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- ASYMPTOTIC MEANS OF BOUNDED SEQUENCES

IN BANACH SPACES

LELZERAE BEF—k (Kazuo Hashimoto)

1. Introduction. Always X, Y are Banach spaces and %, ¥ are non-principal
ultra,ﬁlters' on N, the set of natural numbers. For a pair of a norm-bounded sequence (z,,)
in X and a non-principal ultrafilter % on N, denote 7x(z) = Ll% |z — z| for z € X. In
other words, 7x(z) = /N |z — z||A(dn) for z € X, where X is a purely finitely additive
0-1 measure on 2N defined by A(A) = 1 if A € %, A(A) = 0 otherwise. Krivine and
Maurgy [5] called suc.hr a functional a type on X. »We here call 7x an asymptotic mean
of (z,) along Z on X. Let Y be a closed linear subspace of a Banach space X and (z,)
a bounded sequence in Y. We call the set M(z,,%ZY) = {a € Y : 7v(y) > 7v(a) for
all y € Y} an asymptotic center of (z,) along % with respect to Y. If Y is separable,
then the set M(z,,%,Y’) coincides with the asymptotic center in the sense of Lim [6] of
a subsequence (z,,) of (x,) with respect to Y. For a bounded sequence (z,) in X, we
set w(z,) = ﬁl &{zr : k 2 n}. For any relatively weakly compact sequence (z,) in X,
w»ii’%} z, denotes the weak-limit of (z,) along a non-principal ultrafilter Z on N. Similarly,
for any bounded sequence (f,) in the dual space X*, w*-}zi%} fn denotes the weak*-limit of
(f~) along a non-principal ultrafilter % on N.

The duality mapping of a Banach space is a possibly multi-valued mapping Fx from

X into its dual space X* which assigns to each z € X a subset of X* defined by

Fx(z) = {f € X*: f(z) = ||lz||* = || fI*}.
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ty|| — ||z
A Banach space X is said to be uniformly Géteauz differentiable if %1_1)13 l= + yl!l =]

exists for each y € Sy uniformly as = varies over Sx, where Sx = {z € X : ||z|]| = 1}. A

Banach space X is said to be uniformly convez if there exists a function & such that 0 < &(e)

$+y“§1—é(e).

if 0 < € < 2 and such that if ||z]] = ||y|| =1 and ||z — y|| > € then 5

In this note, we shall consider the following three properties in a Banach space X :

Property (I). For every relatively weakly compact sequence (z,) in X and every

non-principal ultrafilter Z on N, M(z,,, %, X) intersects w(z,).

Property (M). For every relatively weakly compact sequence (z,) in X and every

non-principal ultrafilter 2 on N, we have
lim ||z, — z|| > lim ||z, —a||, forallz e X,
n,% n% .

where a is the weak-limit of (z,) along %. That is, a is a minimizer of the asymptotic

mean 7x defined by 7x(z) = li1q1}[|acn —z|,z € X, or w—lirqr}xn =a € M(z,,%X)

Property (C). For every non-principal ultrafilter %/ on N and every bounded sequence
(z,) with w-li{?r}a:n = 0, there exists a sequence (f,) such that f, € Fx(z,) and the

weak*-limit of (f,,) along % is 0.

In this note, We are concerned with the relatiqns between these three properties.

Implications (C) == (M) <= (I) hold (see Theorem 3). These properties are not
ibsomorphic invariants. In fact, even Hilbert space can be renormed so that it does not have
property (I) and so, neither préperties (M) or (C). But these all are hereditary, i.e., every

closed linear subspace of X has the property whenever the space X does.
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2. The spaces co,lp,'l' <p<+oo. As mentioned ‘above, the following is eaé.ily

verified :
PROPOSITION 1.  All of properties (I), (M) and (C) are hereditary.

Next we note the following two facts (see [1]):

() If X = ¢y, then for every relatively weakly compact sequence (z,) in X and

every non-principal ultrafilter % on N the following holds :
l;ra1”1||mn — z]|oo = max(|lz — a”oo,ngl/“.’L’n —a|lw), forallz € X,

where a = w-lim z,,.”
n, %

(b) If X =¢,,1 < p < +o0, then for every bounded sequence (z,) in X and every

non-principal ultrafilter % on N the following holds :

. . 1
lim 2 = all, = (llz - al}} + liy }on — al})?, forall = € X,

where ¢ = w*-limz,,.
n,

In virtue of (a) and (b) we have the folldwing.
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PROPOSITION 2.  The spaces ¢q and £,, 1 < p < 400 have property (M).

REMARK. The space £, does not have property (I), and hence does not have prop-
erty (M). In fact, let (e,) be the usual unit vector basis of £s. Then clearly we see that
w- lim e, = 0 and so w(e,) = {0}. While it is easily verified that M(en, % ly) ={z € Ly :

z = (&), Izl £1/2, li%fn =1/2} . Consequently, we have w(e,) N M(en, %, 4s) = 0.
Properties (C), (M) and (I) have the following relations.

THEOREM 3.  In any Banach space X, the following implications hold :

(C) = (M) <= (I).

PROOF.  The implication (M) => (1) is ob\;ioﬁs. To show (C)=> (M), sﬁpi)ose
that X has property (C). Let (z,) be a relatively weakly compact sequence and % a non-
principal ultrafilter 2 on N. Let a = w*—Li,%llxn. Since w-{li’;qnl (z, — a) = 0, there is a
sequence (f,) in X* sugh that f, € Fx(z, —a) and w*-}zi,%} frn =0. Then for every z € X
we have

I2n — 2ll* = l|2n — a]l®
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> 2|z — 2|l|2n — all = llzn — al®)
2 2(fn($n - 37) - fn(xﬂ - (1))

= 2fu(a—12).
Applying li%, we get the following inequality :
. _ 2 _ - 2 > (.
iy (2 — 2 = llon — o) 2 0

Thus we obtain .

limn [lz,, — al} > %nxn —a|, foralzeX.

Finally, we prove (I) => (M). Suppose (I) holds and let (z,)3%, be relatively weakly
compact and % an ultrafilter on N. Denote a = w- 17%} z, and suppose that a ¢ M(z,, %, X).
We want to obtain a contra(iiction t§ (I). Note that M(z,,%,X) is a closed, convex set
in X and, by assumption (I), it is nonempty. We may find a weak neighbourhood V' of
a such that its weak closure V does not intersect M(z,,%,X). Let A be the subset of N
such that |

A={neN :z,eV}

Then A is an element of % as we have assumed that ¢ = w- E%wn Consider now the

subsequence (2, )nca Of (n)nen. The ultrafilter Z on N defines an ultrafilter % on A.
Note that M((¢,)nea, % X) = M((2n)nen, %, X) and that w((z,)nea) C V as {z, :

n € A} C V. Hence M((2y)nea % X) N wW((Zn)nea) = 0, a contradiction to property (I)

which completes the proof. O
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REMARK. The converse implication (M) = (C) is not in general valid (see Theo-
rem 15). But if a Banach space X is uniformly Gateaux differentiable, then (M) = (C)

holds as Theorem 5 shows.

THEOREM 4. Let % be a non-principal ultrafilter on N and (x,,) a sequence in co
such that wali%wn = 0. For each n € N take f, € F(z,). Then we have w*-lirqr}fn = 0.

In particular, ¢y has property (C).
To prove this, we need the following lemma.

LEMMA 5. Let z = (&) € ¢o and f = () € Fo (). Then the following holds :
{keN :m#0} CH{kEN : [&] = |zfle}-
PROOF. From f(z) = ||z||2, = ||f]|? we see easily that
5=l bl = ime) = 0.

Consequently, we get ||z||co|7x| = &k, for all &k € N. _ a

PROOF OF THEOREM 4. Let z, = (&™) and f, = (n{™). Set A, = {k e N:

Iz]lo = I{,(c")]} and k, = min A,. Then we have li%kn = +o0. For, if not, then there is
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an N € N such that k, < N for all n € N. We may assume without loss of generality
the;t LIIQI}H%HOO >c>0 for some c, anci so there evxists‘ Ace %suéh that ||z,]|e > ¢ for all
n€A. Set By=1{n€A: 6’| >c} foreach 1 <k < N. Then A= U By Since A€ %,
Bk.e % for some 1 < k < N. Thus |§,£n)| > ¢ for all n € By and hence }11%|§,(cn)| >c>0,
which contradicts that u)—ggll z, = 0. Consequently,-ggll k, = +00. On the other hand, by
the previous lemma, since {k € N : n,f,") #0} C A,, we have k, < min{k € N n,(c") #0}.

n,

This means that lirazr} n,(cn) =0 eventually for each k € N. Hence we have w*—li% fn=0. 0O

THEOREM 6. In a uniformly Gateaux differentiable Banach space, property (M) is

equivalent to property (C). In particular, £,,1 < p < +0c0 have property (C).

Proor. (C) = (M) has already proved in Theorem 3. To show the converse,
supp;)se that a Banach space X is ﬁniformly Géteat;x differentiable and has property (M).
Let % be a non-principal ultrafilter on N and (z,) a bounded sequence with w—Em z, =0in
X. Without loss of generality, we may assume that Ll% lz.]| > 0. Let TX(x) = Ll% |z, — z||
for z € X. By assumption, 7x(z) > 7x(0) for all z € X. Since X is uniformly Gateaux

differentiable, the convex function 7x is also Gateaux differentiable, and hence the Gateaux

derivative 73 (0) at the origin is 0. For z € X, we have

0 = - (T%(0), —x)

Jim X (522) — 7x(0)
t—0

=0 n,% t
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et =
o nUt—0 t

= lim fn(m)
n ||z,
lip f.(2)

lirp |||

where f, = Fx(z,). Thus we get -w*-li% f. = 0. The last assertion is obvious from Propo-

n,

sition 2. D
The proofs of the following proposition is easy.

PROPOSITION 7. If X is reflexive, then for every non-principal ultrafilter % on N

and every bounded sequence (z,), M(zn, %, X) # 0.

PROPOSITION 8. If X is a uniformly convex Banach space, then for every non-
principal ultrafilter % on N and every bounded sequence (x,,), M(zn, %, X) is a singleton

set.
In view of Proposition 2 and Proposition 8 we have the following.

PROPOSITION 9. Let 1 < p < +00. Then for every non-principal ultrafilter % on N
and every bounded sequence (z,,) in £y, M(z,, % {,) C w(zy,). In pafticular, the spaces £,

1< p < 400 have property (I).
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Let (z,) be a bounded sequence in a closed linear subspace Y of a Banach space X

and % a non-principal ultrafilter on N. We define the set C(z,, % Y) by

C(zn,%Y) = {a€Y: I (fn)in Y* such that

fn € Fy(z, — a) and w*-li%fn = 0}.

THEOREM 10.  For every bounded sequence (z,) in a Banach space X and every

non-principal ultrafilter % on N, C(z,,%,X) C M(zn, %, X).
This is obvious from the proof of Theorem 3. a

'CoOROLLARY 11. If w—li%mn = 0, then for any sequence (f,) with f, € Fx(zn),

0 € C(fa, % X*). In particular, 0 € M(f,,%, X*).

THEOREM 12.  If X is a uniformly Géateaux differentiable Banach, then for every
bounded sequence (z,) in X and every non-principal ultrafilter % on N, C(z,, % X) =

PROOF.  The inclusion C(z,, % X) C M(z,,%,X) has already been given in The-
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orem 9. To show the converse, let a € M(z,,%, X). Define 7x(z) = lirqr}llwn —z|,z € X.
Without loss of generality we may assume that 7x(a) > 0. In the same way as in the proof
of Theorem 6, since X is uniformly Gateaux differentiable, we see that the convex function

7x is Gateaux differentiable, and so the Gateaux derivative 7% (a) of 7x at a is 0. Hence

we have
lirqr}fn(:c)
0 = (t%(a),—z) = 2——, forallz € X,
<TX(a) $> Tx(a) ‘
where f, = Fx(z, — a). Thus we have w*-lirql}fn =0 and hence a € C(z,, %, X). m

LEMMA 13.  Let (z,) be a bounded sequence in a Banach space X. Then (z,)
converges weakly to an a € X if and only if for every non-principal ultrafilter Z on N, a =

w-lim z,,.

T,

PROOF.  The necessity is obvious. To show the sufficiency, assume that (z,) does
not converge weakly to a. Then there exist a subsequence (z,,) of (z,) and a weakly
open s‘ubset U containing a such that z,, € U° for every k € N. Let % be non-principal
ultrafilter on N containing the set A = {n}. ABy hypothesis, a = w—Lirn z, and so, for soxﬁe

infinite subset B C A with B € %, it follows that z, € U for every n € B, which is a

contradiction. O

THEOREM 14. Let X bea uniformly Gateaux differentiable and uniformly convex

Banach space with property (M). If (z,) is a bounded sequence in X such that (||z,—z||)SZ,
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converges for each € X, then (z,) converges weakly and the weak-limit is a minimizer of

x(z) = nlgrgo |z, — z||, € X. In particular, £,,1 < p < 400 have such a property.

PROOF.  Since (||z, —z||)c%, is a convergent sequence, by Proposition 8, there exists
a € X such that M(z,,%, X) = {a} for every non-principal ultrafilter %. And since X has
property (M), we have a = w-lirqr} z, for every %. Hence it follows from the Lemma 13 that

n,

a= w-JLrglo z,. The last assertion is clear from that £,,1 < p < 400 have property (M). O

EXAMPLE. Let (e,) be the usual unit vector basis of ¢, i.e., e, = (0,0,---,0,
1,0,-+) and % a non-principal ultrafilter on N. Then we have the following :

(1) f X = co, then w(en) = {0}, M(en, Zco) = {z € co : |Jellw < 1} and
Clen,Zeo) = {a € co:a = (&), llalo < 1, {n €N : flen —allw = 1=} € 2.
Hence, in this case, w(en) € Clen, %, co) S M(en, %, co).

(2) Tf X = Lo, then w(e,) = {0}, M(en, % Loo) = {2 € loo : @ = (Ea), ll2lloo < 1/2,
lim € = 1/2} and Clen, % to) = {0 € foo 0 = (&), lllloo S 1/2,{n €N: 61 = 1/2} €
%}. Hence, in this case, C(e,, % L) C M(e,, % L) and w(en)kﬂ M(e,, % ls) = 0.

(3) If X =44, then w(e,) =0, and C(en, %, 1) = M(en, %, ¢1) = {0}, and so w(e,) N

M(en, %, t,) = 0.

(4) If X =4,,1 <p < +oo, then w(e,) = M(en, % 1,) = Clen, % 1,) = {0}.

We have already observed that £, does not have property (M), and so it does not have

property (C). We show that ¢; does not have property (C), either.
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THEOREM 15.  The space £, does not have property (C).

PROOF. For any pair 7 < j (3,5 € N), we define y;; € £; by

Yij = (& Jren

"

L ifk=i,
& = -1 ifk=j,
0 ifk#1,j.

Let n = n(1,7) = %ﬂ +i,1<i<jand 2, = Touj) = % = (§). Let ¥be a
non—principal ultrafilter on N. Set Uy = {n(1,7) : ¢+ < j;1,5 € V}} fo; each V € ¥. Then
the family & = {Uy : V € ¥} forms a ﬁlter base on N Let be a non—principal»ultr‘aﬁlter
on N which contains . Define the purely finitely additive 0-1 measure A on the power set

of N by

1 ,Ae %,
MA) =

0 ,Ad%

Let A be any subset of N. Then since ¥'is an ultrafilter, A € Yor A° € Y. If A € ¥, then

lim(eaxa) = [ 306 Aldn)

keA

= / Zf(”) A(dn)

Ua rea

= 0.
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If A° € ¥, then

lim(zaxa) = [ 3 & Mdn)

keA
Uae kea
= 0.

Thus for every subset A of N we have li%(a:n, Xx4) = 0. Hence w—li% z, =0. Let 0 <¢e, <1,
€n | 0and z, = En€l +(1—¢,)zn. Then w- hlqr}zn = 0. Now let f, be any element of Fy, (z,).

Noting that ||z,]l; = 1, we see that f,(e;) = 1, for every n € N. Consequently, we w*-

lilql} fa # 0. The proof is complete. o m]

3. The spaces L,,1 < p < +oo. Brezis and Lieb [1] showed the following: If
X =1L,J0,1,1 <p< —I—bo, then for every bounded sequencé (z,) in X which converges

a.e. to a function a on [0, 1] and every non-principal ultrafilter %/ on N the following holds
lims [ on — 2ll, = (Il ~ al}} + lig [}z, ~ al)¥, forall o € X.

Thus under the same hypothesis as above, we have

(%) Ll%”.’l,‘n - a:”pz E%Hxn —all,, forallze€ X.

If the above hypothesis “converges a.e.” is replaced by the hypothesis “converges weakly”,

then () does not hold except for the case p # 2 as following shows.
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THEOREM 16.  The spaces L,[0,1],1 < p < +00,p # 2 do not have property (I).

PROOF. Let1l < p< 4o00,p# 2. Let ¢ be a periodic real-valued function of period

1 such that

¢(t) =
-2

win

<t<l

We let z,(t) = ¢(nt). Then w-nl_i)riloo z, = 0, and so w(z,) = {0}. Let % be any non-
principal ultrafilter on N. Define 7,(z) = E% |z, — z||, for all z € L,[0,1]. In particular,
for any constant function a € R, T?(a) = LquI}“:Dn —alp, = </01 |(t) — a|Pdt>%i Set
pp(a) = 1(a)?,a € R. Then ¢, : R — [0,400) is differentiable at 0, and its deriva-
tive is ¢},(0) = —p Jo |p(t)|P~'sign(4(t))dt. By the definition of ¢, @/ (0) # 0 if p # 2.
This means that 0 is not a minimizer of 7, €xcept for the case p # 2. Thus we have
w(zn) N M(z,, %, L,) = 0. Conseqﬁently, L,[0,1],1 £ p < 400,p # 2 do not have prop-

erty (I). O

Thus the Property (I) or (M) is independent of uniform convexity or uniform Gateaux

differentiability.

COROLLARY 17.  The spaces L,[0,1],1 < p < +o0, p # 2 can not be isometricaly

embedded in £,,.

THEOREM 18. Let (S, X, 1) be a nonnegative measure space and 1 < p < oo,p # 2.
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Then L,(S, X, u) has property (I) if and only if L,(S, X, ) is isometrically isomorphic to

2,(I") where card I' < X,,.

PROOF. The sufficiency is obvious from Theorem 9. To show the necessity, assume
that p is not purely atomic, i.e., S contains a subset So € X with p(So) > 0 such that p|s,
has no atoms. Then by [2, Theorem 9, p.127], the space L,(S, X, 1) contains a subspace
isometrically isomorphic to L,[0,1]. But LP[O, 1] does not have property (I) as shown in
The‘o.rem 16, and so L,(S, ¥, ) does not have property (I), either, which is a contradiction.

Thus p is purely atomic. Again applying [2, Theorem 9, p.127], we see that L,(S, X, i) is

isometric to £,(I") where card I' < R, a
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