - (6). Suppose in
addition that Ho(Ioye N U) = Ho((Ie4e NU)\K) = 1. Then Hi(Ioye,lc) = 0 or
Ho(Icte,Ic) = 2 holds.

We can now prove Theorem 1.

Proof of Theorem. Let (U, K,¢) be the triple constructed above. We have by
Proposition 2.1 and Proposition 2.2 that Hy(Iotc, Ic) = 2 and Hy(Io4e, L) = 0 for g # 1.
Now suppose that (I.4. NU)\K is disconnected. Then since Ho((Io+e NU)\K) > 2, we
find by Lemma 3.2 that Hy (Icqe, I¢) = 2. This is a contradiction. On the other hand, if
U\K is connected, then Hyo(U\K) = 1. Then by Lemma 3.3, we have H;(Io4¢,Ic) =0
or Ho(I4e,I.) = 2. This is a contradiction. Thus we obtain that there exists a positive
solution of (P). L 1
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