<table>
<thead>
<tr>
<th>Title</th>
<th>Von Neumann-Jordan constant and some geometrical constants of Banach spaces (NONLINEAR ANALYSIS AND CONVEX ANALYSIS)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Author(s)</td>
<td>KATO, Mikio; MALIGRANDA, Lech; TAKAHASHI, Yasuji</td>
</tr>
<tr>
<td>Citation</td>
<td>数理解析研究所講究録 (1998), 1031: 68-74</td>
</tr>
<tr>
<td>Issue Date</td>
<td>1998-04</td>
</tr>
<tr>
<td>URL</td>
<td>http://hdl.handle.net/2433/61859</td>
</tr>
<tr>
<td>Right</td>
<td></td>
</tr>
<tr>
<td>Type</td>
<td>Departmental Bulletin Paper</td>
</tr>
<tr>
<td>Textversion</td>
<td>publisher</td>
</tr>
</tbody>
</table>

Kyoto University
Von Neumann-Jordan constant and some geometrical constants of Banach spaces

Mikio KATO (加藤幹雄)*, Lech MALIGRANDA†
and Yasuji TAKAHASHI (髙橋泰嗣)†

Kyushu Institute of Technology*, Luleå University†
and Okayama Prefectural University†

In this note some recent results of the authors are announced concerning von Neumann-Jordan (NJ-) constant, non-square (or James) constant, and normal structure coefficient for a Banach space.

A sequence of results on the NJ-constant of a Banach space X, we denote it by $c_{NJ}(X)$, has been recently obtained by the first and third authors, etc. ([8, 9, 10, 11, 12, 14]; refer to [2, 7] for classical results). Their concerns were/are as follows:

(i) Determine or estimate $c_{NJ}(X)$ for various X.

(ii) What informations does $c_{NJ}(X)$ give about X?

Here we discuss the following question raised by the second author:

(iii) What is the relation between $c_{NJ}(X)$ and some other geometrical constants of X?

In particular we estimate $c_{NJ}(X)$ with the non-square (or James) constant $J(X)$, and also the normal structure coefficient $N(X)$ with $c_{NJ}(X)$. An estimate for $J(X^*)$ with $J(X)$ is given as well.

The von Neumann-Jordan (NJ-) constant for a Banach space X (Clarkson [2]), $c_{NJ}(X)$, is the smallest constant for which
\[
\frac{1}{C} \leq \frac{\|x+y\|^2 + \|x-y\|^2}{2(\|x\|^2 + \|y\|^2)} \leq C \quad \forall (x, y) \neq (0, 0).
\]

The non-square (or James) constant of \(X\) (Gao-Lau [3]) is defined by

\[
J(X):= \sup_{x,y \in S_X} \min\{\|x+y\|, \|x-y\|\},
\]

where \(S_X\) stands for the unit sphere of \(X\). We recall some notions related with \(J(X)\):

(i) \(X\) is called uniformly convex ([1]) if for any \(\epsilon\) \((0 < \epsilon < 2)\) there exists a \(\delta > 0\) such that

\[
\|x-y\| \geq \epsilon \quad (x, y \in S_X) \quad \Rightarrow \quad \|(x+y)/2\| \leq 1 - \delta.
\]

(ii) \(X\) is called uniformly non-square (James [6]) if there exists a \(\delta > 0\) \((0 < \delta < 1)\) such that

\[
\|(x-y)/2\| > 1 - \delta \quad (x, y \in S_X) \quad \Rightarrow \quad \|(x+y)/2\| \leq 1 - \delta.
\]

The difference between (3) and (4) is clear: In (3) we can let \(\epsilon \to 0\). On the contrary, in (4) we cannot do it, that is, we can only get the same conclusion as (3) for \(x, y \in S_X\) apart from each other to some extent.

(iii) The modulus of convexity of \(X\) ([1]) is defined by

\[
\delta_X(\epsilon) := \inf\{1 - \|(x+y)/2\| ; \|x-y\| \geq \epsilon, x, y \in S_X\}.
\]

Now, (4) is reformulated as

\[
\min\{\|x+y\|, \|x-y\|\} \leq 2(1 - \delta);
\]

thus we understand the above definition (2) of the non-square constant \(J(X)\) as a sort of modulus of non-squareness of \(X\). Gao and Lau [3] showed that

\[
J(X) = \sup\{\epsilon > 0 ; \delta_X(\epsilon) \leq 1 - \epsilon/2\}.
\]
1. Comparison of NJ- and James constant

We compare some known facts on NJ- and James constants:

(i) For any Banach space \(X \)

\[
1 \leq c_{NJ}(X) \leq 2,
\]

\[
\sqrt{2} \leq J(X) \leq 2 \quad (\text{dim } X \geq 2)
\]

(ii) \(X \): a Hilbert space \(\iff \) \(c_{NJ}(X) = 1 \),

\(X \): a Hilbert space \(\Rightarrow \) \(J(X) = \sqrt{2} \)

(iii) \(X \): uniformly non-square \(\iff \) \(c_{NJ}(X) < 2 \) (Takahashi-Kato[14])

\(\iff \) \(J(X) < 2 \) (clear by definition)

(iv) Let \(1 \leq p \leq 2 \), \(1/p + 1/p' = 1 \). Then

\[
c_{NJ} (L_p) = c_{NJ} (L_{p'}) = 2^{2/p-1},
\]

\[
J(L_p) = J(L_{p'}) = 2^{1/p}.
\]

2. Relation between \(c_{NJ}(X) \) and \(J(X) \)

Theorem 1. For any Banach space \(X \)

\[
\frac{1}{2} J(X)^2 \leq c_{NJ}(X) \leq \frac{J(X)^2}{(J(X)-1)^2 + 1}.
\]

Remarks. According to the facts stated in the preceding section, equality occurs in (7) with several spaces:

(i) \(\frac{1}{2} J(L_p)^2 = c_{NJ}(L_p) \); the same is true for \(W^k_p(\Omega) \) (Sobolev space), \(c_p \) (space of \(p \)-Schatten class operators) and \(L_p(L_q) \) (\(L_q \)-valued \(L_p \)-space), etc.
(ii) For a Hilbert space \mathbf{H}, $\frac{1}{2} J(\mathbf{H})^2 = C_{NJ}(\mathbf{H}) = 1$.

(iii) If \mathbf{X} is not uniformly non-square,

$$\frac{1}{2} J(\mathbf{X})^2 = C_{NJ}(\mathbf{X}) = \frac{J(\mathbf{X})^2}{(J(\mathbf{X}) - 1)^2 + 1} = 2.$$

3. Relation between $J(\mathbf{X})$ and $J(\mathbf{X}^*)$

For the dual space \mathbf{X}^* it is known that $C_{NJ}(\mathbf{X}^*) = C_{NJ}(\mathbf{X})$, whereas $J(\mathbf{X}^*) \neq J(\mathbf{X})$ in general. In [4] Gao and Lau ask what relation $J(\mathbf{X})$ and $J(\mathbf{X}^*)$ have. We have the following

Theorem 2. For any Banach space \mathbf{X}

$$2J(\mathbf{X}) - 2 \leq J(\mathbf{X}^*) \leq \frac{J(\mathbf{X})}{2} + 1.$$

Remark. If \mathbf{X} is not uniformly non-square,

$$2J(\mathbf{X}) - 2 = J(\mathbf{X}^*) = \frac{J(\mathbf{X})}{2} + 1 = 2.$$

Corollary. \mathbf{X}^* is uniformly non-square if and only if \mathbf{X} is so.

This result seems not to have appeared in literature.

4. NJ-constant and normal structure of Banach spaces

A Banach space \mathbf{X} is said to have *normal structure* provided for any bounded convex subset \mathbf{K} of \mathbf{X} with $\text{diam} \mathbf{K} > 0$, its radius $r(\mathbf{K})$ is less than $\text{diam} \mathbf{K}$, that is,

$$r(\mathbf{K}) < \text{diam} \mathbf{K}.$$

If there exists some c ($0 < c < 1$) such that

(8) $$r(\mathbf{K}) \leq c \cdot \text{diam} \mathbf{K},$$
X is said to have uniform normal structure. The smallest c \((0 < c \leq 1)\) satisfying (8) for all K (bounded convex) with $\text{diam } K > 0$, is called the normal structure coefficient of X and denoted by $N(X)$. Clearly $0 \leq N(X) \leq 1$; and X has uniform normal structure if and only if $N(X) < 1$. These notions are strongly connected with the fixed point property. X is said to have fixed point property (FPP) (for non-expansive mappings) provided for any non-empty bounded convex subset K of X, every non-expansive mapping $T: K \to K$ has a fixed point. It is known ([5]) that (i) if X is reflexive and has the normal structure, then X has FPP; (ii) if X has the uniform normal structure, then X is reflexive, whence X has FPP.

Now, Gao and Lau [4] showed that:

If $J(X) < 3/2$, then X has the uniform normal structure.

Prus [13] gave more precisely the following estimate for $N(X)$ by $J(X)$:

For any Banach space X,

\[
N(X) \leq \frac{1}{J(X) + 1 - \left\{ (J(X) + 1)^2 - 4 \right\}^{1/2}}.
\]

Note that the estimate (9) implies that if $J(X) < 3/2$ then $N(X) < 1$. (One should also note here that the definition of $N(X)$ in Prus [11] is the reciprocal of our $N(X)$.) We present the following estimate for $N(X)$ by NJ-constant:

Theorem 3. For any Banach space X

\[
N(X) \leq \left\{ C_{NJ}(X) - \frac{1}{4} \right\}^{1/2}.
\]

Theorem 4. Let $C_{NJ}(X) < 5/4$. Then X, as well as X^*, has the uniform normal structure; and hence $X (X^*)$ has the fixed point property.
Indeed, the above estimate (10) implies that if $C_{NJ}(X) < 5/4$, then $N(X) < 1$. The assertion for X^* is a consequence of the fact that $C_{NJ}(X^*) = C_{NJ}(X)$.

Remarks. (i) For the spaces with $C_{NJ}(X) = \frac{1}{2} J(X)^2$ (recall Remarks after Theorem 1), Gao and Lau's condition $J(X) < 3/2$ is rewritten as $C_{NJ}(X) < 9/8$; thus our condition $C_{NJ}(X) < 5/4 = 10/8$ is weaker than theirs in this case.

(ii) The normal structure is not inherited by dual spaces ([4; esp. p. 63]).

References

*Department of Mathematics, Kyushu Institute of Technology, Tobata, Kitakyushu 804, Japan

†Department of Mathematics, Luleå University, S-951 87 Luleå, Sweden

‡Department of System Engineering, Okayama Prefectural University, Soja 719-11, Japan