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Zygmund type results for the best approximation in Banach spaces

‘Toshihiko Nishishiraho(7 F &)
College of Science, University of the Ryukyus(5Ek A E 2 ER)

1. Introduction

Let Cy, denote the Banach space of all 27-periodic,continuous functioins on the
real line R with the norm

|flloo = max{|f(®)| : [¢| < 7}.

Let N be the set of all positive integers, and put Ng = N U {0}. For each n € Ny,
we denote by 7, the set of all trigonometric polynomials of degree at most n. For
a given f € Ca,, we define

En(Cor; f) = inf{||f - glleo : g € Tn},

which is called the best approximation of degree n to f with respect to 7,,. Since
Tn is the 2n + 1-dimensional Chebyshev subspace of Cy,, for each f € Ca,, there
exists a unique trigonometric polynomial g, € T, of the best approximation of f
with respect to 7,, i.e., such that

En(Cor; f) = |If — gnll

(see, e.g., [9; Chapter 2, Theorem 6]).

The classical Weierstrass approximation theorem simply states that the sequence
{En(Cax; f)} converges to zero as n tends to infinity for every f € Cy,. It does not
say how fast E,(Car; f) approaches zero. In general, the smoother the function,
the faster E,(Cax; f) tends to zero. The results that guarantee this event are
sometimes called the direct theorems of Jackson-type (cf. [7]). Conversely, the
inverse theorems of Bernstein-type assert that a function f has certain smoothness
properties if E,(Cax; f) tends rapidly enough to zero, then f has certain smoothness
properties, which are usually given in terms of its modulus of continuity, Lipschitz
classes, and differentiability properties. These results have been developed further
by Zygmund [22] as follows (cf. [2; Chpater 2], [9; Chapter 4], [10; Chapters IV
and V], [20; Chapters V and VI]):

Let f € Cyr and r € Ng. Then

E,(Cori f)=0(n™"1)  (n— o)
if and only if f is r-times continuously differentiable on R and
w*(Com; f7,8) = 0(6) (6 = +0),
where |
w*(Con; £1,6) = sup{|If 7 +1) + O — ) = 27 ()l|oo : |#] < 6}
In particular,
E,(Comi f)=0o(n™) (n—=00) <= w(Con;f,8)=0) (5= +0).
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Also, if
w*(C21r; fa 6) = 0(5) (6 - +0)a
then |
w(Can; f,6) = o(d|logd]) (6 — +0),
where

w(Car; f,6) = sup{|[f(- = 1) = F()lloo : [t] < 6}

denotes the modulus of continuity of f. All the results remain true if o is replaced
by O.
The statements ananogous to these results also holds for the Banach space LY.

consisting of all 2r-periodic, pth power Lebesgue integrable functions f on R w1th
the norm

11 = (5= /] :lf(tnpdt)l/p a<p<w),

Furthermore, in [3] these results were generalized by means of the higher order
moduli of continuity and consequently, a generalization of the classical theorem of
de la Vallée Poussin approximation theorem (cf. [5], [17]) was obtained.

The purpose of this paper is to extend the above-mentioned results to arbitrary
Banach spaces. We refer to [16] for detailed treatments (cf. [13], [14], [15]).

2. Groups of multiplier operators and moduli of continuity

Let X be a Banach space with norm || - ||x, and let B[X] denote the Banach
algebra of all bounded linear operators of X into itself with the usual operator norm
| - llix)- Let z denote the set of all integers, and let {P; : j € z} be a sequencce
of projection operators in B[X] satisfying the following cond1t1ons

(P-1) The projections P;j,j € Z, are mutually orthogonal, i.e., P;P, = §;,P,
for all j,n € Z, where §; ,, denotes the Kronecker’s symbol.

(P-2) {P; : j € 2} is fundamental, i.e., the linear span of U;e; Pj(X) is dense in
X.

(P-3) {P;:j € z}istotal, i.e., if f € X and P;(f) =0 for all j € z, then f = 0.
For any f € X, we associate its (formal) Fourier series expansion with respect to
{P;:jez}

oo

fo~ > P

j=-—o00

An operator T € B[X ] is called a multiplier operator on X if there ex1sts a sequence
{rj : j € 2} of scalars such that for every f € X,

o0

T(f) ~ Y mP(f),

j=—c0

and the following notation is used:

[ o]

T ~ Z_Tij

j=—o0
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Thus, this is implies that P;T = 7;P; for all j € Z (cf. [4], [11], [12], [21)).

Let M[X] denote the set of all multiplier operators on X, which is a commutative
closed subalgebra of B[X] containing the identity operator I. Let {T; : t € R} be
a family of operators in M[X] satisfying

ITtllgix; <1  forallter

and having the expansions

T, ~ Ze_”tP (t € R).

j=—o0

Then {T; : t € R} becomes a strongly continuous group of operators in B[X] and
we have

G(Pi(9) = (i) Pile) (geX,jezrem
and o |
G(f) ~ X (B (feDEG),ren),

where G is the infinitesimal generator of {T; : t € R} with domain D(G) (cf. [11
Proposition 2]). For the basic theory of semlgroups of operators on Banach spaces
we refer to [1] and [6].

For each r € Ny and t € R, we define

m—O

A=1I, Al=(T,-I) = Z( 1)~ m( ) mt  (r2>1),
which stands for the r-th iteration of T;. Then A7 belongs to M[X] and
[AfllBix; £ 27, 4 ~ Z (e7¥t ~1)P;.
j=—o0

If r € Ng, f € X and § > 0, then we define

 we(X; f,6) = sup{[| A7 (N)llx : [t] < 6},
which is called the r-th modulus of continuity .of f with respect to {T; : t € R}.
This quantity has the following properties ([15; Lemma 1]): ~

Lemma 1. Letr €N and f € X.
(a) we(X;f,0)<27|fllx  (620). :
(b) wo(X; f,-) is a non-decreasing function on [0,00) and w,.(X; f,0) = 0.
(c) Wrs(X; f,0) < 27w, (X; £,0) (s € Ng,d > 0). In particular, we have

Jim wn(X; £,6) = 0.

(@) w0 (X£,60) < A+ 7w (X:£,8) (6620,
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()If0 < & <&, then
wr(X; £,6) /€7 < 27w (X f, 5)/5T-
()If f € D(G"), then
wno(X; £,8) < B0, G (),6) (s € Novb > 0).

(9) we(X;-,0) is a seminorm on X for each 6 > 0.

For each non-negative integer n, let M, be the linear span of {P;(X) : |j| < n},
and we define '

En(X; f) =inf{||f — gllx : g € My},
which is called the best approximation of degree n to f with respect to M,,. Then
we have ' ’
Eo(X;f) 2 Ei(X;f) 2+ 2 Eo(X5f) 2 Ena (X f) > ++- >0,
“and Condition (P-2) implies that

lim E,(X;f)=0 for every f € X.
n—oo

In order to achieve our purpose, we need the following Bernstein-type inequal-
ity ([16; Lemma 5]), which plays an important role in the derivation of certain
smoothness properties of an element f € X from the hypothesis that the sequence
{En(X; f)} tends to zero with a given rapidity.

Lemma 2. Letn € Ng and r € N. Then

IG"(Hllx < @n)" IIFl1x

holds for all f € M,.

3. The main theorem

Here we suppose that for each given f € X and each n € Ny, there éxists an
element f,, € M, of the best approximation of f with respect to M,,, i.e., such that

(1) En (X5 f) = |If = fallx.

Remark 1. If the dimension of M,, is finite, then every element f € X has an element
of the best approximation with respect to M,. Also, if X is a uniformly convex
Banach space, then every f € X has a unique element of the best approximation
with respect to M,. In particular, if X is a Hilbert space, then for each f € X
there exists a unique element of the best approximation of f with respect to M,,.

For the general theory of the best approximation in normed linear spaces, we refer
to [19]. '



62

Let a € N,a > 2 and let {2 # 0 be a non-negative, monotone decreasing function

on [a, 00] satisfying the following conditions

(2) ' zlgrgo 2(z)=0
and
3) / =) 42 < oo,
e T
Let ¢ be a non-negative, bounded function on [a, 00) with lim,_,., ¢(z) = 0, and
we define
(4) ¢*(z) =sup{p(t) : 2 <t}  (z2>a),

which is a non-negative, monotone decreasing function and lim,_,o ¢*(z) = 0.
Obviously, if ¢(x) monotonously decreases with z on [a, 00), then ¢*(z) = ¢(z) for

all z > a.
Theorem 1. Let f € X andr € Ng. Suppose that

(5) B 1) < o2 for altn > a.
Then f € D(G™) and for every k € N,

. : a/Ve
(6) we(X;G7(f),0) =0 (6’“/ ¥ 10(z) dz

+ o* (%) (6’° /:/6 mk“lﬂ(rf:) dz + /1: gg,;) dx)) (6 = +0).

Proof. Let f, be an element of the best approximation of f with respect to M,,.

Then by (1), (4) and (5), we have

(7) 1f = fanllx < w(a")’fzjf—f) < ¢*(a") ”Cffff L >
Put
(8) g2 = fa.2) gn = fa" - faﬂ—l _ (n > 3)

Then it follows from (7) that

@* (@ 1) 2(a™ 1)

gallx < 1fan = Fllx + 1f = fan-allx < (1+4a7)

anr

for all n > 3, and so Lemma, 2 yields

(9) IG™(gn)llx < 27(1 +a")e" (@™ )R(@™!)  (n>3).



63

By (2), we have

Z.Q(a"_l)g : / 'Q(z)da:<oo,
a—1/, T

m=3

- which together with (9) implies that there exists an element g € X such that

(10) 9= G"(gn).

n=2

Also, (2), (7) and (8) imply
(11) | F=Y gn

Since G" is a closed linear operator, it follows from (10) and (11) that f € D(G")
and

(12) G ()= G (gn)-

n=2

Now let 0 < § < a~2, and we choose two numbers m, s € N such that
m—2 1 m—-1 s—é 1 s—1
m,s>3, a <—=<a , a <=-<a .
. 5 1)
Then by (12) and Lemma 1(g), we obtain

we(X;G7(£),8) < Y wi(X;G7(ga),0)

n=2
+ ( Z w(X;G7(gn),6) + wi (X; z Gr(gn),é))
n=m-+1 n=s+1
= A+ B,

say. By Lemma 1(f), Lemma 2 and (9), we have
wi(X;G"(gn),0) < 8*IGH(G7(gn))lIx
<& 2aMMGT(ga)lIx  (n>2)
< ¥ (2a")*27 (1 +a")p* (@™ 1) 2(a™ )
< 6%(2a")* 27 (1 +a")¢*(@®)R(@™!)  (n>3).
Thus we obtain

A < 8 (26)H|G7(g)llx + 28T (1 + a")e* (@%)6* ) o 2(a™ )

n=3
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< 015k zm: (ak(n—l) - ak(n—l)—l) .Q(a"_l),

n=2 .

where C; > 0 is a conttant independeﬁt of § and m.
We first consider the case of 2(a?) > 0. Then we have

(13) Z (ak("_l) — ak(n_l)_l) n(an—l) S (a2k _ a2k_1)ﬁ(a)
n=2
ak(n-1) ( ) a2k dk(m—n
1/k < a (g1 / i
+nz-—;3‘/’°(" -1)-1 2z deo 2(a?) Jaze-1 (%) do + a2k—1 .Q(:z: )dz

k(m-—1)

< 2 +1 Q(z'/*) d
(g(( 2)) ) ,/:

Therefore, putting y = z'/*, we get

A< kG, ( ‘Q((“)) ) ¢ /_ﬁ #-10(y) dé.

Next, let us estimate the term B. By Lemma 1(a) (f), Lemma 2 and (9) we
have

8

B< 2% ) a*|GT(gn)lIx + 2" Z IG™ (9n)llx

n=m+1 n=s+1

2k+r(1+ar) <5k Z akn *(an I)Q(an 1)+ zo?: (p*(an—l)n(an—l))

n=m+1 n=s+1

S2’°"-’"(1+a')tp*(am) <5k i aknn(an 1 Z Q(an 1)

n=m+1 n=s+1

2k+r(1+ar)(p (\/_) (6"Zak"(2(a" 1 i .Q(a""l)) )

n=2 n=s+1

Proceeding as in the proof of (13), we have

Zaknﬁ(an 1) —

n=2 n—2

(ak(n——l) _ ak(n—-l)—l) (a1

akls=1)

< zkj_ll (g((cg)) + 1) —/'e Q(ml/k)dm‘
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C okl — (a/8)* ‘ -
< (B0 [ g,

~a—1\2(a?) k
k+1 a/é '
= ’;a_ - ( g((;)) + 1) /a "7 0(y) dy,

and :
S oty <t [ 2@ g,

n—st1 a—1 1/5 T

Therefore, there exists a constant Cs > 0 indepedent of § such that

B < Cyo* (%) (6" / a/s v 10(y) dy + /1 : ni””) dz) ,

which together the esi;imate for A estabilhes the desiredvequality (6). _
In case £2(a?) = 0, (7) implies f = f,2 € M,2, and so Lemma 1(f) and Lemma
2 yield

(14) k(X367 (£),0) < (201G (Pllxe*.
Also, we have
a/\/g am—l a2
/ eF 1 0(z) z > / - 2*10@) dz > / *710(z) dx > 0,

a

which together with (14) clearly implies (6). The proof of the theorem is complete.
Applying Theorem 1 to the case where .

1
2(x) = a>0,

we have the following.

Corollary 1. Leta>0,f € X andr € Ng. If

BXif)=o()  (@-oo),

netr
then f belongs to D(G™) and for every k € N,

o(6%)  (a<k)

k(X3 G7(£),0) = { o(6*|logd])  (a=k) (6 = +0).
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3 Applications to homogeneous Banach spaces

Here we restrict ourselves to the case where X is a homogeneous Banach spece,
i.e., X satisfies the following conditions:

(H-1) X is a linear subspace of L}, with a norm ||-||x under which it is a Banach
space. :
(H-2)X is continuously embedded in L}, i.e., there exists a constant C > 0 such
that ||fll < Clifllx for all f € X |

(H-3) The left translation operator T; defined by

L(HO=f(-t) (feX),

is isometric on X for each t € R.
(H-4) For each f € X, the mapping t — T;(f) is strongly continuous on R.
Typical examples of homogeneous Banach spaces are Cs, and L, 1 < p < oo.
For other examples, see [11] (cf. [8], [18]). '
Now, we define the sequence {P; : j € 2} of projection operators in B[X] by

P(f)() =fe  (Fex),

which satisfies Conditions (P-1), (P-2) and (P-3) just as Section 2 (cf. [8], [11]).
Notice that M, = 7, and we have

r

8N =1, ANO= (TN e-m)  (FeXterre)

m=0

Consequently, in the above setting all the results obtained in the preceding sec-
tions hold. In particular, Corollary 1 for ¥ = 2 establishes the theorem of Zygmund
type in arbitrary homogeneous Banach spaces.
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