# Zygmund type results for the best approximation in Banach spaces

## Toshihiko Nishishiraho(西白保敏彦)

College of Science, University of the Ryukyus(琉球大学理学部)

#### 1. Introduction

Let  $C_{2\pi}$  denote the Banach space of all  $2\pi$ -periodic, continuous functions on the real line R with the norm

$$||f||_{\infty} = \max\{|f(t)| : |t| \le \pi\}.$$

Let N be the set of all positive integers, and put  $N_0 = N \cup \{0\}$ . For each  $n \in N_0$ , we denote by  $\mathcal{T}_n$  the set of all trigonometric polynomials of degree at most n. For a given  $f \in C_{2\pi}$ , we define

$$E_n(C_{2\pi};f)=\inf\{||f-g||_{\infty}:g\in\mathcal{T}_n\},\,$$

which is called the best approximation of degree n to f with respect to  $\mathcal{T}_n$ . Since  $\mathcal{T}_n$  is the 2n+1-dimensional Chebyshev subspace of  $C_{2\pi}$ , for each  $f \in C_{2\pi}$ , there exists a unique trigonometric polynomial  $g_n \in \mathcal{T}_n$  of the best approximation of f with respect to  $\mathcal{T}_n$ , i.e., such that

$$E_n(C_{2\pi};f) = ||f - g_n||$$

(see, e.g., [9; Chapter 2, Theorem 6]).

The classical Weierstrass approximation theorem simply states that the sequence  $\{E_n(C_{2\pi};f)\}$  converges to zero as n tends to infinity for every  $f \in C_{2\pi}$ . It does not say how fast  $E_n(C_{2\pi};f)$  approaches zero. In general, the smoother the function, the faster  $E_n(C_{2\pi};f)$  tends to zero. The results that guarantee this event are sometimes called the direct theorems of Jackson-type (cf. [7]). Conversely, the inverse theorems of Bernstein-type assert that a function f has certain smoothness properties if  $E_n(C_{2\pi};f)$  tends rapidly enough to zero, then f has certain smoothness properties, which are usually given in terms of its modulus of continuity, Lipschitz classes, and differentiability properties. These results have been developed further by Zygmund [22] as follows (cf. [2; Chpater 2], [9; Chapter 4], [10; Chapters IV and V], [20; Chapters V and VI]):

Let  $f \in C_{2\pi}$  and  $r \in \mathbb{N}_0$ . Then

$$E_n(C_{2\pi}; f) = o(n^{-r-1}) \qquad (n \to \infty)$$

if and only if f is r-times continuously differentiable on R and

$$\omega^*(C_{2\pi}; f^{(r)}, \delta) = o(\delta) \qquad (\delta \to +0),$$

where

$$\omega^*(C_{2\pi}; f^{(r)}, \delta) = \sup\{\|f^{(r)}(\cdot + t) + f^{(r)}(\cdot - t) - 2f^{(r)}(\cdot)\|_{\infty} : |t| \le \delta\}.$$

In particular,

$$E_n(C_{2\pi}; f) = o(n^{-1})$$
  $(n \to \infty) \iff \omega^*(C_{2\pi}; f, \delta) = o(\delta)$   $(\delta \to +0).$ 

Also, if

$$\omega^*(C_{2\pi}; f, \delta) = o(\delta) \qquad (\delta \to +0),$$

then

$$\omega(C_{2\pi}; f, \delta) = o(\delta |\log \delta|) \qquad (\delta \to +0),$$

where

$$\omega(C_{2\pi}; f, \delta) = \sup\{||f(\cdot - t) - f(\cdot)||_{\infty} : |t| \le \delta\}$$

denotes the modulus of continuity of f. All the results remain true if o is replaced by O.

The statements ananogous to these results also holds for the Banach space  $L^p_{2\pi}$  consisting of all  $2\pi$ -periodic, pth power Lebesgue integrable functions f on R with the norm

$$||f||_p = \left(\frac{1}{2\pi} \int_{-\pi}^{\pi} |f(t)|^p dt\right)^{1/p} \qquad (1 \le p < \infty).$$

Furthermore, in [3] these results were generalized by means of the higher order moduli of continuity and consequently, a generalization of the classical theorem of de la Vallée Poussin approximation theorem (cf. [5], [17]) was obtained.

The purpose of this paper is to extend the above-mentioned results to arbitrary Banach spaces. We refer to [16] for detailed treatments (cf. [13], [14], [15]).

## 2. Groups of multiplier operators and moduli of continuity

Let X be a Banach space with norm  $\|\cdot\|_X$ , and let B[X] denote the Banach algebra of all bounded linear operators of X into itself with the usual operator norm  $\|\cdot\|_{B[X]}$ . Let Z denote the set of all integers, and let  $\{P_j: j \in Z\}$  be a sequence of projection operators in B[X] satisfying the following conditions:

- (P-1) The projections  $P_j, j \in \mathbb{Z}$ , are mutually orthogonal, i.e.,  $P_j P_n = \delta_{j,n} P_n$  for all  $j, n \in \mathbb{Z}$ , where  $\delta_{j,n}$  denotes the Kronecker's symbol.
- (P-2)  $\{P_j : j \in \mathbb{Z}\}$  is fundamental, i.e., the linear span of  $\bigcup_{j \in \mathbb{Z}} P_j(X)$  is dense in X.
- (P-3)  $\{P_j: j \in \mathbb{Z}\}$  is total, i.e., if  $f \in X$  and  $P_j(f) = 0$  for all  $j \in \mathbb{Z}$ , then f = 0. For any  $f \in X$ , we associate its (formal) Fourier series expansion with respect to  $\{P_j: j \in \mathbb{Z}\}$

$$f \sim \sum_{j=-\infty}^{\infty} P_j(f).$$

An operator  $T \in B[X]$  is called a multiplier operator on X if there exists a sequence  $\{\tau_j : j \in Z\}$  of scalars such that for every  $f \in X$ ,

$$T(f) \sim \sum_{j=-\infty}^{\infty} \tau_j P_j(f),$$

and the following notation is used:

$$T \sim \sum_{j=-\infty}^{\infty} \tau_j P_j$$

Thus, this is implies that  $P_jT = \tau_j P_j$  for all  $j \in \mathbb{Z}$  (cf. [4], [11], [12], [21]).

Let M[X] denote the set of all multiplier operators on X, which is a commutative closed subalgebra of B[X] containing the identity operator I. Let  $\{T_t : t \in \mathbb{R}\}$  be a family of operators in M[X] satisfying

$$||T_t||_{B[X]} \le 1$$
 for all  $t \in \mathbb{R}$ 

and having the expansions

$$T_t \sim \sum_{j=-\infty}^{\infty} e^{-ijt} P_j \qquad (t \in \mathbb{R}).$$

Then  $\{T_t : t \in \mathbb{R}\}$  becomes a strongly continuous group of operators in B[X] and we have

$$G^r(P_j(g)) = (-ij)^r P_j(g) \qquad (g \in X, j \in \mathbb{Z}, r \in \mathbb{N})$$

and

$$G^r(f) \sim \sum_{j=-\infty}^{\infty} (-ij)^r P_j(f) \qquad (f \in D(G^r), r \in \mathbb{N}),$$

where G is the infinitesimal generator of  $\{T_t : t \in \mathbb{R}\}$  with domain D(G) (cf. [11, Proposition 2]). For the basic theory of semigroups of operators on Banach spaces, we refer to [1] and [6].

For each  $r \in \mathbb{N}_0$  and  $t \in \mathbb{R}$ , we define

$$\Delta_t^0 = I, \quad \Delta_t^r = (T_t - I)^r = \sum_{m=0}^r (-1)^{r-m} \binom{r}{m} T_{mt} \qquad (r \ge 1),$$

which stands for the r-th iteration of  $T_t$ . Then  $\Delta_t^r$  belongs to M[X] and

$$\|\Delta_t^r\|_{B[X]} \le 2^r$$
,  $\Delta_t^r \sim \sum_{j=-\infty}^{\infty} (e^{-ijt} - 1)P_j$ .

If  $r \in \mathbb{N}_0$ ,  $f \in X$  and  $\delta \geq 0$ , then we define

$$\omega_r(X; f, \delta) = \sup\{\|\Delta_t^r(f)\|_X : |t| \le \delta\},\,$$

which is called the r-th modulus of continuity of f with respect to  $\{T_t : t \in \mathbb{R}\}$ . This quantity has the following properties ([15; Lemma 1]):

**Lemma 1.** Let  $r \in \mathbb{N}$  and  $f \in X$ .

- (a)  $\omega_r(X; f, \delta) \leq 2^r ||f||_X \qquad (\delta \geq 0).$
- (b)  $\omega_r(X;f,\cdot)$  is a non-decreasing function on  $[0,\infty)$  and  $\omega_r(X;f,0)=0$ .
- (c)  $\omega_{r+s}(X;f,\delta) \leq 2^r \omega_s(X;f,\delta)$   $(s \in \mathbb{N}_0, \delta \geq 0)$ . In particular, we have

$$\lim_{\delta \to +0} \omega_r(X; f, \delta) = 0.$$

(d) 
$$\omega_r(X; f, \xi \delta) \le (1 + \xi)^r \omega_r(X; f, \delta)$$
  $(\xi, \delta \ge 0)$ .

(e) If  $0 < \delta \le \xi$ , then

$$\omega_r(X; f, \xi)/\xi^r \le 2^r \omega_r(X; f, \delta)/\delta^r$$
.

(f) If  $f \in D(G^r)$ , then

$$\omega_{r+s}(X; f, \delta) \le \delta^r \omega_s(X; G^r(f), \delta) \qquad (s \in \mathbb{N}_0, \delta > 0).$$

(g)  $\omega_r(X;\cdot,\delta)$  is a seminorm on X for each  $\delta \geq 0$ .

For each non-negative integer n, let  $M_n$  be the linear span of  $\{P_j(X): |j| \leq n\}$ , and we define

$$E_n(X; f) = \inf\{||f - g||_X : g \in M_n\},\$$

which is called the best approximation of degree n to f with respect to  $M_n$ . Then we have

$$E_0(X; f) \ge E_1(X; f) \ge \cdots \ge E_n(X; f) \ge E_{n+1}(X; f) \ge \cdots \ge 0,$$

and Condition (P-2) implies that

$$\lim_{n\to\infty} E_n(X;f) = 0 \quad \text{for every } f \in X.$$

In order to achieve our purpose, we need the following Bernstein-type inequality ([16; Lemma 5]), which plays an important role in the derivation of certain smoothness properties of an element  $f \in X$  from the hypothesis that the sequence  $\{E_n(X;f)\}$  tends to zero with a given rapidity.

**Lemma 2.** Let  $n \in \mathbb{N}_0$  and  $r \in \mathbb{N}$ . Then

$$||G^r(f)||_X \le (2n)^r ||f||_X$$

holds for all  $f \in M_n$ .

#### 3. The main theorem

Here we suppose that for each given  $f \in X$  and each  $n \in \mathbb{N}_0$ , there exists an element  $f_n \in M_n$  of the best approximation of f with respect to  $M_n$ , i.e., such that

(1) 
$$E_n(X;f) = ||f - f_n||_X.$$

Remark 1. If the dimension of  $M_n$  is finite, then every element  $f \in X$  has an element of the best approximation with respect to  $M_n$ . Also, if X is a uniformly convex Banach space, then every  $f \in X$  has a unique element of the best approximation with respect to  $M_n$ . In particular, if X is a Hilbert space, then for each  $f \in X$  there exists a unique element of the best approximation of f with respect to  $M_n$ . For the general theory of the best approximation in normed linear spaces, we refer to [19].

Let  $a \in \mathbb{N}$ ,  $a \geq 2$  and let  $\Omega \neq 0$  be a non-negative, monotone decreasing function on  $[a, \infty]$  satisfying the following conditions

$$\lim_{x \to \infty} \Omega(x) = 0$$

and

$$\int_{a}^{\infty} \frac{\Omega(x)}{x} \, dx < \infty.$$

Let  $\varphi$  be a non-negative, bounded function on  $[a, \infty)$  with  $\lim_{x\to\infty} \varphi(x) = 0$ , and we define

(4) 
$$\varphi^*(x) = \sup\{\varphi(t) : x \le t\} \qquad (x \ge a),$$

which is a non-negative, monotone decreasing function and  $\lim_{x\to\infty} \varphi^*(x) = 0$ . Obviously, if  $\varphi(x)$  monotonously decreases with x on  $[a, \infty)$ , then  $\varphi^*(x) = \varphi(x)$  for all  $x \geq a$ .

**Theorem 1.** Let  $f \in X$  and  $r \in \mathbb{N}_0$ . Suppose that

(5) 
$$E_n(X; f) \leq \varphi(n) \frac{\Omega(n)}{n^r} \quad \text{for all } n \geq a.$$

Then  $f \in D(G^r)$  and for every  $k \in \mathbb{N}$ ,

(6) 
$$\omega_k(X; G^r(f), \delta) = O\left(\delta^k \int_a^{a/\sqrt{\delta}} x^{k-1} \Omega(x) dx + \varphi^* \left(\frac{a}{\sqrt{\delta}}\right) \left(\delta^k \int_a^{a/\delta} x^{k-1} \Omega(x) dx + \int_{1/\delta}^{\infty} \frac{\Omega(x)}{x} dx\right)\right) \qquad (\delta \to +0).$$

**Proof.** Let  $f_n$  be an element of the best approximation of f with respect to  $M_n$ . Then by (1), (4) and (5), we have

(7) 
$$||f - f_{a^n}||_X \le \varphi(a^n) \frac{\Omega(a^n)}{a^{nr}} \le \varphi^*(a^n) \frac{\Omega(a^n)}{a^{nr}} \qquad (n \ge 1).$$

Put

(8) 
$$g_2 = f_{a^2}, \quad g_n = f_{a^n} - f_{a^{n-1}} \quad (n \ge 3).$$

Then it follows from (7) that

$$||g_n||_X \le ||f_{a^n} - f||_X + ||f - f_{a^{n-1}}||_X \le (1 + a^r) \frac{\varphi^*(a^{n-1})\Omega(a^{n-1})}{a^{nr}}$$

for all  $n \geq 3$ , and so Lemma 2 yields

(9) 
$$||G^r(g_n)||_X \le 2^r (1+a^r) \varphi^*(a^{n-1}) \Omega(a^{n-1}) \qquad (n \ge 3).$$

By (2), we have

$$\sum_{m=3}^{\infty} \Omega(a^{n-1}) \le \frac{a}{a-1} \int_{a}^{\infty} \frac{\Omega(x)}{x} \, dx < \infty,$$

which together with (9) implies that there exists an element  $g \in X$  such that

$$(10) g = \sum_{n=2}^{\infty} G^r(g_n).$$

Also, (2), (7) and (8) imply

$$f = \sum_{n=2}^{\infty} g_n.$$

Since  $G^r$  is a closed linear operator, it follows from (10) and (11) that  $f \in D(G^r)$  and

(12) 
$$G^r(f) = \sum_{n=2}^{\infty} G^r(g_n).$$

Now let  $0 < \delta < a^{-2}$ , and we choose two numbers  $m, s \in \mathbb{N}$  such that

$$m, s \ge 3, \quad a^{m-2} \le \frac{1}{\sqrt{\delta}} < a^{m-1}, \quad a^{s-2} \le \frac{1}{\delta} < a^{s-1}.$$

Then by (12) and Lemma 1(g), we obtain

$$\omega_k(X; G^r(f), \delta) \le \sum_{n=2}^m \omega_k(X; G^r(g_n), \delta)$$

$$+ \left(\sum_{n=m+1}^s \omega_k(X; G^r(g_n), \delta) + \omega_k \left(X; \sum_{n=s+1}^\infty G^r(g_n), \delta\right)\right)$$

$$= A + B,$$

say. By Lemma 1(f), Lemma 2 and (9), we have

$$\omega_{k}(X; G^{r}(g_{n}), \delta) \leq \delta^{k} \|G^{k}(G^{r}(g_{n}))\|_{X}$$

$$\leq \delta^{k}(2a^{n})^{k} \|G^{r}(g_{n})\|_{X} \qquad (n \geq 2)$$

$$\leq \delta^{k}(2a^{n})^{k} 2^{r} (1 + a^{r}) \varphi^{*}(a^{n-1}) \Omega(a^{n-1})$$

$$\leq \delta^{k}(2a^{n})^{k} 2^{r} (1 + a^{r}) \varphi^{*}(a^{2}) \Omega(a^{n-1}) \qquad (n \geq 3).$$

Thus we obtain

$$A \le \delta^{k} (2a^{2})^{k} ||G^{r}(g_{2})||_{X} + 2^{k+r} (1+a^{r}) \varphi^{*}(a^{2}) \delta^{k} \sum_{n=3}^{m} a^{kn} \Omega(a^{n-1})$$

$$\leq C_1 \delta^k \sum_{n=2}^m \left( a^{k(n-1)} - a^{k(n-1)-1} \right) \Omega(a^{n-1}),$$

where  $C_1 > 0$  is a contrant independent of  $\delta$  and m.

We first consider the case of  $\Omega(a^2) > 0$ . Then we have

(13) 
$$\sum_{n=2}^{m} \left( a^{k(n-1)} - a^{k(n-1)-1} \right) \Omega(a^{n-1}) \le (a^{2k} - a^{2k-1}) \Omega(a)$$

$$+ \sum_{n=3}^{m} \int_{a^{k(n-1)}}^{a^{k(n-1)}} \Omega(x^{1/k}) \, dx \le \frac{\Omega(a)}{\Omega(a^2)} \int_{a^{2k-1}}^{a^{2k}} \Omega(x^{1/k}) \, dx + \int_{a^{2k-1}}^{a^{k(m-1)}} \Omega(x^{1/k}) \, dx$$

$$\le \left( \frac{\Omega(a)}{\Omega(a^2)} + 1 \right) \int_{a^k}^{a^{k(m-1)}} \Omega(x^{1/k}) \, dx$$

$$\le \left( \frac{\Omega(a)}{\Omega(a^2)} + 1 \right) \int_{a^k}^{(a/\sqrt{\delta})^k} \Omega(x^{1/k}) \, dx.$$

Therefore, putting  $y = x^{1/k}$ , we get

$$A \leq kC_1 \left(\frac{\Omega(a)}{\Omega(a^2)} + 1\right) \delta^k \int_a^{a/\sqrt{\delta}} y^{k-1} \Omega(y) \, dy.$$

Next, let us estimate the term B. By Lemma 1(a), (f), Lemma 2 and (9) we have

$$B \leq 2^{k} \delta^{k} \sum_{n=m+1}^{s} a^{kn} \|G^{r}(g_{n})\|_{X} + 2^{k} \sum_{n=s+1}^{\infty} \|G^{r}(g_{n})\|_{X}$$

$$\leq 2^{k+r} (1+a^{r}) \left( \delta^{k} \sum_{n=m+1}^{s} a^{kn} \varphi^{*}(a^{n-1}) \Omega(a^{n-1}) + \sum_{n=s+1}^{\infty} \varphi^{*}(a^{n-1}) \Omega(a^{n-1}) \right)$$

$$\leq 2^{k+r} (1+a^{r}) \varphi^{*}(a^{m}) \left( \delta^{k} \sum_{n=m+1}^{s} a^{kn} \Omega(a^{n-1}) + \sum_{n=s+1}^{\infty} \Omega(a^{n-1}) \right)$$

$$\leq 2^{k+r} (1+a^{r}) \varphi^{*} \left( \frac{a}{\sqrt{\delta}} \right) \left( \delta^{k} \sum_{n=2}^{s} a^{kn} \Omega(a^{n-1}) + \sum_{n=s+1}^{\infty} \Omega(a^{n-1}) \right).$$

Proceeding as in the proof of (13), we have

$$\sum_{n=2}^{s} a^{kn} \Omega(a^{n-1}) = \frac{a^{k+1}}{a-1} \sum_{n=2}^{s} \left( a^{k(n-1)} - a^{k(n-1)-1} \right) \Omega(a^{n-1})$$

$$\leq \frac{a^{k+1}}{a-1} \left( \frac{\Omega(a)}{\Omega(a^2)} + 1 \right) \int_{a^k}^{a^{k(s-1)}} \Omega(x^{1/k}) dx$$

$$\leq \frac{a^{k+1}}{a-1} \left( \frac{\Omega(a)}{\Omega(a^2)} + 1 \right) \int_{a^k}^{(a/\delta)^k} \Omega(x^{1/k}) dx$$
$$= \frac{ka^{k+1}}{a-1} \left( \frac{\Omega(a)}{\Omega(a^2)} + 1 \right) \int_{a}^{a/\delta} y^{k-1} \Omega(y) dy,$$

and

$$\sum_{n=s+1}^{\infty} \Omega(a^{n-1}) \le \frac{a}{a-1} \int_{1/\delta}^{\infty} \frac{\Omega(x)}{x} dx.$$

Therefore, there exists a constant  $C_2 > 0$  indepedent of  $\delta$  such that

$$B \leq C_2 \varphi^* \left( \frac{a}{\sqrt{\delta}} \right) \left( \delta^k \int_a^{a/\delta} y^{k-1} \Omega(y) \, dy + \int_{1/\delta}^{\infty} \frac{\Omega(x)}{x} \, dx \right),$$

which together the estimate for A estabilies the desired equality (6).

In case  $\Omega(a^2)=0$ , (7) implies  $f=f_{a^2}\in M_{a^2}$ , and so Lemma 1(f) and Lemma 2 yield

(14) 
$$\omega_k(X; G^r(f), \delta) \le (2a^2)^k ||G^r(f)||_X \delta^k.$$

Also, we have

$$\int_{a}^{a/\sqrt{\delta}} x^{k-1} \Omega(x) \, x \ge \int_{a}^{a^{m-1}} x^{k-1} \Omega(x) \, dx \ge \int_{a}^{a^{2}} x^{k-1} \Omega(x) \, dx > 0,$$

which together with (14) clearly implies (6). The proof of the theorem is complete. Applying Theorem 1 to the case where

$$\Omega(x) = \frac{1}{x^{\alpha}}, \quad \alpha > 0,$$

we have the following.

Corollary 1. Let  $\alpha > 0, f \in X$  and  $r \in \mathbb{N}_0$ . If

$$E_n(X;f) = o\left(\frac{1}{n^{\alpha+r}}\right) \qquad (n\to\infty),$$

then f belongs to  $D(G^r)$  and for every  $k \in \mathbb{N}$ ,

$$\omega_k(X; G^r(f), \delta) = \begin{cases} o(\delta^{\alpha}) & (\alpha < k) \\ o(\delta^k |\log \delta|) & (\alpha = k) \end{cases} (\delta \to +0).$$

### 3 Applications to homogeneous Banach spaces

Here we restrict ourselves to the case where X is a homogeneous Banach spece, i.e., X satisfies the following conditions:

- (H-1) X is a linear subspace of  $L^1_{2\pi}$  with a norm  $||\cdot||_X$  under which it is a Banach space.
- (H-2)X is continuously embedded in  $L^1_{2\pi}$ , i.e., there exists a constant C > 0 such that  $||f||_1 \le C||f||_X$  for all  $f \in X$ 
  - (H-3) The left translation operator  $T_t$  defined by

$$T_t(f)(\cdot) = f(\cdot - t) \qquad (f \in X),$$

is isometric on X for each  $t \in \mathbb{R}$ .

(H-4) For each  $f \in X$ , the mapping  $t \mapsto T_t(f)$  is strongly continuous on R.

Typical examples of homogeneous Banach spaces are  $C_{2\pi}$  and  $L_{2\pi}^p$ ,  $1 \le p < \infty$ . For other examples, see [11] (cf. [8], [18]).

Now, we define the sequence  $\{P_j : j \in Z\}$  of projection operators in B[X] by

$$P_j(f)(\cdot) = \hat{f} e^{ij}$$
  $(f \in X),$ 

which satisfies Conditions (P-1), (P-2) and (P-3) just as Section 2 (cf. [8], [11]). Notice that  $M_n = \mathcal{T}_n$  and we have

$$\Delta_t^0(f) = f, \quad \Delta_t^r(f)(\cdot) = \sum_{m=0}^r (-1)^{r-m} \binom{r}{m} f(\cdot - mt) \qquad (f \in X, t \in \mathbb{R}, r \in \mathbb{N}).$$

Consequently, in the above setting all the results obtained in the preceding sections hold. In particular, Corollary 1 for k=2 establishes the theorem of Zygmund type in arbitrary homogeneous Banach spaces.

#### References

- [1] P. L. Butzer and H. Berens, Semi-Groups of Operators and Approximation, Springer-Verlag, Berlin-Heidelberg-New York, 1967.
- [2] P. L. Butzer and R. J. Nessel, Fourier Analysis and Approximation, Vol. I, Academic Press, New York, 1971.
- [3] P. L. Butzer and R. J. Nessel, *Uber eine Verallgemeinerung eines Satzes von de la Vallée Poussin*, in: On Approximation Theory, ISNM Vol. bf 5, pp. 45-58, Birkhäuser Verlag, Basel-Stuttgart, 1972.
- [4] P. L. Butzer, R. J. Nessel and W. Trebels, On summation processes of Fourier expansions in Banach spaces. I. Comparison theorems, Tôhoku Math. J., 24(1972), 127-140; II. Saturation theorems, ibid., 551-569; III. Jackson- and Zamansky-type inequalities for Abel-bounded expansions, ibid., 27(1975), 213-223.
- [5] S. Csibi, it Note on de la Vallée approximation theorem, Acta Math. Acad. Sci. Hungar., 7(1957), 435-439.
- [6] D. Dunford and J. T. Schwartz, Linear Operators, Part I: General Theory, Intersci. Publ., New Yowk, 1958.

- [7] D. Jackson, The Theory of Approximation, Amer.Math. Soc. Colloq. Publ., Vol. 11, Amer. Math. Soc., New Yowk, 1930.
- [8] Y. Katznelson, An Introduction to Harmonic Analysis, John Wiley, New York, 1968.
- [9] G. G. Lorentz, Approximation of Functions, 2nd. ed., Chelsea, New York, 1986.
- [10] I. P. Natanson, Constructive Function Theory, Vol. I: Uniform Approximation, Frederick Ungar, New York, 1964,
- [11] T. Nishishiraho, Quantitative theorems on linear approximation processes of convolution operators in Banach spaces, Tôhoku Math., 33 (1981),109-126.
- [12] T. Nishishiraho, Saturation of multiplier operators in Banach spaces, Tôhoku Math. J., 34(1982), 23-42.
- [13] T. Nishishiraho, Direct theorems for best approximation in Banach spaces, in: Approximation, Optimization and Computing(IMACS, 1990; A. G. Law and C. L. Wang, eds.), pp. 155-158.
- [14] T. Nishishiraho, The order of best approximation in Banach spaces, in: Proc. 13th Sympo. Appl. Funct. Anal.(H. Umegaki and W. Takahashi, eds.), pp. 90-104, Tokyo Inst. Technology, Tokyo, 1991.
- [15] T. Nishishiraho, The degree of the best approximation in Banach spaces, Tôhoku Math. J., 46(1994), 13-26.
- [16] T. Nishishiraho, Inverse theorems for the best approximation in Banach spaces, Math. Japon., 43(1996), 525-544.
- [17] E. S. Quade, Trigonometric approximation in the mean, Duke Math. J., 3(1937), 529-543.
- [18] H. S. Shapiro, Topics in Approximation Theory, Lecture Notes in Math. Vol. 187, Springer-Verlag, Berlin-Heidelberg-New York, 1971.
- [19] I. Singer, Best Approximation in Normed Linear Spaces by Elements of Linear Subspaces, Springer-Verlag, Berlin-Heidelberg-New York, 1970.
- [20] A. F. Timan, Theory of Approximation of Functions of a Real Variable, Macmillan, New York, 1963.
- [21] W. Trebels, Multiplier for  $(C, \alpha)$ -Bounded Fourier Expansions in Banach and Approximation Theory, Lecture Notes in Math. **329** Springer-Verlag, Berlin-Heidelberg-New York, 1973.
- [22] A. Zygmund, Smooth functions, Duke Math. J., 12(1945), 47-76.

Department of Mathematical Sciences University of the Ryukyus Nishihara-Cho, Okinawa 903-0213 JAPAN