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Gale’s feasibility theorem and max—flow problems
: In a continuous network

Ryohei Nozawa
ARERIRFEFE  BE 527

1 Introduction

Gale’s feasibility theorem was originally formulated on a discrete network in [4] It is
known as the “Supply - Demand Theorem” in a special case and gives a necessary and
sufficient condition for an exisfence of feasible flows. .

In [11], we established a continuous version of the theorem on a Euclidean domain.
There are several formulations of continuous networks. Our problem is formulated in a
framework of a continuous network introduced by [6] and [13]

In contrast with discrete cases, our continuous version is essentially related with the
boundedness of constraints of flows. However, we can deal with a certain special case with
unbounded constraints such as problems in [5]. In the present paper, we investigate the
continuous version of Gale’s feasibility theorem in a more general setting which can be
applied to problems with a certain class of unbounded constraints of flows.

Let us recall our formulation of continuous networks and state a continuous version
of the Supply - Demand Theorem. As for a discrete version, one can refer to Ford and
Fulkerson [3]. In this discussion, we assume that all functions and sets are sufficiently
smooth. Let ) be a bounded domain of n-dimensional Euclidean space R® and 0f) be the
boundary. Let A, B be disjoint subsets of 9} which are regarded as a source and a sink.
In our continuous network, every flow is represented by a vector field and every feasible

flow o satisfies the capacity constraint:
o(z) € T(z) for all z € Q,

where T is a set-valued mapping from Q to R". We call 2 with this capacity constraint a
continuous network.
Furthermore, every cut is identified with a subset of ) in our network. Let S be a cut
and v° be the unit outer normal to S. Then the cut capacity C(S) is defined by
C(8) = (—v%(2), z)ds(),

Qnas



30

where

B(v,z) = sup v-w
wel(x)

for v € R" and ds is the surface element. If the capacity constraint is isotropic, that is,

[(z) = {w € R*; |w| < ¢(z)} with some nonnegative function c¢(z), then

C(S) = /Qnas c(z)ds(z).

Let a, b be real-valued functions on A, B respectively and let v be the unit outer normal

to . Then the problem of supply-demand is stated as follows:

(SD)  Find o such that o(z) € I'(z) for all z € Q,dive =0o0n ),
c-v=00md0—(ANB),—c-v<aonA, o-v>bon B.

The Supply-Demand theorem assures that (SD) has a solution if and only if

(G) C(S)> / bds — / ads for each cut .
Bnas Anas

This can be proved by the aid of a continuous version of max-flow min-cut theorem under
certain additional conditions, if U,eql'(x) is bounded. Moreover, it is also proved by a
method used in [9] and [12], which is based on a generalized Hahn-Banach Theorem.

In the next section, we give a concrete formulation of our problem in a general form
including (SD) as its special case, and investigate a necessary and sufficient condition under
which the problem has a solution. In §3, we are concerned with an equivalence between

the feasibility theorem and a max-flow min-cut theorem.

2 Problem setting and a main theorem

Let €2 be a bounded domain in n-dimensional Euclidean space R™ with Lipschitz boundary
0. Let H,_, be the n — 1-dimensional Hausdorff measure. Then H,_; on 89 can be
identified with the surface measure on 9f). We note that the unit outer normal v to
is defined and essentially bounded measurable on 9Q with respect to H,_;. Let T be a

set-valued mapping from  to R* which satisfies the following two conditions:
(H1) I'(z) is a compact convex set containing 0 for all z € €.

(H2) Let € > 0 and Qg be a compact subset of . Then there is 6§ > 0 such that
I'(z) C T(y) + B(0,¢) if 2,y € Qo and |z —y| < § .
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In what follows, we assume that each feasible flow is represented by an essentially bounded

vector field o on () satisfying the following capacity constraints:
o(z) € T(z) forae €.

Furthermore if dive € L*((2), then o - v can be defined as a function in L*®(9Q) in a weak
sense by [7].

Let X be a nonempty subset of L"() x L>=(09). Then for the triple (Q,T, X), our
problem is stated as follows:

(P) Find o € L*(Q); R") such that o(z) € I'(z) for a.e. z € Q,(—divo,0-v) € X.

Problem (SD) considered in §1 can be written in this form with X = {(F, f); F = 0, f>
—aon A, f > bon B}.

To specify the class of cuts, we consider the space BV () of functions of bounded
variation on 2, and a Sobolev space W'() which is regarded as a subspace of BV(Q):

BV(Q) = {ue€ L'(Q); Vuis a Radon measure
of bounded variation on Q},

WHQ) = {ueI'(Q); Vue IR,

where Vu = (9u/0z1,- -+ ,0u/dz,) is understood in the sense of distribution. It is known
that BV (Q) C L™ ®=D(Q) and the trace yu is determined as a function in L'(89) for each
u € BV (). ;

We denote the characteristic function of a subset S of Q by xs and set

Q={Sc® xs€BV(Q)}

Let S € . Then the reduced boundary 3*S of S is the set of all z € 35S where Federer’s
normal v® = v5(z) to S exists. (One can refer to [8] for the details.) It is known that 8*S
is a measurable set with respect to both the measure of total variation of |Vxs| and H,_1,
IVxs|(R* — 0*S) = 0 and |Vxs|(E) = H,—1(E) for each |Vxs|-measurable subset E of
0*S. Then [8, Theorem 6.6.2] implies that vxs = xa+snsq Hn_1-a.e. on Of). v

Let B(-,z) be the support functional of I'(x) as defined in §1. If (H1) and (H2) holds,
then B is continuous and nonnegative. Accordingly, in the case, replacing ds by H,_, and

0S5 by 0*S, we can define the cut capacity as follows:

C(S) = lw/nnzrs B(=v®(x), z)dH,_;.
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Let Vu/|Vu| be the Radon-Nikodym derivative of Vu with respect to |Vu| and set
# = [ B(Vu/IVul a)dlVul(2)
for u € BV(R). Then C(S) = %(xs). o

If we assume the following (H2') instead of (H2), then we can define () only for
u € WH(Q): '

(H2') {(z,w); w €T (z),z € 2} is measurable,

Now we set Lps)(u) = / Fudz + | fyudH,_, and consider the following condition
' 0
under (H1) and (H2):

(C) P(u) > (Fl}l)f L(Ff)(u) for all u € BV(2).

We note that u can be replaced by characteristic functions of sets in () in some cases.

When (H2’) is assumed instead of (H2), replacing BV () in (C) by W'1(Q) we consider

/ ' > 1,1
(C)  Y(w)2 (Flgié Lr)(uw) for all u € WHH(Q).

Now we have

PROPOSITION 2.1. If (H1), (H2) hold and (P) has a solution, then (C) is satisfied.
Similarly, If (H1), (H2') hold and (P) has a solution, then (C') is satisfied.

Proof. Assume (H1)and (H2). Let o be a solution of (P)and u € BV(Q) Then by

Green’s formula stated below and [10 Lemma 2.6],

Y(u) > (eVu)() = /an o-vyudH,_, — /ﬂ udiv odz

> f L
(Flgex (Ff)( u).

When (H2’) is assumed instead of (H2), the mequa,hty is similarly proved for u € W1(Q).
O

The following Green’s formula is due to [7, Proposition 1.1]:

LEMMA 2.2. Let 0 € L*(Q; R") such that div o € L™(2) and v € BV(). Then the
distribution (ocVu) defined by

(eVu)(p) = —./ uVy - adz ——»/ updiv odz
Q Q
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for ¢ € C(Q) is a bounded measure. Furthermore

(oVu)() + /

udiv odz = / yuo - vdH,_4
Q 59

'holds.

We note that (cVu)(Q) = / o - Vudz for u € WH(Q).
The following lemma is regarded as a continuous version of max-flow min-cut theorem,

which is due to [13].(The proof is in [10].)
LEMMA 2.3. Assume that Uzeql'(z) is bounded and (H1), (H2') hold. Then

sup{}; there is a feasible flow o

such that (—divoe,o - 1/) MFE, )}
= inf{zﬁ(u)/L(F,f)(u); u € Wl’l(ﬂ)
such that Lz (u) > 0}.

Furthermore if (H2) holds, then this equals

inf{C(S5)/ L5 (xs); S € Q such that Lirs(xs) > 0}
This lemma implies

LEMMA 2.4. (1) For each F € L*(R2), there is 0 € L*(Q; R*) such that —dive = F

a.e. on Q.

(2) Assume that there is a constant k, independent of u, satisfying mf / lyu—c|dH,—1 <
k||Vul|lg for all w € BV(Q). Then for each F' € L™(£2) and f € Lw(aﬂ) there is
o € L*(Q; R*) such that —dive=F ae onQando-v=f Hy_1-a.e. onQ if and
only if (F, f) satisfies the conservation law:

/ Fdz + / fdH, ;=0
Q o0

Proof. (1) First assume that f, Fdz = 0. To prove the existence of oo such that —div oy =

F a.e. on (, it is sufficient to show that the supremum

- sup{t>0; —divo=tF a.e. on{}, 0-v=0 H,_;-a.e. on 9}
for some o € L®(; R") with |0l < 1}
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is positive. Since it is equal to
inf{H,_,(Q ﬂ@*S)//Fda: ; /Fd:v >0, SCf,xs € BV(Q)}‘
s s

by the preceding lemma, we shall prove that the infimum is positive. According to [8, p.303]
there is a positive constant ko such that min(m,(S), m,(2—-95)) < koHn_l(Qﬂa*S)"/("°1),

where m,, denotes the Lebesgue measure on R". Since

/ Fde < ( / 1dz)/m - ( / |FI"de) /™ < |[F|ln(ma( ) DI
S S S

and

/ Fdz = / —Fdz < ( / ldz)(n=t/m . ( / |F|"dz)/m
S Q-S Q-5 Q-S
< | Flla(ma(@ = 8))~D/m,

we can conclude that

/ Fdz < kyHy_1(QN 9°S)
: ,

with k; = || F||,k& /" for all S € Q. It follows that the infimum is not less than 1/k;.
Finally in case of fﬂ Fdz # 0, consider o; such that divo; equals constantly
— fn Fdz/m,(Q), o; such that dive, = —F + fn Fdz/m,(R) and set 0p = 0y + 0,. Then
divog = F. This completes the proof of (1).
(2) There is 03 € L™(Q; R™) such that —divo; = F a.e. on Q by (1). Setting fo, =

=01 v + f and show that there is o, € L*°(Q; R*) such that dive, = 0 a.e. on  and

oy v=fo H,_j-a.e. on 0f). Since / fodH,_1 = 0 by Green’s formula,
a9 :

| ”Vu”n > k7 Vinf |[yu — ¢|dH,,_4
CER an
> -1 -1 . _ ‘
>k ”f0||L°°(8Q) églf%/an fo(yu — ¢)dH, 4

= k_].“fOHZc}o(aﬂ) LQ fo’)’UdH -1

It follows again from the preceding lemma, that

sup{}; o € L®(Q; R"), ||o]le < 1,(=divo,a-v) = X0, fo)}
= t{|Vula/ / foyudH,_1; w € W (Q) such that [ foyudHy_, > 0)
: a0 20
is positive. This implies that there is o2 € L®(); R") such that dive, = 0 a.e. on Q and

oy v = fo Hy_1-a.e. on 0. Hence o = 0y + 0, satisfied the desired condition. This

completes the proof. O
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Let w be an open subset () with Lipschitz boundary. Then we call w an admissible set if
foreach F € L™(w) and f € L*(0w) satisfying the conservation law, there is ¢ € L*(w; R™)
such that —dive = F a.e. onw and o-v = f H,_j-a.e. on Ow. If there is a constant k

such that
min(H,_1(0w N 0*S), Hp—1(0w — 0*5)) < kHp—1(w N 3*S)

for all S C w with xs € BV(w), then w is admissible, since the inequality is equivalent
with that in Lemma 2.4 (2) by [8, Theorem 6.5.2].

Now we state the converse of Proposition 2.1.

THEOREM 2.5. Assume that (H1) and (H2') holds. Then condition (C') implies that

(P) has a solution if one of the following two conditions is satisfied:

(H3) Ugeal'(z) is bounded, X is weakly* closed convex and the projection of X to L™()

is bounded.

(H4) X is weakly* compact convex and there is an open subset w of ) such that Uge, ()
is bounded, I'(z) = R™ for allz € Q —w, Q has the Lipschitz boundary and Q —Wis

admissible.

Proof. (1) First assume (H3)in addition to (H1),(H2') and (C'). Let U = L(Q; R") x
L'(09) and U* = L*®(; R*) x Lw(aﬂ). Then (U, U*) is regarded as a paired space with
the bilinear form defined by ((v, ¢), (w, f)) = / v-wdz +/ ¢fdH,_, for (v,¢) € U and
(w, f) € U, ? S »

Furthermore let V = W1(Q) and V* = L™(Q) x L*®(89). Since W1(Q) c L™ (*-1)(Q)
and the trace yu of u € WH'(Q) is in L'(09Q),

(u, (F, f))) = / Fuda+ [ fyudd,

defines a bilinear form on V' x V*. Since {yu; u € WH(Q)} = L'(9Q), (V,V*) is also a
pa,ired space with the bilinear form ((-,-)). We consider the weak topologies on U,U*,V, V*
by their pairings. » .

Let p(v,¢) = /ﬂ(v(w),x)dx for (v,4) € U. We note that p is convex and positively
homogeneous on U and constant with respect to the second argument.

On the other hand, if uy,u; € V and (Vug,yu;) = (Vuy, yuy), then Uy = Uy é.e. on
Q, so that Lr,f)(u) is regarded as a function of (Vu,yu). Hence we can set

&(Vu,yu) = inf L .
(Vu, yu) A &)
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Then @ is a concave and positively homogeneous functional defined on the subspace W =
{(Vu,yu); u € V} of U. It follows from (C’) that there is a linear functional ¢ on U such
that { < ponU and £ > ® on W.

The continuity of ¢ follows from the boundedness of U,eql'(z). In fact, letting M =
sup{|w|; w € Uzeal'(z)}, we have

( ¢) < p v ¢ /,B d-?? = M”’U”Ll(Q R"

Hence there is (09, o) € U* such that é(v,d) = /ao vdz + éuodH,_,. However,
Jsa ,
since p(v, ¢) is independent of @, we conclude that po = 0.

Now to show that g is a solution of (P), we set
K ={o € L*(Q; R"); o(z) € ['(z) for a.e. z € 0}

and assume that oo ¢ K. Then there is a measurable set {); such that oo(z) ¢ T'(z) for
all z.€ (1 and the Lebesgue measure m,({) of o is positive. By applying a measurable
selection theorem (cf. [2]) to I'(¢) = {w € R*; o0-w > B(w,z), |w| = 1}, there is
n € L*(Q4, R™) such that /ﬂ oo - ndz > /Q B(n, z)dz. This is a contradiction since

1 1

£(7,0) = L o0 < /Q B 2)dz = p(i,0)

forij=non; andf =0o0n Q- Q.. _
Next, let Px be the projection of X to L™(2) and let L = suppep, ||F||z»a). By (H3),

L is finite. Since
E(Vu,yu) = / oo - Vudz > @(Vu,"/u) = inf [ Fudz
Q FePx Q
for all u € C§°(),
/ oo Vudz > —L- “u”Lri/(n—l)(n)-
Q .

This means that dive, € L"(Q) Hence (div 00,00 - V) € V™.
We can show that X is a closed convex set of V* Wlth respect to the weak topology of
our pairing by (H3) so that if (- d1v ao,ao v) ¢ X then there is up € V such that

§(Vug, yuo) = ((uo, (—div 09,00 - v)) < ®(Vug,yuo).

This is a contradiction. Thus (—div.ag, 09 - v) € X.
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(2) Next assume (H1),(H2'),(C’)and (H4). We note that there is (Fo, fo) €. X
satisfying p(Vu,0) > L(g, z,)(u) for all u € W'1(Q) by the next lemma. Taking constant
functions, we see that ('Fo, fo) satisfies the conservation law. By (1) of this proof, there
is o1 € L®(w; R") such that oy(z) € T(z) for ae. ¢ € w, —divey = Fy a.e. on w and
o1-v = fo Hy_1-a.e. on 0w N 0N). |

We set fo = fo on 90 — 0w and fo = —ay - ¥ on 0N Ow, where v¥ is the unit outer
normal to w. Furthermore let Fy be the restriction of Fy to Q) — @. Then (ﬁ'o:, fo) satisfies
the conservation law on () — @. '

It follow that there is g, € L*(2 — @, R*) such that —diveo, = Fy ae. on ! — 0,
oy v =fo=fo Hyy ae. on N —Ow and 0y -v = fo = —oy - v* H,_; ae. on QN dw,
since {} — w is admissible. '

Now let 03 = 0y on w and 03 = 0 on §) —w. In view of the equality o3 - v = —0y - V¥
on 2N 0w and Green’s formula, we can show that —dive = F, on (. Evideﬁtly ooV =fo

on 0N and the proof is completed. O

The following lemma is proved in [1]. For the completeness, we give the proof which is

slightly different from that in [1).

LEMMA 2.6. Assume that X is weakly* compact and

/ﬂﬁ(Vu, dz > (F,iBfeX L(p,f)v(u) for a?l u e WhH(Q).

Then there is (Fo, fo) € X such that / B(Vu,-)dx > Lg, ,)(u) for all we WH(Q).
Q

Proof. Assume that the conclusion does not hold. Then for each (F, f) € X there is u €
W(Q) such that /,B(Vu,-)dx < Liggy(u). Let G, = {(F, f) € X; / B(Vu,-)dz —
Lirg(u) < —¢} fornu € Wh(Q) and € > 0. Then each Gy, is an (?pen subset of
X and {G@q} forms a covering of X. Since X is a weak® compact set; there are

(u1,€),. .., (us, €) such that
Uici Gluie D X+

Let € = min{ey,... €} and K, be the convex hull of uy,... ,u;. Then Ul Gy ) D X so
that o |

sup inf (/ﬂ B(Vu,-)dz — L(F,f)(u)> < -—e

(F,f)ex ueKo
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It follows from a min-max theorem that

inf sup (/n B(Vu,-)dz — L(F,f)(u)> < —e.

u€Ko (F,f)ex

Accordihgly, there is ug € Ko with SUP(F, f)ex (fQ B(Vuo,-)dz — L(F’f)(’l.to)) < —e < 0. This

is a contradiction. B

We conclude this section with a special case which implies a variant of the supply—-

demand theorem. Let
AMu) = / YxsAdH,_y, p(S) = / yxspdH, 1, F(S)= / xsFdz
: o an : a0 Q
for u € BV(Q). If u = x5, then we denote A(u), g(u), F(u) simply by A(S), u(S), F(S).

PROPOSITION 2.7. Let A, 1 be H,_y -measurable functions on 0N, let Fy € L”(Q) and
let .

X ={(Fo,f); AS f<p H,_1-a.c. on 9Q}.

We assume that (H1) , (H2) and one of (H3) and (H4) in Theorem 2.5 hold. Then con-
dition (C) is equivalent with

(CG) C(S) = M(S) + Fo(S)-and C(S) > (2 — 8) — F(Q2 = 8) for all S € Q.

Proof. It is easy to see that (C)implies (CG). We prove the converse. Let u € BV (Q)

and set
Ne={z € u(z) 2}, M,={z€; u(z) <t}
for t € R. By [10, Lemmas 4,6, 5.4], we have

inf Lpgp(u) = /uFodx+/ u_udHn_l—}-/ utAdH,_,
Q o9 a0

(Fif)ex
= / (/ XN,Fodw+/ *ny,)\dHn_l) dt
0 Q 50
- 10
+/ (/ "XM:Fodw‘F/ YX M pdH _1) dt
-0 \J@ 20

with u* = max(u,0) and u~ = — min(u,0). Furthermore by an equality of coarea formula

type [10, Proposition 2.4], we have

¢(U)=/_:¢(XN,)dt=/0°o ¢(XN,)dt+/_:¢(—XM,)dt.
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Now assume that (CG) holds. Then
Y(xw) = C(Nt)Z/XN,Fodx-l—/ YxNAdH,
Q 80

Y(=xm) = C(-M)> /

—xum, Fodz + / XM MdH s
Q

te49]

Integrating both sides, we obtain

}> inf L )
P(u) > oLy 5 (w)

This completes the proof. (]

3 Application to a duality of max-flow problems

We apply the feasibility theorem proved in the previous section to a continuous version of
max-flow problems (MF). Such problems are introduced by [6] and [13] and developed in
[10]. Let X be a subset of L™(Q) x L®(8Q). Then (MF) and the dual problem (MF*) are

formulated as follows:

(MF) Maximize A > subject to (—divo,0-v) € AX,A > 0, 0 € L™(; R") satisfying
o(z) € I'(z) for a.e. z € Q.

(MF*) Minimize ¢(u)/ inf(rs)ex L(F,f)(u) subject to u € W(Q)
and inf(p,f)ex L(p,f)(u) > 0.

We denote the maximizing value of (MF) by M F and the minimizing value of (MF*)
by M F*. Then we have

THEOREM 3.1. Assume that (H1) and (H2') holds. Then under one of conditions
(H3) and (H4) in Theorem 2.5, MF = MF™* holds, where we use the convention that
the infimum on the empty set is co. Furthermore (MF) has an optimal solution if M F is
finite. '

Proof. The inequality MF < MF* directly follows from Green’s formula. We prove the
converse i_hequality. Let r be an arbitrary positive number equal to or less than M F™.
Then rinf(rsex Lips)(u) < ¥(u) for all u € WH(Q) if inf(gp)ex L) (u) is positive.
This inequality trivially holds if inf(r,f)ex L(r,s)(«) is nonpositive so that there is a feasible
flow op such that (—div ao,ao.i- v) € rX by Theorem 2.5. It follows that r < MF. This
shows that MF* < MF. If MF is finite, then épplying the same argument to r = M F

we can prove the existence of optimal solutions to (MF). O
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If A and B are disjoint measurable subset of 02 and
X={(F,f); F=0ae. on,f=0 H,_-a.e. on 90 — (AU B),/vde -1 =1},
' A

then we call (MF) a max-flow problem of Iri’s type and denote it by (MFI), or more
precisely, (MFI(A,BS). ;

On the other hand, if Fo € L™(R), fo € L®(0N) with the conservation law and X =
{(Fo, fo)}, then we call (MF) a max-flow problem of Strang’s type and denote it by (MFS)
or (MFS(m,,1))-

We denote M F* corresponding to MFI, MFS by MFI', g, MFS(g, . respectively.
For such cases, (MF*) is written in terms of characteristic functions, which we call a
continuous version of min-cut problems. Using equalities of coarea formula type as stated

in the proof of Proposition 2.7, we can prove the following proposition. (cf. [10].)
PROPOSITION 3.2. Assume (H2). Then

MFIfy g = inf{C(S); S€Q,H,_1(A—8S)=H,_,(BNad=S) =0},
MFSg, 1y = inf{C(S)/Lg.p)(xs); S € Q, L m)(xs) > 0}.
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