<table>
<thead>
<tr>
<th>Title</th>
<th>On the discrepancy of the β-adic van der Corput sequence (3rd Workshop on Stochastic Numerics)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Author(s)</td>
<td>NINOMIYA, Syoiti</td>
</tr>
<tr>
<td>Citation</td>
<td>数理解析研究所講究録 1032: 129-141</td>
</tr>
<tr>
<td>Issue Date</td>
<td>1998-04</td>
</tr>
<tr>
<td>URL</td>
<td>http://hdl.handle.net/2433/61870</td>
</tr>
<tr>
<td>Type</td>
<td>Departmental Bulletin Paper</td>
</tr>
<tr>
<td>Textversion</td>
<td>publisher</td>
</tr>
</tbody>
</table>

Kyoto University
On the discrepancy of the β-adic van der Corput sequence

Syoiti NINOMIYA (二宮祥一)

email: ninomiya@trl.ibm.co.jp
IBM Research, Tokyo Research Laboratory
1623-14 Shimotsuruma, Yamato-shi, Kanagawa-ken 242
Japan

1 Introduction

It is well known that low-discrepancy sequences and their discrepancy play essential roles in quasi-Monte Carlo methods [6]. The author constructed a new class of low-discrepancy sequences N_β [7] by using the β-adic transformation [9][11]. Here, β is a real number greater than 1; when β is an integer greater than 2, N_β becomes the classical van der Corput sequence in base β. Therefore, the class N_β can be regarded as a generalization of the van der Corput sequence. N_β also contains a new construction by Barat and Grabner [1] [7]. The principle of the construction of N_β is that we can consider the van der Corput sequence to be a Kakutani adding machine [10]. Pages [8] and Hellekalek [4] also considered the van der Corput sequence from this point of view. In [7], it is shown that when β satisfies the following two conditions:

- Markov condition: β is simple, that is to say, for this β, the β-adic transformation becomes Markov,
- Pisot-Vijayaraghavan condition: All conjugates of β with respect to its characteristic equation belong to $\{z \in \mathbb{C} \mid |z| < 1\}$,

the discrepancy of N_β decreases in the fastest order $O(N^{-1}\log N)$. In this paper, we consider the case in which β is not necessarily Markov. We introduce the function $\phi_\beta(z)$ from Ito and Takahashi [5]. It is shown that when β satisfies the following condition:

- All zeroes of $1 - \phi_\beta(z)$ except for $z = 1$ belong to $\{z \in \mathbb{C} \mid |z| > \beta\}$,

which is a generalization of the above Pisot-Vijayaraghavan condition, the discrepancy of N_β decreases in the order $O(N^{-1}(\log N)^2)$.

2 Low-discrepancy sequence

First, we recall the notions of a uniformly distributed sequence and the discrepancy of points [6]. A sequence x_1, x_2, \ldots in the s-dimensional unit cube $I^s = \prod_{i=1}^{s} [0, 1)$ is said to be uniformly distributed in I^s when

$$\lim_{N \to \infty} \frac{1}{N} \sum_{n=1}^{N} c_J(x_n) = \lambda_s(J)$$
holds for all subintervals $J \subset I^s$, where c_J is the characteristic function of J and λ_s is the s-dimensional Lebesgue measure. If $x_1, x_2, \ldots \in I^s$ is a uniformly distributed sequence, the formula

$$\lim_{N \to \infty} \frac{1}{N} \sum_{n=1}^{N} f(x_n) = \int_{I^s} f(x) \, dx$$

(2.1)

holds for any Riemann integrable function on I^s. The discrepancy of the point set $P = \{x_1, x_2, \ldots, x_N\}$ in I^s is defined as follows:

$$D_N(P) = \sup_{B \subset \wp(I^s)} \left| \frac{A(B; P)}{N} - \lambda_s(B) \right|$$

(2.2)

where $B \subset \wp(I^s)$ is a non-empty family of Lebesgue measurable subsets and $A(B; P)$ is the counting function that indicates the number of n, where $1 \leq n \leq N$, for which $x_n \in B$. When $J^* = \{\prod_{i=1}^{l} [0, u_i), 0 \leq u_i < 1\}$, the star discrepancy $D_N^*(P)$ is defined by $D_N^*(P) = D_N(J^*; P)$. When $S = \{x_1, x_2, \ldots\}$ is a sequence in I^s, we define $D_N^*(S)$ as $D_N^*(S_N)$, where S_N is the point set $\{x_1, x_2, \ldots, x_N\}$. Let S be a sequence in I^s. It is known that the following two conditions are equivalent:

1. S is uniformly distributed in I^s;
2. $\lim_{N \to \infty} D_N^*(S) = 0$.

The following classical theorem shows the importance of the notion of discrepancy:

Theorem 2.1 (Koksma-Hlawka [6]) If f has bounded variation $V(f)$ on I^s in the sense of Hardy and Krause, then for any $x_1, x_2, \ldots, x_N \in I^s$, we have

$$\left| \frac{1}{N} \sum_{n=1}^{N} f(x_n) - \int_{I^s} f(x) \, dx \right| \leq V(f) D_N^*(x_1, \ldots, x_N).$$

Schmidt [12] showed that, when $s = 1$ or 2, there exists a positive constant C that depends only on s, and the following inequality holds for an arbitrary point set P consisting of N elements:

$$D_N^*(P) \geq C \frac{\log N^{s-1}}{N}.$$ \hspace{1cm} (2.3)

If (2.3) holds, then there exists a positive constant C that depends only on s, and any sequence $S \subset I^s$ satisfies

$$D_N^*(S) \geq C \frac{\log N^{s}}{N}.$$ \hspace{1cm} (2.4)

for infinitely many N. Taking account of (2.3) and (2.4), we define a low-discrepancy sequence for the one-dimensional case as follows:

Definition 2.1 Let S be an one-dimensional sequence in $[0, 1)$. If $D_N^*(S)$ satisfies

$$D_N^*(S) = O(N^{-1} \log N)$$

then S is called a low-discrepancy sequence.

Hereafter we consider only the case where $s = 1$. We now introduce the classical van der Corput sequence [2] [6].

Definition 2.2 Let $p \geq 2$ be an integer. Every integer $n \geq 0$ has a unique digit expansion

$$n = \sum_{j=0}^{\infty} a_j(n) p^j, \quad a_j(n) \in \{0, 1, \ldots, p-1\} \quad \text{for all} \quad j \geq 0,$$

in base p. Let $\tau = \{\tau_j\}_{j \geq 0}$ be a set of permutations τ_j of $\{0, 1, \ldots, p-1\}$. Then the radical-inverse function ϕ_p^τ is defined by

$$\phi_p^\tau(n) = \sum_{j=0}^{\infty} \tau_j(a_j(n)) p^{-j-1} \quad \text{for all integers} \quad n \geq 0.$$ \hspace{1cm}

The van der Corput sequence in base p with digit permutations τ is the sequence $\{\phi_p^\tau(n)\}_{n=0}^{\infty} \subset [0, 1)$.

Theorem 2.2 ([2][6]) For an arbitrary integer $p \geq 2$, the van der Corput sequence in base p is a low-discrepancy sequence.
3 β-adic transformation

In this section we define the fibred system and the β-adic transformation, following [5] [13].

$C, R, Z,$ and N are the sets of all complex numbers, all real numbers, all integers, and all natural numbers, respectively. We also set

$$R_{>a} = \{r \in R \mid r > a\}$$
$$Z_{\geq n} = \{i \in Z \mid i \geq n\}$$

and so on. For $x \in R$, $[x]$ denotes the integer part of x.

Definition 3.1 Let B be a set and $T : B \to B$ be a map. The pair (B, T) is called a fibred system if the following conditions are satisfied:

1. There is a finite countable set A.
2. There is a map $k : B \to A$, and the sets

$$B(i) = k^{-1}([i]) = \{x \in B : k(x) = i\}$$

form a partition of B.
3. For an arbitrary $i \in A$, $T|_{B(i)}$ is injective.

Definition 3.2 Let $\Omega = A^N$ and $\sigma : \Omega \to \Omega$ be the one-sided shift operator. Let $k_j(x) = k(T^{j-1}x)$. We derive a canonical map $\varphi : B \to \Omega$ from

$$\varphi(x) = \{k_j(x)\}_{j=1}^{\infty}.$$

φ is called the representation map.

We have the following commutative diagram:

$$\begin{array}{ccc}
B & \xrightarrow{T} & B \\
\downarrow\varphi & & \downarrow\varphi \\
\Omega & \xrightarrow{\sigma} & \Omega
\end{array}$$

Definition 3.3 If a representation map φ is injective, φ is called a valid representation.

Definition 3.4 Let $\omega \in \Omega$. If $\omega \in \text{Im}(\varphi)$, ω is called an admissible sequence.

Definition 3.5 The cylinder of rank n defined by $a_1, a_2, \ldots, a_n \in A$ is the set

$$B(a_1, a_2, \ldots, a_n) = B(a_1) \cap T^{-1}B(a_2) \cap \ldots \cap T^{-n+1}B(a_n).$$

We define B to be a cylinder of rank 0.

For a sequence $a \in \Omega$, we write the i-th element of a as $a(i)$, that is, $a = (a(0), a(1), a(2), \ldots)$.

Definition 3.6 Let $\beta > 1$ and $\beta \in R$. Let $f_\beta : [0, 1) \to [0, 1)$ be the function defined by

$$f_\beta(x) = \beta x - \lfloor \beta x \rfloor.$$

Let $A = \mathbb{Z} \cap [0, \beta)$. Then we have the following fibred system $([0, 1), f_\beta)$:

$$\begin{array}{ccc}
[0, 1) & \xrightarrow{f_\beta} & [0, 1) \\
\downarrow\varphi & & \downarrow\varphi \\
\Omega & \xrightarrow{\sigma} & \Omega
\end{array}$$

The representation map φ of this fibred system is defined as follows:

$$\varphi(x)(n) = k, \text{ if } \frac{k}{\beta} \leq f_\beta^n(x) < \frac{(k + 1)}{\beta}.$$
where $f^n_\beta(x) = x$, and $f^{n+1}_\beta(x) = f_\beta(f^n_\beta(x))$. Let X_β be the closure of $\text{Im}(\varphi)$ in the product space Ω with the product topology. The lexicographical order $< (\text{resp. } >)$ is defined in Ω as follows: $\omega < \omega'$ (resp. $\omega > \omega'$) if and only if there exists an integer n such that $\omega(k) = \omega'(k)$ for $k < n$ and $\omega(n) < \omega'(n)$ (resp. $\omega(n) > \omega'(n)$). We also define $\leq (\text{resp. } \geq)$ as $<$ (resp. $>$) or equal. In this situation, we set

$$f^n_\beta(1) = \lim_{n \to 1} f^n_\beta(x),$$

$$\zeta_\beta = \max\{X_\beta\} = \varphi(1),$$

and

$$\rho_\beta(a) = \sum_{n=0}^{\infty} a(n)\beta^{-n-1}.$$

We have the following diagram:

\[
\begin{array}{ccc}
[0,1] & \xrightarrow{f_\beta} & [0,1] \\
\varphi \downarrow \rho_\beta & & \varphi \downarrow \rho_\beta \\
X_\beta & \xrightarrow{\sigma} & X_\beta
\end{array}
\]

(3.2)

This diagram is called a β-adic transformation.

We use the following notation for periodic sequences:

$$(a_1, a_2, \ldots, a_n, \ldots) = (a_1, a_2, \ldots, a_n, a_{n+1}, \ldots, a_{n+m},$$

$$a_n, a_{n+1}, \ldots, a_{n+m},$$

$$\vdots,$$

$$a_n, a_{n+1}, \ldots, a_{n+m},$$

$$\ldots)$$

We introduce the following proposition from Ito and Takahashi [5].

Proposition 3.1 For an arbitrary $\beta \in \mathbb{R}_{>1}$ the following statements hold in (3.2).

1. $\sigma \circ \varphi = \varphi \circ f_\beta$ on $[0,1)$.
2. $\varphi : [0,1) \to X_\beta$ is an injection and is strictly order-preserving, i.e., $t < s$ implies that $\varphi(t) < \varphi(s)$.
3. $\rho_\beta \circ \varphi = \text{id}$ on $[0,1]$.
4. $\varphi \circ \sigma = f_\beta \circ \rho_\beta$ on $\text{Im}(\varphi)$.
5. $\rho_\beta : X_\beta \to [0,1]$ is a continuous surjection and is order-preserving, i.e., $\omega < \omega'$ implies that $\rho_\beta(\omega) \leq \rho_\beta(\omega')$.
6. For an arbitrary $t \in [0,1]$, $\rho_\beta^{-1}(t)$ consists either of a one point $\varphi(t)$ or of two points $\varphi(t)$ and $\sup\{\varphi(s) | s < t\}$. The latter case occurs only when $f^n_\beta(t) = (0)$ for some $n > 0$.

We also remark that the following proposition holds:

Proposition 3.2

$$X_\beta = \{\omega \in \Omega \mid \sigma^n \omega \leq \zeta_\beta, \text{ for all } n \geq 0\}$$

Definition 3.7 Let $u \in X_\beta$. If there exist $n \in \mathbb{Z}_{\geq 1}$ which satisfies $u(i) = u(i + n)$ for any $i \in \mathbb{Z}$, u is called a periodic sequence. When $u \in X_\beta$ is periodic, we define the period of u as $\min\{n \in \mathbb{Z}_{\geq 1} \mid u(i) = u(i + n) \text{ for any } i \in \mathbb{Z}\}$.

The following definition and theorem are from Parry [9].
Definition 3.8 When ζ_β is periodic and its period is m, β and β-adic transformation (3.2) are called Markov or simple. In this case, β is the unique $z > 1$ solution of the following equation:

$$z^m - \sum_{i=1}^{m} a_{i-1} z^{m-i} = 0$$ (3.3)

where $\zeta_\beta = (a_0, a_1, \ldots, a_{m-2}, (a_{m-1} - 1))$. This equation is called the characteristic equation of β. When β is Markov, $p(\beta)$ denotes the length of the period of ζ_β.

Theorem 3.1 The conjugates of β with respect to its characteristic equation have absolute values less than 2.

When β is not necessarily Markov, the notion of the characteristic equation is generalized as follows. This function was first studied in Takahashi [14][15] and Ito and Takahashi [5].

Definition 3.9

$$\phi_\beta(z) = \sum_{n=0}^{\infty} \zeta_\beta(n) \left(\frac{z}{\beta} \right)^{n+1}$$

We also have the following proposition from Ito and Takahashi [5].

Proposition 3.3 $\phi_\beta(z)$ converges in a neighborhood of the unit disk $\{z \in \mathbb{C} \mid |z| \leq 1\}$ and the function $1 - \phi_\beta(z)$ has only one simple root at $z = 1$ in a neighborhood of the unit disk.

Remark 3.1 When β is Markov, $1 - \phi_\beta(\beta/z) = 0$ becomes the characteristic equation of β.

4 Constructing the sequence

In this section, a sequence $\mathcal{N}_\beta \subset [0, 1)$ is defined by the use of β-adic transformation, following [7]. Let $\beta \in \mathbb{R}_{>1}$ and let $([0, 1], \alpha, \sigma, \phi, \rho_\beta)$ be a β-adic transformation (3.2). Let $B = [0, 1)$, and $A, \Omega, \zeta_\beta, B(a_1, \ldots, a_n)$ be the same as in the previous section.

Definition 4.1 Let $n \in \mathbb{Z}_{\geq 0}$. Define

$$X_\beta(n) = \left\{ \begin{array}{ll}
\{0\}, & n = 0 \\
\{\omega \in X_\beta \mid \sigma^{n-1} \omega \neq (0) \text{ and } \sigma^n \omega = (0)\}, & n \neq 0
\end{array} \right.$$

and

$$Y_\beta(n) = \{\omega(0), \ldots, \omega(n-1) \mid \omega \in X_\beta\},$$

and

$$Y_\beta^0(n) = \{(a_0, \ldots, a_{n-1}) \mid (a_0, \ldots, a_{n-2}, a_{n-1} + 1) \in Y_\beta(n)\}.$$

Let $k \in \mathbb{Z}_{\geq 0}$, $u \in Y_\beta(k)$, and $v \in Y_\beta(l)$. Define $Y_\beta(u; n), Y_\beta^0(u; n), Y_\beta(u; n; v), Y_\beta^1(u; n; v), G_\beta(n), G_\beta(u; n), G_\beta^0(n), G_\beta^0(u; n),$ and $G_\beta^1(u; n; v)$ as follows:

$$Y_\beta(u; n) = \{u \cdot \omega \mid u \cdot \omega \in Y_\beta(k + n)\}$$

$$Y_\beta^0(u; n) = \{u \cdot \omega \mid u \cdot \omega \in Y_\beta^0(k + n)\}$$

$$Y_\beta(u; n; v) = \{u \cdot \omega \cdot v \mid u \cdot \omega \cdot v \in Y_\beta(k + n + l)\}$$

$$Y_\beta^1(u; n; v) = \{u \cdot \omega \cdot v \mid u \cdot \omega \cdot v \in Y_\beta^1(k + n + l)\}$$

$$G_\beta(n) = \# Y_\beta(n)$$

$$G_\beta^0(n) = \# Y_\beta^0(n)$$

$$G_\beta(u; n) = \# Y_\beta(u; n)$$

$$G_\beta^0(u; n) = \# Y_\beta^0(u; n)$$

$$G_\beta(u; n; v) = \# Y_\beta(u; n; v)$$

$$G_\beta^1(u; n; v) = \# Y_\beta^1(u; n; v)$$

where $u \cdot v$ means the concatenation of u and v, that is to say,

$$u \cdot v = (u(0), \ldots, u(n-1), v(0), v(1), \ldots).$$

Finally we set $Y_\beta(0) = Y_\beta^0(0) = \{\epsilon\}$ where ϵ is the empty word and satisfies $\epsilon \cdot u = u \cdot \epsilon = u$ for any $u \in Y_\beta(n)$.

Definition 4.2 Define the right-to-left lexicographical order \preceq_β in $\bigcup_{n=0}^\infty X_\beta(n)$ as follows: $\omega \preceq_\beta \omega'$ if and only if $(\omega(n-1), \ldots, \omega(0)) < (\omega'(n-1), \ldots, \omega'(0))$ where $\omega \in X_\beta(n)$ and $\omega' \in X_\beta(m)$.

Definition 4.3 (N_β [7]) Define $L_\beta = \{\omega_i\}_{i=0}^\infty$ as $\bigcup_{n=0}^\infty X_\beta(n)$ ordered in right-to-left lexicographical order, that is, L_β is $\bigcup_{n=0}^\infty X_\beta(n)$ as a set and $\omega_i \preceq_\beta \omega_j$ holds for all $i < j$. Then, the sequence N_β is defined as follows:

$$N_\beta = \{\rho_\beta(\omega_i)\}_{i=0}^\infty.$$

Example 4.1 If $\beta = \frac{1+\sqrt{5}}{2}$, then $B = (1, 0)$ and elements of N_β are calculated as follows:

$$
\begin{align*}
N_\beta(0) &= \rho_\beta(0) = 0 \\
N_\beta(1) &= \rho_\beta(1) = 0.618033988749895 \ldots \\
N_\beta(2) &= \rho_\beta(01) = 0.381966011250106 \ldots \\
N_\beta(3) &= \rho_\beta(001) = 0.236067987749979 \ldots \\
N_\beta(4) &= \rho_\beta(101) = 0.854101996249686 \ldots \\
N_\beta(5) &= \rho_\beta(0001) = 0.145898033750316 \ldots \\
N_\beta(6) &= \rho_\beta(1001) = 0.76393202250212 \ldots \\
N_\beta(7) &= \rho_\beta(0101) = 0.527864045000422 \ldots \\
N_\beta(8) &= \rho_\beta(00001) = 0.090169943749474 \ldots \\
N_\beta(9) &= \rho_\beta(10001) = 0.70820393249937 \ldots \\
N_\beta(10) &= \rho_\beta(01001) = 0.47213595499581 \ldots \\
N_\beta(11) &= \rho_\beta(00101) = 0.326237921249265 \ldots \\
N_\beta(12) &= \rho_\beta(10101) = 0.94427190999161 \ldots \\
N_\beta(13) &= \rho_\beta(000001) = 0.055728090008416 \ldots \\
N_\beta(14) &= \rho_\beta(100001) = 0.673762078750737 \ldots \\
N_\beta(15) &= \rho_\beta(010001) = 0.437694101250947 \ldots \\
N_\beta(16) &= \rho_\beta(0100001) = 0.437694101125094 \ldots \\
\vdots
\end{align*}
$$

From this definition, we immediately have the following proposition:

Proposition 4.1 If β is an integer greater than 2 then N_β is the van der Corput sequence in base β with all digit permutations $\tau_2 = \text{id}$.

From Theorem 2.2 and Proposition 4.1, we see that if $\beta \in \mathbb{Z}_{\geq 2}$ then N_β is a low-discrepancy sequence, that is to say, $D_M^*(N_\beta) = O(M^{-1} \log M)$ holds for all $\beta \in \mathbb{Z}_{\geq 2}$. We also have the following theorem:

Theorem 4.1 Let β be a real number greater than 1, and let the following condition (PV) hold:

(PV) All zeroes of $1 - \phi_\beta(z)$ except for $z = 1$ belong to $\{z \in \mathbb{C} \mid |z| > \beta\}$.

Then,

$$D_M^*(N_\beta) = O\left(\frac{(\log M)^2}{M}\right)$$

holds. Moreover, if β is Markov, then

$$D_M(N_\beta) = O\left(\frac{\log M}{M}\right)$$

holds.

Remark 4.1 When β is Markov, the condition (PV) is equivalent to the condition that all conjugates of β with respect to its characteristic equation (3.3) belong to $\{z \in \mathbb{C} \mid |z| < 1\}$.

Remark 4.2 In [7], the case in which β is Markov is proved.
To prove this theorem, we provide lemmas and definitions. We use the following notations:

$$\omega[i,j] = \begin{cases} (\omega(i), \ldots, \omega(j-1)), & i < j \\ \epsilon, & i = j \end{cases}$$

where \(\omega \in \mathcal{X}_\beta\) and \(i, j \in \mathbb{Z}_{\geq 0}\). \(R_\beta(u) = \lambda(B(u))\) where, \(\lambda\) is the one-dimensional Lebesgue measure, \(u \in \mathcal{X}_\beta(n)\), and \(B(u)\) is the cylinder (3.5). For a sequence \(S, S[N]\) denotes the point set consisting of the first \(N\) elements of \(S\), and \(S[N; M] = S[N + M] \setminus S[N]\).

Definition 4.4 For any \(k \geq 0\) and \(u \in \mathcal{Y}_\beta(k)\), define

$$
eq \{i \in \mathbb{Z}_{\geq 0} \mid \zeta_\beta[0, i + 1) \cdot u \notin \mathcal{Y}_\beta(k + i + 1)\}.$$

Lemma 4.1 ([5]) For an arbitrary \(k \geq 0\) and \(u \in \mathcal{Y}_\beta(k)\), we have the following partitioning of \(\mathcal{Y}_\beta(u; n)\):

$$\mathcal{Y}_\beta(u; n) = \bigcup_{j=1}^{n} \mathcal{Y}_\beta^0(u; j) \cdot \zeta_\beta[0, n - j) \bigcup \max\{\mathcal{Y}_\beta(u; n)\}$$

Proof. It is trivial to show that the left-hand side includes the right-hand side.

If \(v = (a_1, \ldots, a_{n+k}) \in \mathcal{Y}_\beta(u; n) \setminus \mathcal{Y}_\beta^0(u; n)\) and \(v \neq \max\{\mathcal{Y}_\beta(u; n)\}\), then there exists an integer \(l\) that satisfies

$$k + 1 \leq l \leq n + k$$

and

$$\min\{w \in \mathcal{Y}_\beta(u; n) \mid w > v\} = (a_1, \ldots, a_{l} + 1, 0, \ldots, 0).$$

This means that

$$(a_{l+1}, \ldots, a_{n+k}) = \zeta_\beta[0, n - l)$$

and

$$(a_1, \ldots, a_{l-1}, a_{l} + 1) \in \mathcal{Y}_\beta^0(u; l - k)$$

hold. \(\square\)

Taking account of Lemma 4.1, we give the following definition:

Definition 4.5 For an arbitrary \(u \in \mathcal{Y}_\beta(n)\), define an integer \(d(u)\) as follows: \(d(u) = k\) if

$$u \in \mathcal{Y}_\beta^0(k) \cdot \zeta_\beta[0, n - k)$$

holds. Remark that \(\max\{\mathcal{Y}_\beta(n)\} = \zeta_\beta[0, n)\).

From Lemma 4.1, Definition 4.4, and Definition 4.5 we have the following lemma:

Lemma 4.2 For any \(k, l, n \geq 0, u \in \mathcal{Y}_\beta(k),\) and \(v \in \mathcal{Y}_\beta(l)\), we have the following partitioning of \(\mathcal{Y}_\beta(u; n; v)\):

$$\mathcal{Y}_\beta(u; n; v) \cong \left\{ \begin{array}{ll}
\bigcup_{1 \leq j \leq n} \mathcal{Y}_\beta^0(u; j) \cdot \zeta_\beta[0, n - j), & \text{if} \quad n + k - d(\max\{\mathcal{Y}_\beta(u; n)\}) - 1 \in \mathcal{e}(v) \\
\bigcup_{1 \leq j \leq n} \mathcal{Y}_\beta^0(u; j) \cdot \zeta_\beta[0, n - j) \bigcup \max\{\mathcal{Y}_\beta(u; n)\}, & \text{otherwise.}
\end{array} \right.$$}

Lemma 4.3 For any \(n \geq 0\) and \(u \in \mathcal{Y}_\beta(n)\),

$$R_\beta(u) = \frac{1}{\beta^{d(u)}} \left(1 - \sum_{i=0}^{n-d(u)-1} \zeta_\beta(i) \right)$$

holds.
Proof. Let \(u = u^0 \cdot \zeta_{\rho}(0, n - d(u)) \) where \(u^0 \in Y_{\rho}^0(d(u)) \). From Definition 3.6,

\[
R_{\rho}(u^0) = \rho_{\rho}((u^0(0), \ldots, u^0(d(u) - 1) + 1) - \rho_{\rho}((u^0(0), \ldots, u^0(d(u) - 1)) = \frac{1}{\rho_\rho(u)}
\]

and

\[
R_{\rho}(\zeta_{\rho}(0, n - d(u))) = 1 - \frac{1}{\rho_{\rho}^{(1)}}.
\]

When \(v \cdot w \in Y_{\rho}(m) \), it follows that \(R_{\rho}(v \cdot w) = R_{\rho}(v)R_{\rho}(w) \). Then, the lemma holds. \(\square \)

Remark 4.3 From Definition 3.6, it follows that

\[
f_{\rho}^n(x) = \beta^n \left(x - \sum_{i=0}^{n-1} \frac{\varphi(x)(i)}{\beta^{i+1}} \right)
\]

for any \(x \in [0, 1] \) and \(n \geq 0 \). Then, we have

\[
R_{\rho}(u) = \frac{1}{\beta^n} f_{\rho}^{n-d(u)}(1)
\]

for any \(u \in Y_{\rho}(n) \) and \(n \geq 0 \), from Lemma 4.3.

Lemma 4.4 ([3]) Let \(r \) be the absolute value of the second smallest zero of \(1 - \varphi_{\rho}(x) \), that is, \(r = \min\{|z| \mid z \in \mathbb{C}, \ z \neq 1\} \). Then for any small \(\varepsilon > 0 \), there exists a constant \(C_{\varepsilon} > 0 \) and

\[
\left| G_{\rho}^0(u; n) - \frac{\beta^n + 1 R_{\rho}(u)}{\rho_{\rho}^{(1)}} \right| \leq \frac{C_{\varepsilon}}{n} \left(\frac{\beta}{r - \varepsilon} \right)^n
\]

holds for any \(n \geq 0, k \geq 0 \) and \(u \in Y_{\rho}(k) \).

Proof. Let \(k \geq 0 \) and \(u \in Y_{\rho}(k) \). Remark that

\[
R_{\rho}(u) = \sum_{u \cdot v \in Y_{\rho}(u; n)} R_{\rho}(u \cdot v)
\]

holds. From (4.1), Lemma 4.1, and Remark 4.3, we have

\[
\beta^{n+k} R_{\rho}(u) = \sum_{j=0}^{n-1} f_{\rho}^{j}(1) G_{\rho}^0(u; n-j) + f_{\rho}^{n+1}(1)
\]

where \(l = k - d(\max\{Y_{\rho}(u; n)\}) \geq 0 \). Remark that the formal power series

\[
\sum_{n \geq 1} z^n \sum_{j=0}^{n-1} f_{\rho}^{j}(1) G_{\rho}^0(u; n-j) \beta^{-(n+k)}
\]

converges for \(|z| < 1 \). We have the following equality from (4.2):

\[
\beta^k \sum_{n \geq 1} z^n R_{\rho}(u) = \sum_{n \geq 1} \left(\frac{z}{\beta} \right)^n \sum_{j=0}^{n-1} f_{\rho}^{j}(1) G_{\rho}^0(u; n-j) + \sum_{n \geq 1} \left(\frac{z}{\beta} \right)^n f_{\rho}^{n+1}(1)
\]

(4.3)

We also have

\[
\sum \left(\frac{z}{\beta} \right)^n \sum_{j=0}^{n-1} f_{\rho}^{j}(1) G_{\rho}^0(u; n-j) = \sum \sum \sum \sum f_{\rho}^{j-1}(1) G_{\rho}^0(u; n-j+1) \left(\frac{z}{\beta} \right)^n
\]

\[
= \sum_{j \geq 1} \sum_{n \geq j} f_{\rho}^{j}(1) \left(\frac{z}{\beta} \right)^j \sum_{n \geq 1} G_{\rho}^0(u; n) \left(\frac{z}{\beta} \right)^n
\]
and, from Remark 4.3,

\[
(1 - z) \sum_{n \geq 0} f_\beta^n(1) \left(\frac{z}{\beta} \right)^n = (1 - z) + (1 - z) \sum_{n \geq 1} \left(1 - \sum_{i=0}^{\beta^{n-1}} \zeta_\beta(i) \right) (z/\beta)^n
\]

\[
= 1 - \frac{\zeta_\beta(0)}{\beta} + \sum_{n \geq 1} (1 - z) \left(1 - \sum_{i=0}^{\beta^{n-1}} \zeta_\beta(i) \right) (z/\beta)^n
\]

\[
= 1 - \frac{\zeta_\beta(n)}{\beta} = 1 - \frac{\zeta_\beta(n)}{\beta} = 1 - \phi_\beta(z).
\]

By using these two equalities, we obtain from (4.3) that

\[
\sum_{n \geq 1} G_\beta^n(u; n) \left(\frac{z}{\beta} \right)^n = \frac{z \beta^k R_\beta(u)}{1 - \phi_\beta(z)} - \frac{(1 - z) \sum_{n \geq 1} f_\beta^n(1)(z/\beta)^n}{1 - \phi_\beta(z)}.
\]

(4.4)

Consider the function

\[
h_u(z) = \sum_{n \geq 1} \left(G_\beta^n(u; n) \left(\frac{z}{\beta} \right)^n - \frac{\beta^k R_\beta(u)}{\phi_\beta(1)} (z/\beta)^n \right)
\]

\[
= \frac{z \beta^k R_\beta(u)}{1 - \phi_\beta(z)} - \frac{(1 - z) \sum_{n \geq 1} f_\beta^n(1)(z/\beta)^n}{1 - \phi_\beta(z)} - \frac{z \beta^k R_\beta(u)}{(1 - z) \phi_\beta(1)}.
\]

(4.5)

The second equality comes from (4.4). From Proposition 3.3, we see that \(h_u(z) \) is analytic in a neighborhood of \(\{z \in \mathbb{C} | |z| \leq r - \epsilon, z \neq 1\} \). We also see from (4.5) that \(\lim_{z \rightarrow 1} (1 - z) h_u(z) = 0 \). Considering the fact that \(\beta^k R_\beta(u) \leq 1 \) for any \(u \in Y_\beta(k), k \geq 1 \) and that the second term of the right-hand side of (4.4) and its derivative are bounded uniformly in \(l \), we see that there exists a constant \(C_\epsilon \) and

\[
\sup_{k \geq 1, u \in Y_\beta(k)} |h'_u(z)| < C_\epsilon
\]

(4.6)

holds. Then we have

\[
n! \left| \frac{G_\beta^n(u; n) \beta^n}{\phi_\beta(1)} - \frac{\beta^k R_\beta(u)}{\phi_\beta(1)} \right| = \left| h_u^{(n)}(0) \right| = \left| \frac{d^{n-1}h'_u(0)}{dz^{n-1}} \right| = \left| \frac{(n - 1)!}{2\pi(r - \epsilon)^n} \int_{|z|=r-\epsilon} h'_u(z) \frac{dz}{z} \right| \leq \frac{(n - 1)!}{2\pi(r - \epsilon)^n} \frac{C_\epsilon}{(r - \epsilon)^n}
\]

and the lemma follows.

Lemma 4.5 If \(\beta \in \mathbb{R}_{>1} \) is Markov and \(\zeta_\beta = (a_0, \ldots, a_{m-2}, (a_{m-1} - 1)) \), where \(m = p(\beta) \), then we have the following statements:

1. For an arbitrary \(v \in X_\beta \), \(\{G_\beta^n(n)\}_{n=0}^\infty \) and \(\{G_\beta^n(n)\}_{n=0}^\infty \), satisfy the following linear recurrent equation:

\[
G_\beta(\epsilon; n + m; v) - \sum_{i=0}^{m-1} a_i G_\beta(\epsilon; n + m - i - 1; v) = 0.
\]

(4.7)

2. For arbitrary \(u \in Y_\beta(k), k \geq m \) and \(v \in X_\beta \), the following equation holds for any \(n \geq m - k + d \):

\[
G_\beta(u; n; v) = \left\{ \begin{array}{ll}
\sum_{i=1}^{m-k+d} a_{k-d+i} G_\beta(\epsilon; n - i; v) & \text{when } d > k - m \\
G_\beta(\epsilon; n; v) & \text{when } d = k - m
\end{array} \right.
\]

(4.8)

where \(d = d(u[\max(0, k - m + 1), k + 1]) + k - m \).
Proof. From Proposition 3.2, we have the following partitioning:

\[Y_{\beta}(\epsilon; n + m; v) = \bigcup_{j=0}^{m-1} \bigcup_{i=0}^{j-1} \zeta_{\beta}[0, j] \cdot i \cdot Y_{\beta}(\epsilon; n + m - j - 1; v). \]

When \(d = k - m \), it is trivial to obtain this partitioning from Proposition 3.2. When \(d > k - m \), we obtain the following partitioning from the same proposition.

\[Y_{\beta}(u; n; v) = \bigcup_{j=1}^{m-k+d} \bigcup_{i=0}^{j-1} u \cdot i \cdot Y_{\beta}(\epsilon; n - j; v) \]

The lemma follows from these partitionings. \(\square \)

Proof of Theorem 4.1. Let \(k > 0 \), \(u \in Y_{\beta}(k) \). Let \(M \in \mathbb{N} \) and \(b = (b_0, b_1, \ldots, b_{m-1}) = L_{\beta}(M) \). We assume \(M \) to satisfy \(m > k \). Define

\[\Delta(I; P) = A(I; P) - M\lambda(I), \]

where \(I \) is an interval in \([0, 1)\) and \(P = \{x_1, x_2, \ldots, x_M\} \subset [0, 1) \). For any finite sets of points \(P, P' \) in \([0, 1)\) and any intervals \(I, I' \subset [0, 1), I \cap I' = \emptyset \),

\[\Delta(I; P \cup P') = \Delta(I; P) + \Delta(I'; P') \]

holds. Here, \(P \cup P' \) is the disjoint union of \(P \) and \(P' \) or the union of \(P \) and \(P' \) with multiplicity. From Definition 4.3 and (4.9), we have

\[\Delta(B(u); N_{\beta}[M]) = \sum_{j=0}^{m-1} \sum_{i=0}^{j-1} \Delta(B(u); Y_{\beta}(\epsilon; j; v_{ij})) \]

where \(v_{ij} = i \cdot b(j + 1, m) \). Consider the \(0 \leq j \leq k \) part of the right hand side of (4.10).

\[\sum_{j=0}^{k} \sum_{i=0}^{j-1} |\Delta(B(u); Y_{\beta}(\epsilon; j; v_{ij}))| \leq \sum_{j=0}^{k} (|\beta| + 1)G_{\beta}(j)R_{\beta}(u) \]

(4.11)

holds from the definition of \(\Delta \). Since \(R_{\beta}(u) \leq \beta^{-k} \) and \(G_{\beta}(j) \leq (|\beta| + 1)^j \), there exists a constant \(C_0 \), and

\[\sum_{j=0}^{k} (|\beta| + 1)G_{\beta}(j)R_{\beta}(u) < C_0 \]

is satisfied for any \(k \). Then, from (4.10) and (4.11), we have

\[\Delta(B(u); N_{\beta}[M]) \leq C_0 + \sum_{j=k+1}^{m-1} \sum_{i=0}^{j-1} |\Delta(B(u); Y_{\beta}(\epsilon; j; v_{ij}))|. \]

(4.12)

Define

\[\delta(u; n) = G_{\beta}^0(u; n) - \frac{\beta^{n+k}R_{\beta}(u)}{\phi_{\beta}'(1)} \]

\[\delta(n) = G_{\beta}^0(n) - \frac{\beta^n}{\phi_{\beta}'(1)} \]

for \(u \in Y_{\beta}(k) \) and \(k, n \geq 0 \). From this definition,

\[|\Delta(B(u); Y_{\beta}^0(n))| = |G_{\beta}^0(u; n) - R_{\beta}(u)G_{\beta}^0(k + n)| \]

(4.13)
holds. Then, from Lemma 4.2 we have
\[
\sum_{j=k+1}^{m-1} \sum_{i=0}^{b_j-1} |\Delta(B(u); Y_\beta(c, j, v_d))| \leq \sum_{j=k+1}^{m-1} \sum_{i=0}^{b_j-1} \left(\sum_{l=1}^{t_{j+1}} |\Delta(B(u); Y_\beta^{(l)}(\cdot \cdot \cdot j - 1) \cdot \not\in (v_u) \sum_{=0}^{r} \lambda(B(u); Y_\beta^{(l)})| + 1 \right).
\]
(4.14)

From the (PV) condition and Lemma 4.4, there exist \(r > \beta \) and a constant \(C_r \) that satisfies
\[
|\Delta(B(u); N_{\beta}[M])| \leq C_0 + C_r([\beta] + 1) \sum_{j=k+1}^{m-1} \left(\sum_{l=1}^{t_{j+1}} \left(\frac{1}{l} \left(\frac{\beta}{r} \right)^l \frac{1}{k+l} \left(\frac{\beta}{r} \right)^{k+l} R_\beta(u) \right) + 1 \right) = O(M) = O(\log M)
\]
holds.

Choose an arbitrary \(t \in [0, 1) \). Let \(M \in \mathbb{N} \) and \(L_{\beta}(M) = (b_0, \ldots, b_{m-1}) \). Let \(B(t_0, \ldots, t_{m-1}) \) be a cylinder of rank \(m \) that satisfies \(t \in B(t_0, \ldots, t_{m-1}) \). Then we have
\[
[0, t) = B_{t_1} \cup B_{t_2} \cup \ldots \cup B_{t_k} \cup R,
\]
where \(0 \leq s_1 < s_2 < \ldots < s_k = m - 1 \), \(B_{s_i} \) is a cylinder of rank \(s_i \) and \(\lambda(R) < \beta^{-m+1} \). Then from (4.9) and (4.16), we have
\[
|\Delta([0, t); N_{\beta}[M])| = O((\log M)^2),
\]
and therefore
\[
D^*_M(N_{\beta}) = O \left(\frac{\log M^2}{M} \right).
\]

In the following part, we consider the case in which \(\beta \) is Markov. Let \(l = p(\beta) \) and \(\zeta_\beta = (\alpha_0, \ldots, \alpha_{l-2}, (\alpha_{l-1} - 1)) \). Then, \(\beta \) is the unique \(z > 1 \) solution of
\[
z^l - \sum_{i=0}^{l-1} a_i z^{l-1-i} = 0.
\]
(4.17)

Let \(\alpha_1, \ldots, \alpha_q \) be the conjugates of \(\beta \) with respect to the equation (4.17), that is,
\[
z^l - \sum_{i=0}^{l-1} a_i z^{l-1-i} = (z - \beta) \prod_{i=1}^{q} (z - \alpha_i)^{l_i}
\]
where \(l_i \geq 1, \alpha_i \neq \alpha_j \) for all \(i \neq j \) and \(\sum_{i=1}^{q} l_i = l - 1 \). We also have
\[
|\alpha_i| < 1, \quad \text{for all } i \in \{1, \ldots, q\}
\]
(4.18)
from the (PV) condition. Let \(v \in X_\beta \). From Lemma 4.5, there exist complex numbers \(c, c_{ij} \) (\(i = 1, \ldots, q, \ j = 0, \ldots, l_i - 1 \)) that satisfy the following equation:
\[
G_\beta(c; n; v) = c\beta^n + \sum_{i=1}^{q} \sum_{j=0}^{l_i-1} c_{ij} n^j \alpha_i^n \quad \text{for all } n \in \mathbb{N}.
\]
(4.19)
From Lemma 4.3, Lemma 4.5, and (4.19), we have

$$
\Delta(B(u); N_\beta[G_\beta(c; k + n; v)])
= \left\{ \begin{array}{ll}
\sum_{h=1}^{k} \sum_{j=0}^{l} c_{\beta^j} \left(n^2 \alpha_h^{n} - \frac{1}{\beta^k} (k + n)^2 \alpha_h^{k+n} \right), & \text{when } d = k - l \\
\sum_{i=k-d}^{l-1} \sum_{h=1}^{k} \sum_{j=0}^{l} c_{\beta^j} \left((k + n - d)^2 \alpha_h^{k+n-d-i} - \frac{1}{\beta^{k+i}} (k + n)^2 \alpha_h^{k+n+i} \right), & \text{when } d > k - l
\end{array} \right.
$$

(4.20)

where $u \in Y_\beta(k)$, $n \in \mathbb{N}$, and $d = d(u[\max(0, k - l + 1), k + 1]) + k - l$. From (4.9), (4.12), (4.14), (4.18), and (4.20), there exists a constant C that satisfies the following inequality (4.21) for any cylinder $B(u)$ of any rank k and $M > G_\beta(l + d)$.

$$
|\Delta(B(u); N_\beta[M])| < C
$$

(4.21)

Then, we obtain

$$
D_M(N_\beta) = O \left(\frac{\log M}{M} \right)
$$

by the above reasoning.

参考文献

