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Covering dimension and nonlinear equations

BIAGIO RICCERI

For a set S in a Banach space, we denote by dim(.S) its covering dimension
([1],p-42). Recall that, when S is a convex set, the covering dimension of S
coincides with the algebraic dimension of S, this latter being understood as
oo if it is not finite ([1], p.57). Also, S and conv(S) will denote the closure
and the convex hull of S, respectively.

In 3], we proved what follows.

THEOREM A ([3], Theorem 1). - Let X,Y be -two Banach spaces,
® : X = Y a continuous, linear, surjective operator, and ¥ : X — Y a
continuous operator with relatively compact range.

Then, one has

dim({z € X : ®(z) = ¥(x)}) > dim(®*(0)).

In the present paper, we improve Theorem A by establishing the follOWing
result.

THEOREM 1. - Let X,Y be two Banach spaces, ® : X — Y a contin-
wous, linear, surjective operator, and ¥ : X — Y a completely continuous
operator with bounded range.

Then, one has

dim({z € X : ®(z) = ¥(x)}) > dim(®*(0)).

PROOF. First, assume that ® is not injective. For each z € X, y € Y,
r > 0, we denote by Bx(z,r) (resp. By(y,7)) the closed ball in X (resp. Y)
of radius r centered at x (resp. y). By the open mapping theorem, there is
¢ > 0 such that

By(0,6) C B(Bx(0,1)).
Since ¥(X) is bounded, there is p > 0 such that

m - BY(0> p)'

Consequently, one has

< (o 05)

Now, fix any bounded open convex set A in X such that

p
M C .
By (0, 5) cA



Put

K = V(A).
Since ¥ is completely continuous, K is compact. Fix any positive inte-
ger n such that n < dim(®~1(0)). Also, fix z € K. Thus, ®71(2) N A is
a convex set of dimension at least n. Choose n + 1 affinely independent
points U, 1, ..., Uz nt1 in ®71(2) N A. By the open mapping theorem again,

the operator ® is open, and so, successively, the multifunctions y — ®~*(y),

y— & (y)N A, and y — &~1(y) N A are lower semicontinuous. Then, ap-
plying the classical Michael theorem ([2], p.98) to the restriction to K of the
latter multifunction, we get » + 1 continuous functions f,1,..., f; n+1, from
K into A, such that, forall y € K,i=1,...,n+ 1, one has

(fiy)) =y

and
fz,i(z) = Uzy- -
Now, for each i = 1,...,m + 1, fix a neighbourhood U,; of u,; in A in such

a way that, for any choice of w; in U,;, the points wj, ..., w41 are affinely

independent. Now, put
. n+1

V=) f1U.).
=1

Thus, V, is a neighbourhood of z in K. Since K is compact, there are finitely
many 21, ..., % € K such that K = U?_,V,.. For each y € K, put

F(y) = conv({fui(0) : § = 1,y i = 1,cym + 1}).

Observe that, for some j, one has y € V,,, and so f,,:(y) € U,,;; for all
i=1,...,n+1. Hence, F(y) is a compact convex subset of ®~!(y) N A, with
dim(F(y)) > n. Observe also that the multifunction is F is continuous ([2],
'p.86 and p.89) and that the set F'(K) is compact ([2], p.90). Put

C = conv(F(K)).

Furthermore, note that, by continuity, one has ¥(A) C K. Finally, consider
the multifunction G : C — 2€ defined by putting

G(a) = F(¥(a))

for all z € C. Hence, G is a continuous multifunction, from the compact -

convex set C into itself, whose values are compact convex sets of dimension
at least n. Consequently, by the result of [4], one has

dim({z € C :z € G(z)}) > n.
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But, since
{r€C:2eF(¥(2)} C{recC:zecd ™ (¥())}

the conclusion follows ([1], p.220). Finally, if & is injectix)e, the conclusion
means simply that the set {z € X : ®(z) = ¥(z)} is non-empty, and this is
got readily proceeding as before. A In [3], we indicated some

examples of application of Theorem A. We now point out an application of
Theorem 1 which cannot be obtained from Theorem A. For a Banach space
E, we denote by L(E) the space of all continuous linear operators from FE
into F, with the usual norm. Also, I will denote a (non-degenerate) compact
real interval. THEOREM 2. - Let E be an infinite-dimensional Banach

space, A : I — L(E) a continuous function and f : I x E — E a uniformly
continuous function with relatively compact range.
Then, one has

dim({u € C'(I, E) : ¥'(t) = A(t)(u(t)) + f(t,u(t)) Vt € I}) =

PROOF. Take X = C'(I,E), Y = C°(I,E) and ®(u) = v'(-) — A(-)(u("))
for all u € X. So, by a classical result, ® is a continuous linear operator from
X onto Y such that dim(®7!(0)) = co. Next, put ¥(u) = f(-,u(-)) for all
u € X. So, ¥ is an operator from X into Y with bounded range. From our
assumptions, thanks to the Ascoli-Arzela theorem, it also follows that ¥ is
completely continuous. Then, the conclusion follows directly from Theorem
1. ‘ A

Analogously, one gets from Theorem 1 the following

THEOREM 3. - Let A : I — L(R") be a continuous function and f :
I xR™ = R" a continuous and bounded function.
Then, one has

dim({u € C}(I,R™) : 4/(t) = A)(u(t)) + f(t,u®)) VteI}) >n
THEOREM 4. - Let a4, ...,ax be k continuous real functions on I. Fur-

ther, let f : I x R¥ — R be a continuous and bounded function.
Then, one has

dim <{u € CH(I) - u® (t) + Za Bu*D (1) = f(t, u(t), ' ?),....,uFD (@) Vi € I}) > k.

References

[1] R. ENGELKING, Theory of dimensions, finite and infinite, Heldermann
Verlag, 1995.



[2] E. KLEIN and A. C. THOMPSON, Theory of correspondences, John
Wiley and Sons, 1984.

[3] B. RICCERI, On the topological dimension of the solution set of a class
of nonlinear equations, C. R. Acad. Sci. Paris, Série I, 325 (1997), 65-70.

[4] J. SAINT RAYMOND, Points fizes des multiapplications a valeurs con-
vezes, C. R. Acad. Sci. Paris, Série I, 298 (1984), 71-74.

Department of Mathematics
University of Catania

Viale A. Doria 6

95125 Catania, Italy

100



