<table>
<thead>
<tr>
<th>Title</th>
<th>Covering dimension and nonlinear equations (NONLINEAR ANALYSIS AND CONVEX ANALYSIS)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Author(s)</td>
<td>RICCIERI, BIAGIO</td>
</tr>
<tr>
<td>Citation</td>
<td>数理解析研究所講究録 (1998), 1031: 97-100</td>
</tr>
<tr>
<td>Issue Date</td>
<td>1998-04</td>
</tr>
<tr>
<td>URL</td>
<td>http://hdl.handle.net/2433/61855</td>
</tr>
<tr>
<td>Right</td>
<td></td>
</tr>
<tr>
<td>Type</td>
<td>Departmental Bulletin Paper</td>
</tr>
<tr>
<td>Textversion</td>
<td>publisher</td>
</tr>
</tbody>
</table>

Kyoto University
Covering dimension and nonlinear equations

BIAGIO RICCERI

For a set S in a Banach space, we denote by $\dim(S)$ its covering dimension ([1], p.42). Recall that, when S is a convex set, the covering dimension of S coincides with the algebraic dimension of S, this latter being understood as ∞ if it is not finite ([1], p.57). Also, \overline{S} and $\text{conv}(S)$ will denote the closure and the convex hull of S, respectively.

In [3], we proved what follows.

THEOREM A ([3], Theorem 1). - Let X,Y be two Banach spaces, $\Phi : X \to Y$ a continuous, linear, surjective operator, and $\Psi : X \to Y$ a continuous operator with relatively compact range.

Then, one has

$$\dim(\{x \in X : \Phi(x) = \Psi(x)\}) \geq \dim(\Phi^{-1}(0)).$$

In the present paper, we improve Theorem A by establishing the following result.

THEOREM 1. - Let X,Y be two Banach spaces, $\Phi : X \to Y$ a continuous, linear, surjective operator, and $\Psi : X \to Y$ a completely continuous operator with bounded range.

Then, one has

$$\dim(\{x \in X : \Phi(x) = \Psi(x)\}) \geq \dim(\Phi^{-1}(0)).$$

PROOF. First, assume that Φ is not injective. For each $x \in X$, $y \in Y$, $r > 0$, we denote by $B_X(x,r)$ (resp. $B_Y(y,r)$) the closed ball in X (resp. Y) of radius r centered at x (resp. y). By the open mapping theorem, there is $\delta > 0$ such that

$$B_Y(0, \delta) \subseteq \Phi(B_X(0,1)).$$

Since $\Psi(X)$ is bounded, there is $\rho > 0$ such that

$$\overline{\Psi(X)} \subseteq B_Y(0, \rho).$$

Consequently, one has

$$\overline{\Psi(X)} \subseteq \Phi\left(B_X\left(0, \frac{\rho}{\delta}\right)\right).$$

Now, fix any bounded open convex set A in X such that

$$B_X\left(0, \frac{\rho}{\delta}\right) \subseteq A.$$
Put
\[K = \overline{\Psi(A)}. \]

Since \(\Psi \) is completely continuous, \(K \) is compact. Fix any positive integer \(n \) such that \(n \leq \dim(\Phi^{-1}(0)) \). Also, fix \(z \in K \). Thus, \(\Phi^{-1}(z) \cap A \) is a convex set of dimension at least \(n \). Choose \(n + 1 \) affinely independent points \(u_{z,1}, \ldots, u_{z,n+1} \) in \(\Phi^{-1}(z) \cap A \). By the open mapping theorem again, the operator \(\Phi \) is open, and so, successively, the multifunctions \(y \to \Phi^{-1}(y), \ y \to \Phi^{-1}(y) \cap A, \) and \(y \to \Phi^{-1}(y) \cap \overline{A} \) are lower semicontinuous. Then, applying the classical Michael theorem ([2], p.98) to the restriction to \(K \) of the latter multifunction, we get \(n + 1 \) continuous functions \(f_{z,1}, \ldots, f_{z,n+1} \), from \(K \) into \(\overline{A} \), such that, for all \(y \in K, \ i = 1, \ldots, n+1 \), one has
\[\Phi(f_{z,i}(y)) = y \]
and
\[f_{z,i}(z) = u_{z,i}. \]

Now, for each \(i = 1, \ldots, n + 1 \), fix a neighbourhood \(U_{z,i} \) of \(u_{z,i} \) in \(A \) in such a way that, for any choice of \(w_i \) in \(U_{z,i} \), the points \(w_1, \ldots, w_{n+1} \) are affinely independent. Now, put
\[V_z = \bigcap_{i=1}^{n+1} f_{z,i}^{-1}(U_{z,i}). \]

Thus, \(V_z \) is a neighbourhood of \(z \) in \(K \). Since \(K \) is compact, there are finitely many \(z_1, \ldots, z_p \in K \) such that \(K = \bigcup_{j=1}^{p} V_{z_j} \). For each \(y \in K \), put
\[F(y) = \mathrm{conv}(\{f_{z_j,i}(y) : j = 1, \ldots, p, \ i = 1, \ldots, n+1\}). \]

Observe that, for some \(j \), one has \(y \in V_{z_j} \), and so \(f_{z_j,i}(y) \in U_{z,j,i} \) for all \(i = 1, \ldots, n + 1 \). Hence, \(F(y) \) is a compact convex subset of \(\Phi^{-1}(y) \cap \overline{A} \), with \(\dim(F(y)) \geq n \). Observe also that the multifunction is \(F \) is continuous ([2], p.86 and p.89) and that the set \(F(K) \) is compact ([2], p.90). Put
\[C = \overline{\mathrm{conv}(F(K))}. \]

Furthermore, note that, by continuity, one has \(\Psi(\overline{A}) \subseteq K \). Finally, consider the multifunction \(G : C \to 2^C \) defined by putting
\[G(x) = F(\Psi(x)) \]
for all \(x \in C \). Hence, \(G \) is a continuous multifunction, from the compact convex set \(C \) into itself, whose values are compact convex sets of dimension at least \(n \). Consequently, by the result of [4], one has
\[\dim(\{x \in C : x \in G(x)\}) \geq n. \]
But, since
\[\{ x \in C : x \in F(\Psi(x)) \} \subseteq \{ x \in C : x \in \Phi^{-1}(\Psi(x)) \} \]
the conclusion follows ([1], p.220). Finally, if \(\Phi \) is injective, the conclusion
means simply that the set \(\{ x \in X : \Phi(x) = \Psi(x) \} \) is non-empty, and this is
got readily proceeding as before. \(\triangle \) In [3], we indicated some
examples of application of Theorem A. We now point out an application of
Theorem 1 which cannot be obtained from Theorem A. For a Banach space
\(E \), we denote by \(\mathcal{L}(E) \) the space of all continuous linear operators from \(E \)
into \(E \), with the usual norm. Also, \(I \) will denote a (non-degenerate) compact
real interval. THEOREM 2. - Let \(E \) be an infinite-dimensional Banach
space, \(A : I \rightarrow \mathcal{L}(E) \) a continuous function and \(f : I \times E \rightarrow E \) a uniformly
continuous function with relatively compact range.

Then, one has
\[\dim(\{ u \in C^1(I, E) : u'(t) = A(t)(u(t)) + f(t, u(t)) \forall t \in I \}) = \infty. \]

PROOF. Take \(X = C^1(I, E) \), \(Y = C^0(I, E) \) and \(\Phi(u) = u'(\cdot) - A(\cdot)(u(\cdot)) \)
for all \(u \in X \). So, by a classical result, \(\Phi \) is a continuous linear operator from
\(X \) onto \(Y \) such that \(\dim(\Phi^{-1}(0)) = \infty \). Next, put \(\Psi(u) = f(\cdot, u(\cdot)) \)
for all \(u \in X \). So, \(\Psi \) is an operator from \(X \) into \(Y \) with bounded range. From our
assumptions, thanks to the Ascoli-Arzelà theorem, it also follows that \(\Psi \) is
completely continuous. Then, the conclusion follows directly from Theorem
1. \(\triangle \)

Analogously, one gets from Theorem 1 the following

THEOREM 3. - Let \(A : I \rightarrow \mathcal{L}(\mathbb{R}^n) \) be a continuous function and \(f : I \times \mathbb{R}^n \rightarrow \mathbb{R}^n \) a continuous and bounded function.

Then, one has
\[\dim(\{ u \in C^1(I, \mathbb{R}^n) : u'(t) = A(t)(u(t)) + f(t, u(t)) \forall t \in I \}) \geq n. \]

THEOREM 4. - Let \(a_1, \ldots, a_k \) be \(k \) continuous real functions on \(I \). Fur-
ther, let \(f : I \times \mathbb{R}^k \rightarrow \mathbb{R} \) be a continuous and bounded function.

Then, one has
\[\dim\left(\left\{ u \in C^k(I) : u^{(k)}(t) + \sum_{i=1}^{k} a_i(t)u^{(k-i)}(t) = f(t, u(t), u'(t), \ldots, u^{(k-1)}(t)) \forall t \in I \right\} \right) \geq k. \]

References

Department of Mathematics
University of Catania
Viale A. Doria 6
95125 Catania, Italy