GENERALIZED FRACTIONAL PROGRAMMING

J. C. LIU
Section of Mathematics, National Overseas Chinese Student University, PO Box 1-1337 Linkou, 24499, Taiwan.

Y. KIMURA
Department of Mathematics and Information Science, Graduate School of Science and Technology, Niigata University 950-21, Niigata, Japan.

and

K. TANAKA
Department of Mathematics, Niigata University, 950-21, Niigata, Japan.

Optimality conditions in generalized fractional programming involving nonsmooth Lipschitz functions are established. Subsequently, these optimality criteria are utilized as a basis for constructing one parametric and two other parametric-free dual models, and several duality theorems are derived.

KEY WORDS: Generalized fractional programming, invex, quasiinvex, pseudoinvex, duality.

1. INTRODUCTION

In this paper, we consider the following minimax fractional programming problem:

$$(P) \quad v^* = \min_{x \in S} \max_{1 \leq i \leq p} \left[f_i(x)/g_i(x) \right],$$

where

(A1) $S = \{ x \in \mathbb{R}^n; h_k(x) \leq 0, k = 1, 2, \cdots, m \}$ is nonempty and compact;

(A2) $f_i : X_0 \mapsto \mathbb{R}, g_i : X_0 \mapsto \mathbb{R}, i = 1, 2, \cdots, p,$ and $h_k : X_0 \mapsto \mathbb{R}, k = 1, 2, \cdots, m$ are locally Lipschitz continuous and X_0 is the open subset of \mathbb{R}^n;

(A3) $g_i(x) > 0, i = 1, 2, \cdots, p, x \in S$;

(A4) if g_i is not affine, then $f_i(x) \geq 0$ for all i and all $x \in S$.

Generalized fractional programming has been of much interest in the last decades; see for example [1-4, 6, 7, 10-19]. In [7], Crouzeix et al. have shown that the minimax fractional program can be derived by solving the following minimax nonlinear (nondifferentiable) parametric program:

$$(P_v) \quad \min_{x \in S} \max_{1 \leq i \leq p} \left(f_i(x) - vg_i(x) \right)$$

where $v \in \mathbb{R}_+ \equiv [0, \infty)$ is a parameter.
It is clear that (P_v) is equivalent to the following problem (EP_v) for a given v:

$$(EP_v) \quad \min q,$$

subject to \quad \begin{align*}
 f_i(x) - vg_i(x) &\leq q, \quad i = 1, 2, \cdots, p, \\
 h_k(x) &\leq 0, \quad k = 1, 2, \cdots, m.
\end{align*}$$

In [2], Bector et al. employed the problem (EP_v) to prove necessary and sufficient optimality conditions for problem (P) and establish various duality results for problem (EP_v) involving differentiable generalized convex functions (or generalized invex functions). Liu [10-12] also adapted the same approach to obtain necessary and sufficient optimality conditions; and he derived duality theorems for generalized fractional programming problems involving either nonsmooth pseudoinvex functions [11] or nonsmooth (F, ρ)-convex functions [10], and duality theorems for generalized fractional variational problems involving generalized (F, ρ)-convex functions [12].

But, all of the above necessary optimality conditions and strong duality theorems need that the constraint of (EP_v) satisfy a constraint qualification.

In order to improve this defect, we want to use problem (P_v) to establish both parametric and nonparameter necessary and sufficient optimality conditions, since a constraint qualification that is imposed on the constrains of (P) may not hold for (EP_v) but hold for (P_v). Subsequently, these optimality criteria are utilized as a basis for constructing one parametric and two other parametric-free dual models (see [13] and [16]), and some duality results for (P) are established.

2. NOTATIONS AND PRELIMINARY RESULTS

Throughout this paper, let \mathbb{R}^n be the n-dimensional Euclidean space and \mathbb{R}^n_+ be its non-negative orthant. Let X_0 be an open subset of \mathbb{R}^n.

Definition 2.1. The function $\theta : X_0 \mapsto \mathbb{R}$ is said to be **Lipschitz** on X_0 if there exists $c > 0$ such that for all $y, x \in X_0$,

$$|\theta(y) - \theta(x)| \leq c\|y - x\|,$$

where $\|\cdot\|$ denotes any norm in \mathbb{R}^n.

For each d in \mathbb{R}^n, $\theta^\circ(x; d)$ is the **generalized directional derivative** of Clarke [5] defined by

$$\theta^\circ(x; d) = \limsup_{\delta \to 0} \left[\frac{\theta(y + \delta d) - \theta(y)}{\delta} \right].$$

It then follows that

$$\theta^\circ(x; d) = \max \{ \xi^T d \mid \xi \in \partial \theta(x) \} \quad \text{for any } x \text{ and } d,$$

where $\partial \theta(\cdot)$ denotes the **Clarke's generalized gradient** [5]. The following definitions can be found in [11]:
Definition 2.2. The function $\theta : \mathbb{R}^n \rightarrow \mathbb{R}$ is said to be \textbf{invex} at x^* with respect to η if there exists a mapping $\eta : \mathbb{R}^n \times \mathbb{R}^n \rightarrow \mathbb{R}^n$ such that, for each $x \in \mathbb{R}^n$,

$$\theta(x) - \theta(x^*) \geq \theta^o(x^*; \eta(x, x^*)).$$

(2.1)

θ is said to be invex on \mathbb{R}^n with respect to η if there exists a mapping $\eta : \mathbb{R}^n \times \mathbb{R}^n \rightarrow \mathbb{R}^n$ such that, for each $x, u \in \mathbb{R}^n$,

$$\theta(x) - \theta(u) \geq \theta^o(u; \eta(x, u)).$$

(2.2)

If we have strict inequality in (2.1) and (2.2), respectively, then θ is said to be \textbf{strictly invex} at x^* with respect to η and strictly invex on \mathbb{R}^n with respect to η, respectively.

Definition 2.3. The function $\theta : \mathbb{R}^n \rightarrow \mathbb{R}$ is said to be \textbf{quasiinvex} at x^* with respect to η if there exists a mapping $\eta : \mathbb{R}^n \times \mathbb{R}^n \rightarrow \mathbb{R}^n$ such that, for each $x \in \mathbb{R}^n$,

$$\theta(x) \leq \theta(x^*) \Rightarrow \theta^o(x^*; \eta(x, x^*)) \leq 0.$$

(2.3)

θ is said to be quasiinvex on \mathbb{R}^n with respect to η if there exists a mapping $\eta : \mathbb{R}^n \times \mathbb{R}^n \rightarrow \mathbb{R}^n$ such that, for each $x, u \in \mathbb{R}^n$,

$$\theta(x) \leq \theta(u) \Rightarrow \theta^o(u; \eta(x, u)) \leq 0.$$

(2.4)

If we have strict inequality in (2.3) and (2.4), respectively, then θ is said to be \textbf{strictly quasiinvex} at x^* with respect to η and strictly quasiinvex on \mathbb{R}^n with respect to η, respectively.

Definition 2.4. The function $\theta : \mathbb{R}^n \rightarrow \mathbb{R}$ is said to be \textbf{pseudoinvex} at x^* with respect to η if there exists a mapping $\eta : \mathbb{R}^n \times \mathbb{R}^n \rightarrow \mathbb{R}^n$ such that, for each $x \in \mathbb{R}^n$,

$$\theta^o(x^*; \eta(x, x^*)) \geq 0 \Rightarrow \theta(x) \geq \theta(x^*).$$

(2.5)

θ is said to be pseudoinvex on \mathbb{R}^n with respect to η if there exists a mapping $\eta : \mathbb{R}^n \times \mathbb{R}^n \rightarrow \mathbb{R}^n$ such that, for each $x, u \in \mathbb{R}^n$,

$$\theta^o(u; \eta(x, u)) \geq 0 \Rightarrow \theta(x) \geq \theta(u).$$

(2.6)

If we have strict inequality in (2.5) and (2.6), respectively, then θ is said to be \textbf{strictly pseudoinvex} at x^* with respect to η and strictly pseudoinvex on \mathbb{R}^n with respect to η, respectively.

We need the following lemmas.

Lemma 2.1. [16, Lemma 3.1.] Let v^* be the optimal value of (P), and let $V(v)$ be the optimal value of (P_v) for any fixed $v \in \mathbb{R}_+$ such that (P_v) has an optimal solution. Then x^* is an optimal solution of (P) if and only if x^* is an optimal solution of (P_{v^*}) with optimal value $V(v^*) = 0$.

Lemma 2.2. [5, Proposition 2.3.12.] Let f_1, \cdots, f_p be Lipschitz functions at x^* and $\alpha_i \in \mathbb{R}$ for all $i = 1, \cdots, p$. Then

1. \[\partial (\sum_{i=1}^{p} \alpha_i f_i)(x^*) \subset \sum_{i=1}^{p} \alpha_i \partial f_i(x^*), \]
2. \[\partial \left[\max_{1 \leq i \leq p} f_i \right](x^*) \subset \bigcup \left\{ \sum_{l \in L} \alpha_l \partial f_l(lx^*); \alpha_l \geq 0, \sum_{l \in L} \alpha_l = 1 \right\} \]

where L is the set of indices l for which

\[f_l(x^*) = \max_{1 \leq i \leq p} f_i(x^*). \]

Lemma 2.3. [16, Lemma 3.2.] For each $x \in S$, one has

\[\phi(x) \equiv \max_{1 \leq i \leq p} \left(\frac{f_i(x)}{g_i(x)} \right) = \max_{\beta \in U} \left(\sum_{i=1}^{p} \beta_i f_i(x) / \sum_{i=1}^{p} \beta_i g_i(x) \right) \]

where $U = \{ \beta \in \mathbb{R}_{+}^{p} | \sum_{i=1}^{p} \beta_i = 1 \}$.

For convenience, we give the scalar minimization problem as follows:

\[(SP) \quad \text{Minimize} \quad N(x), \]
subject to \[h_k(x) \leq 0, \quad k = 1, 2, \cdots, m \]

where $N, h_k : X_0 \mapsto \mathbb{R}, k = 1, 2, \cdots, m$, are Lipschitz on X_0. We need the following lemma.

Lemma 2.4. [8, Theorem 6.] If $x^* \in X_0$ is a local minimum for (SP) and a constraint qualification is satisfied, then there exist $z^* = (z_1^*, \cdots, z_m^*) \in \mathbb{R}_{+}^{m}$ such that

\[0 \in \partial N(x^*) + \sum_{k=1}^{m} z_k^* \partial h_k(x^*), \]
\[z_k^* h_k(x^*) = 0, \quad \text{for all} \quad k = 1, 2, \cdots, m. \]

For simplicity, throughout the paper we denote

\[U = \{ \alpha \in \mathbb{R}_{+}^{p} | \sum_{i=1}^{p} \alpha_i = 1 \}, \]
\[F(x) = (f_1(x), \cdots, f_p(x)), \]
\[G(x) = (g_1(x), \cdots, g_p(x)), \] and
\[H(x) = (h_1(x), \cdots, h_m(x)). \]

For $z \in \mathbb{R}^m$, \[z^T H(x^*) = \sum_{k=1}^{m} z_k h_k(x^*), \] and \[\partial(z^T H)(x^*) = \sum_{k=1}^{m} z_k \partial h_k(x^*). \]

3. NECESSARY AND SUFFICIENT OPTIMALITY CONDITIONS

In this section, we shall use Lemmas 2.1 ~ 2.4 to establish some necessary and sufficient optimality conditions for the minimax fractional programming problem (P).

Theorem 3.1 (Necessary optimality conditions). Let \(x^* \in S \). If \(x^* \) is an optimal solution of (P) and that the constraint of (P) satisfy Slater’s constraint qualification [8]. Then there exist \(v^* = \phi(x^*) \in \mathbb{R}_+ \), \(y^* \in U \), \(z^* \in \mathbb{R}_+^m \) such that

\[
0 \in \partial(y^* \mathbf{T} F(x^*)) - v^* \partial(y^* \mathbf{T} G(x^*)) + \partial(z^* \mathbf{T} H(x^*)), \tag{3.1}
\]

\[
y^* \mathbf{T} F(x^*) - v^* y^* \mathbf{T} G(x^*) = 0, \tag{3.2}
\]

\[
z^* \mathbf{T} H(x^*) = 0. \tag{3.3}
\]

Proof. If \(x^* \) is an optimal solution of (P), by Lemma 2.1, it is an optimal solution of \((P_{v^*})\) with \(v^* = \max_{1 \leq i \leq p}[f_i(x^*)/g_i(x^*)] \). Thus, by Lemma 2.4, there exist \(z^* \in \mathbb{R}_+^m \), such that

\[
0 \in \partial \left(\max_{1 \leq i \leq p} (f_i - v^* g_i) \right)(x^*) + \partial(z^* \mathbf{T} H(x^*))
\]

and

\[
z^* \mathbf{T} H(x^*) = 0.
\]

Therefore, by Lemma 2.2, there exist \(\alpha_i \geq 0 \), \(l \in L \), \(\sum_{l \in L} \alpha_i = 1 \), such that

\[
0 \in \sum_{l \in L} \alpha_i (\partial f_i(x^*) + v^* \partial(-g_i(x^*))) + \partial(z^* \mathbf{T} H(x^*)), \tag{3.4}
\]

It is obvious that \(v^* = \max_{1 \leq i \leq p}[f_i(x^*)/g_i(x^*)] \) if and only if \(\max_{1 \leq i \leq p}[f_i(x^*) - v^* g_i(x^*)] = 0 \). From (3.4), if we set \(y^*_i = \alpha_i \) for \(i \in L \) as well as \(y^*_i = 0 \) for \(i \in \{1, 2, \cdots, p\} \setminus L \), the expressions (3.1), (3.2) and (3.3) hold.

In order to construct parameter-free duality models for problem (P), we shall formulate parameter-free versions of Theorem 3.1 as follows:

Theorem 3.2. Let \(x^* \in S \). If \(x^* \) is an optimal solution of (P) and that the constraint of (P) satisfy Slater’s constraint qualification [8]. Then there exist \(y^* \in U \) and \(z^* \in \mathbb{R}_+^m \) such that

\[
0 \in y^* \mathbf{T} G(x^*) \left(\partial(y^* \mathbf{T} F(x^*)) + \partial(z^* \mathbf{T} H(x^*)) \right) - y^* \mathbf{T} F(x^*) \partial(y^* \mathbf{T} G(x^*)), \tag{3.5}
\]

\[
z^* \mathbf{T} H(x^*) = 0, \tag{3.6}
\]

and obtain the optimal value by

\[
\phi(x^*) = y^* \mathbf{T} F(x^*)/y^* \mathbf{T} G(x^*) = \max_{1 \leq i \leq p} (f_i(x^*)/g_i(x^*)). \tag{3.7}
\]

Proof. From (3.2) and (3.1), substituting \(y^* \mathbf{T} F(x^*)/y^* \mathbf{T} G(x^*) \) for \(v^* \), we can derive the results.

The conditions (3.5) \(\sim \) (3.7) will be the sufficient optimality condition which we state as the following theorem.
Theorem 3.3 (Sufficient optimality conditions). Let \(x^* \in S \), and assume that there exist \(y^* \in U \) and \(z^* \in \mathbb{R}_+^m \), such that the conditions (3.5) \(\sim \) (3.7) hold. Let
\[
A(x) = y^*\mathbf{T}G(x^*) y^*\mathbf{T}F(x) - y^*\mathbf{T}F(x^*) y^*\mathbf{T}G(x),
\]
\[
B(x) = z^*\mathbf{T}H(x), \quad \text{and} \quad C(x) = A(x) + y^*\mathbf{T}G(x^*) B(x).
\]

If any one of the following conditions holds

(a) \(A \) is pseudoinvex at \(x^* \) with respect to \(\eta \) and \(B \) is quasiinvex at \(x^* \) with respect to same function \(\eta \),

(b) \(A \) is quasiinvex at \(x^* \) with respect to \(\eta \) and \(B \) is strictly pseudoinvex at \(x^* \) with respect to same function \(\eta \),

(c) \(C \) is pseudoinvex at \(x^* \) with respect to \(\eta \).

Then \(x^* \) is an optimal solution of \((P) \).

Proof. Suppose contrary that \(x^* \) were not an optimal solution of \((P) \). Then there exists a feasible solution \(x_1 \in S \) such that
\[
\phi(x^*) > \phi(x_1).
\]

From (3.7) and Lemma 2.3, we have
\[
y^*\mathbf{T}F(x^*)/y^*\mathbf{T}G(x^*) > \max_{\beta \in U}(\beta^\mathbf{T}F(\beta x_1)/\beta^\mathbf{T}G(x_1)) \geq y^*\mathbf{T}F(x_1)/y^*\mathbf{T}G(x_1).
\]

It follows that
\[
A(x_1) = y^*\mathbf{T}G(x^*) y^*\mathbf{T}F(x_1) - y^*\mathbf{T}F(x^*) y^*\mathbf{T}G(x_1) < 0 = A(x^*) \quad (3.8)
\]

Using both the feasibility \(x_1 \) for \((P) \) and the equality (3.6), we have
\[
B(x_1) \leq 0 = B(x^*) \quad (3.9)
\]

Consequently, expressions (3.8) and (3.9) yield
\[
C(x_1) < C(x^*) \quad (3.10)
\]

By (3.5), there exist \(\xi \in \partial(y^*\mathbf{T}F)(x^*) \), \(\zeta \in \partial(z^*\mathbf{T}H)(x^*) \), and \(\rho \in \partial(-y^*\mathbf{T}G)(x^*) \), such that
\[
y^*\mathbf{T}G(x^*) (\xi + \zeta) + y^*\mathbf{T}F(x^*) \rho = 0.
\]

From here it results
\[
y^*\mathbf{T}G(x^*) (\xi^\mathbf{T}\eta(x, x^*) + \zeta^\mathbf{T}\eta(x, x^*)) + y^*\mathbf{T}F(x^*) \rho^\mathbf{T}\eta(x, x^*) = 0 \quad (3.11)
\]

Using the characterization of the generalized gradient of Clarke, we obtain
\[
(y^*\mathbf{T}F)^\circ(x^*; \eta(x, x^*)) \geq \xi^\mathbf{T}\eta(x, x^*), \quad \text{for all} \quad x \in S, \quad (3.12)
\]
\[
(z^*\mathbf{T}H)^\circ(x^*; \eta(x, x^*)) \geq \zeta^\mathbf{T}\eta(x, x^*), \quad \text{for all} \quad x \in S, \quad (3.13)
\]
\[(-y^*G)^\circ(x^*; \eta(x, x^*)) \geq \rho^T \eta(x, x^*), \text{ for all } x \in S. \quad (3.14) \]

Now, multiplying (3.12) by \(y^*G(x^*), \) (3.13) by \(y^*G(x^*), \) and (3.14) by \(y^*F(x^*), \) and adding the resulting inequalities and with (3.11), we obtain
\[
y^*G(x^*)[(y^*F)^\circ(x^*; \eta(x_1, x^*)) + (z^*H)^\circ(x^*; \eta(x_1, x^*))]
- y^*F(x^*)(y^*G)^\circ(x^*; \eta(x_1, x^*)) \geq 0, \text{ for all } x \in S.
\]
\[(3.15) \]

If hypothesis (a) holds, using the pseudoinvexity of \(A \) at \(x^* \) and the inequality (3.8), we have
\[
y^*G(x^*)(y^*F)^\circ(x^*; \eta(x_1, x^*)) - y^*F(x^*)(y^*G)^\circ(x^*; \eta(x_1, x^*)) < 0.
\]
\[(3.16) \]

Consequently, the inequalities (3.15) and (3.16) yield
\[
y^*G(x^*)(z^*H)^\circ(x^*; \eta(x_1, x^*)) > 0.
\]

Thus, we have
\[
(z^*H)^\circ(x^*; \eta(x_1, x^*)) > 0.
\]
\[(3.17) \]

Using the quasiinvexity of \(B \) at \(x^* \), we get from (3.17)
\[
B(x_1) = z^*H(x_1) > z^*H(x^*) = B(x^*)
\]
which contradicts the inequality (3.9).

Hypothesis (b) follows along with the same lines as (a).

If hypothesis (c) holds, using the pseudoinvexity of \(C \) at \(x^* \) and the inequality (3.10), we have
\[
y^*G(x^*)[(y^*F)^\circ(x^*; \eta(x_1, x^*)) + (z^*H)^\circ(x^*; \eta(x_1, x^*))]
- y^*F(x^*)(y^*G)^\circ(x^*; \eta(x_1, x^*)) < 0
\]
which contradicts the inequality (3.15). Hence, the proof is complete. \(\square \)

4. THE FIRST DUAL MODEL

Utilize Theorem 3.2, in Sections 4 and 5 we shall introduce two parametric-free dual models and prove appropriate duality theorems. Indeed, we shall demonstrate that the following is dual problem for (P):
\[
(DI) \quad \text{Maximize } \frac{(y^TF(u) + z^TH(u))}{y^TG(u)}
\]
subject to
\[
0 \in y^TG(u)(\partial(y^TF)(u) + \partial(z^TH)(u))
- (y^TF(u) + z^TH(u))\partial(y^TG)(u), \quad (4.1)
\]
y \in U, \ z \in \mathbb{R}_+^m. \quad (4.2)

We denote by \(K_1 \) the set of all feasible solutions \((u, y, z) \in X_0 \times U \times \mathbb{R}_+^m\) of problem (DI). We assume throughout this section that \(y^TF(u) + z^TH(u) \geq 0 \) and \(y^TG(u) > 0. \)
Theorem 4.1 (Weak Duality). Let $x \in S$ and $(u, y, z) \in K_1$ and assume that

$$D(\cdot) = y^T G(u)[y^T F(\cdot) + z^T H(\cdot)] - y^T G(u)[y^T F(u) + z^T H(u)]$$

is a pseudoinvex function with respect to η at u. Then

$$\phi(x) \geq \left(y^T F(u) + z^T H(u) \right) / y^T G(u).$$

Proof. By (4.1), there exist $\xi \in \partial(y^T F)(u)$, $\zeta \in \partial(z^T H)(u)$, and $\rho \in \partial(-y^T G)(u)$, such that

$$y^T G(u)(\xi^T \eta(x, u) + \zeta^T \eta(x, u)) + [y^T F(u) + z^T H(u)]\rho = 0.$$

From here it results

$$y^T G(u)(\xi \eta(x, u) + \zeta \eta(x, u)) + [y^T F(u) + z^T H(u)]\rho \eta(x, u) = 0. \tag{4.3}$$

Using the characterization of the generalized gradient of Clarke, we obtain

$$(y^T F)^{o}(u; \eta(x, u)) \geq \xi^T \eta(x, u), \quad \text{for all } x \in S, \tag{4.4}$$

$$(z^T H)^{o}(u; \eta(x, u)) \geq \zeta^T \eta(x, u), \quad \text{for all } x \in S, \tag{4.5}$$

$$(-y^T G)^{o}(u; \eta(x, u)) \geq \rho^T \eta(x, u), \quad \text{for all } x \in S. \tag{4.6}$$

Now, multiplying (4.4) by $y^T G(u)$, (4.5) by $y^T G(u)$, and (4.6) by $y^T F(u) + z^T H(u)$, and adding the resulting inequalities and with (4.3), we obtain

$$y^T G(u)((y^T F)(u; \eta(x, u)) + (z^T H)^{o}(u; \eta(x, u))] - [y^T F(u) + z^T H(u)](y^T G)(u; \eta(x, u)) \geq 0, \quad \text{for all } x \in S. \tag{4.7}$$

We suppose that

$$\phi(x) < \left(y^T F(u) + z^T H(u) \right) / y^T G(u).$$

Then, by Lemma 2.3 and $y \in U$, we have

$$y^T F(x) / y^T G(x) < \left(y^T F(u) + z^T H(u) \right) / y^T G(u).$$

Thus, we have

$$y^T G(u)y^T F(x) - y^T G(x)[y^T F(u) + z^T H(u)] < 0.$$

Hence, we have another inequality

$$y^T G(u)[y^T F(x) + z^T H(x)] - y^T G(x)[y^T F(u) + z^T H(u)] < y^T G(u)z^T H(x).$$

Using the fact $y^T G(u) > 0$, $z^T H(x) \leq 0$, and the latest inequality, we have

$$D(x) < 0 = D(u).$$

Using the fact that $D(\cdot)$ is a pseudoinvex function with respect to η at u, we have

$$y^T G(u)((y^T F)^{o}(u; \eta(x, u)) + (z^T H)^{o}(u; \eta(x, u))] - [y^T F(u) + z^T H(u)](y^T G)^{o}(u; \eta(x, u)) < 0$$

which contradicts the inequality (4.7). Hence, the proof is complete. \square
Theorem 4.2 (Strong Duality). If \(x^*\) is an optimal solution of (P) and that the constraint of (P) satisfy Slater's constraint qualification \([8]\). Then there exist \(y^* \in U\) and \(z^* \in \mathbb{R}^m_+\), such that \((x^*, y^*, z^*)\) is a feasible solution of (DI). Furthermore, if the conditions of Theorem 4.1 hold for all feasible solutions of (DI), then \((x^*, y^*, z^*)\) is an optimal solution of (DI) and the optimal values of (P) and (DI) are equal; that is, \(\min(P) = \max(DI)\).

Proof. By Theorem 3.2, there exist \(y^* \in U\), and \(z^* \in \mathbb{R}^m_+\), such that \((x^*, y^*, z^*)\) is a feasible solution of (DI). Furthermore,

\[
\left(y^*^T F(x^*) + z^*^T H(x^*) \right) / y^*^T G(x^*) = y^*^T F(x^*) / y^*^T G(x^*) = \phi(x^*).
\]

Thus, optimality of \((x^*, y^*, z^*)\) for (DI) follows from Theorem 4.1.

\[
\square
\]

Theorem 4.3 (Strict Converse Duality). Let \(x_1\) and \((x^*, y_0, z_0)\) be optimal solutions of (P) and (DI), respectively, and assume that the assumptions of Theorem 4.2 are fulfilled. If

\[
D(\cdot) = y_0^T G(x^*) [y_0^T F(\cdot) + z_0^T H(\cdot)] - y_0^T G(\cdot) [y_0^T F(x^*) + z_0^T H(x^*)]
\]

is a strictly pseudoinverse function with respect to \(\eta\), then \(x_1 = x^*\); that is, \(x^*\) is an optimal solution of (P) with the same optimal values \(\phi(x_1) = (y_1^T F(x_1) + z^T H(x_1))/y_1^T G(x_1)\).

Proof. Suppose, on the contrary, that \(x_1 \neq x^*\). From Theorem 4.2 we know that there exist \(y_1 \in U\) and \(z_1 \in \mathbb{R}^m_+\), such that \((x_1, y_1, z_1)\) is an optimal solution of (DI) and

\[
\phi(x_1) = (y_1^T F(x_1) + z_1^T H(x_1))/y_1^T G(x_1).
\]

Now proceeding as in the proof of Theorem 4.1 (replacing \(x\) by \(x_1\) and \((u, y, z)\) by \((x^*, y_0, z_0)\)), we arrive at the following strict inequality:

\[
\phi(x_1) > (y_0^T F(x^*) + z^T H(x^*)) / y_0^T G(x^*).
\]

This contradicts the fact that

\[
\phi(x_1) = (y_1^T F(x_1) + z_1^T H(x_1)) / y_1^T G(x_1) = (y_0^T F(x^*) + z_0^T H(x^*)) / y_0^T G(x^*).
\]

Therefore, we conclude that

\[
x_1 = x^*, \quad \text{and} \quad \phi(x_1) = (y_0^T F(x^*) + z_0^T H(x^*)) / y_0^T G(x^*).
\]

\[
\square
\]

5. SECOND DUAL MODEL
We shall continue our discussion of parameter-free duality model for (P) in this section by showing that the following problem (DII) is also dual problem for (P):

\[
\begin{align*}
(DII) \quad \text{Maximize} & \quad y^\top F(u)/y^\top G(u) \\
\text{subject to} & \quad 0 \in y^\top G(u) \left(\partial (y^\top F)(u) + \partial (z^\top H)(u) \right) \\
& \quad - y^\top F(u) \partial (y^\top G)(u), \\
& \quad z^\top H(u) \geq 0, \\
& \quad y \in U, \quad z \in \mathbb{R}_+^m.
\end{align*}
\]

(5.1)

We denote by \(K_2 \) the set of all feasible solutions \((u, y, z) \in X_0 \times U \times \mathbb{R}_+^m\) of problem (DII). Throughout this section, we assume that \(y^\top F(u) \geq 0 \) and \(y^\top G(u) > 0 \). Then, we can prove the following weak duality, strong duality, and strict converse duality theorems.

Theorem 5.1 (Weak Duality). Let \(x \in S \) and \((u, y, z) \in K_2 \) and let

\[
E(\cdot) = y^\top G(u) y^\top F(\cdot) - y^\top F(u) y^\top G(\cdot), \\
I(\cdot) = z^\top H(\cdot), \quad \text{and} \quad J(\cdot) = E(\cdot) + y^\top G(u) I(\cdot).
\]

If any one of the following conditions holds

(a) \(E \) is a pseudoinvex function with respect to \(\eta \) at \(u \) and \(I \) is a quasiinvex function at \(u \) with respect to same function \(\eta \),

(b) \(E \) is a quasiinvex function with respect to \(\eta \) at \(u \) and \(I \) is a strictly pseudoinvex function at \(u \) with respect to same function \(\eta \),

(c) \(J \) is a pseudoinvex function with respect to \(\eta \) at \(u \).

Then

\[
\phi(x) \geq y^\top F(u)/y^\top G(u).
\]

Theorem 5.2 (Strong Duality). If \(x^* \) is an optimal solution of (P) and that the constraint of (P) satisfy Slater's constraint qualification [8]. Then there exist \(y^* \in U \) and \(z^* \in \mathbb{R}_+^m \), such that \((x^*, y^*, z^*)\) is a feasible solution of (DII). Furthermore, if the conditions of Theorem 5.1 hold for all feasible solutions of (DII), then \((x^*, y^*, z^*)\) is an optimal solution of (DII) and the optimal values of (P) and (DII) are equal; that is, \(\min(P) = \max(DII) \).

Theorem 5.3 (Strict Converse Duality). Let \(x_1 \) and \((x^*, y_0, z_0)\) be optimal solutions of (P) and (DII), respectively, and assume that the assumptions of Theorem 5.2 are fulfilled. If \(E(\cdot) = y_0^\top G(x^*) y_0^\top F(\cdot) - y_0^\top F(x^*) y_0^\top G(\cdot) \) is a strictly pseudoinvex function with respect to \(\eta \) and \(I(\cdot) = z_0^\top H(\cdot) \) is a quasiinvex function with respect to same function \(\eta \), then \(x_1 = x^* \); that is, \(x^* \) is an optimal solution of (P) with the same optimal values \(\phi(x_1) = y_0^\top F(x^*)/y_0^\top G(x^*) \).

6. THE THIRD DUAL MODEL
Making use of Theorem 3.1, in this section we can formulate the following parametric dual problem:

\[(DIII) \text{ Maximize } v \]

subject to \(0 \in \partial (y^T F)(u) - v \partial (y^T G)(u) + \partial (z^T H)(u),\) \hspace{1cm} (6.1)

\(y^T F(u) - vy^T G(u) \geq 0,\) \hspace{1cm} (6.2)

\(z^T H(u) \geq 0,\) \hspace{1cm} (6.3)

\(y \in U, \ v \in \mathbb{R}_+, \ z \in \mathbb{R}^m_+.\) \hspace{1cm} (6.4)

We denote by \(K_3\) the set of all feasible solutions \((u, y, z, v) \in X_0 \times U \times \mathbb{R}^m_+ \times \mathbb{R}_+\) of problem (DIII). Then a weakly duality theorem is established as follows:

Theorem 6.1 (Weak Duality). Let \(x \in S\) and \((u, y, z, v) \in K_3\), and let

\[L(\cdot) = y^T F(\cdot) - vy^T G(\cdot),\]

\[I(\cdot) = z^T H(\cdot),\]

and \(M(\cdot) = L(\cdot) + I(\cdot).\)

If any one of the following conditions holds

(a) \(L\) is a pseudoinvex function with respect to \(\eta\) at \(u\) and \(I\) is a quasiinvex function at \(u\) with respect to same function \(\eta\),

(b) \(L\) is a quasiinvex function with respect to \(\eta\) at \(u\) and \(I\) is a strictly pseudoinvex function at \(u\) with respect to same function \(\eta\),

(c) \(M\) is a pseudoinvex function with respect to \(\eta\) at \(u\).

Then

\[\phi(x) \geq v.\]

Theorem 6.2 (Strong Duality). If \(x^*\) is an optimal solution of (P) and that the constraint of (P) satisfy Slater's constraint qualification [8]. Then there exist \(y^* \in U, \ z^* \in \mathbb{R}^m_+, \) and \(v^* \in \mathbb{R}_+\), such that \((x^*, y^*, z^*, v^*)\) is a feasible solution of (DIII). Furthermore, if the conditions of Theorem 6.1 hold for all feasible solutions of (DIII), then \((x^*, y^*, z^*, v^*)\) is an optimal solution of (DIIl) and the optimal values of (P) and (DIII) are equal; that is, \(\min(P) = \max(DIII)\).

Theorem 6.3 (Strict Converse Duality). Let \(x_1\) and \((x^*, y_0, z_0, v_0)\) be optimal solutions of (P) and (DIII), respectively, and assume that the assumptions of Theorem 6.2 are fulfilled. If \(y_0^T F(\cdot) - v_0y_0^T G(\cdot)\) is a strictly pseudoinvex function with respect to \(\eta\) and \(I(\cdot) = z_0^T H(\cdot)\) is a quasiinvex function with respect to same function \(\eta\), then \(x_1 = x^*;\) that is, \(x^*\) is an optimal solution of (P) with the same optimal values \(\phi(x_1) = v_0.\)

The complete proof of Theorems 5.1-5.3 and Theorems 6.1-6.3 will be appear elsewhere.

7. SOME REMARKS FOR FURTHER DEVELOPMENTS
(1) There some questions arise that whether the results develop in this paper hold in generalized (F, ρ)-convex?

(2) Does the set $I = \{1, 2, \cdots, p\}$ in the minimax fractional programming (P) can be replaced by a compact subset Y of \mathbb{R}^m? that is, does one can discuss the following minimax fractional programming:

\[
\text{Minimize } \quad F(x) = \sup_{y \in Y} \frac{f(x, y)}{g(x, y)} = \sup_{y \in Y} \Psi(x, y)
\]

subject to \quad $h(x) \leq 0$,

where Y is a compact subset of \mathbb{R}^m?

(3) Do we can discuss this minimax fractional programming in two person game theory?

REFERENCES

