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Weierstrass type expression of curves of genus two and modular forms.
KOMATSU Makoto !

Abstract

The parameter space of versal deformation of curve singularity of type A4 has
a structure of C*-bundle in a wider sense. The aim of this paper is to clarify the
structure of the bundle by a period mapping.

1 Introduction.

For any‘p'ositive integer n, zeros of a polynomial —y2+z"*! in C? gives a curve singularity .
of type A,. And the following polynomial

Fy,(z,9,t) = P 4" p ™ 4t
expresses versal deformation of the above singularity. That is,
Ea, = {(il:, y’t) € C? x C"'IFA"(:E, yat) = 0} .

is called versal deformation of curve singularity of tipe A,. The parameter space C" is
denoted by Sa,,:

S4, :=C*"(3t=(t2,..,tnt1)) -

On =4, and S4, we define a C*-action as

o o
Ae(z,yt):={ M ATy A1) (n: odd)
e Nz, Aty A-t) (n: even)
where ‘
Aofo=. (A, ..., A1) (n: odd)
. (Mg, ..., A2, 00) (n: even),

By the action, the parameter space S4, is regarded as the total space of a C*-bundle in
a wider sense. here we think of the following problem.

Problem 1.1 Clarify the structure of the above C*-bundle Sy,,.

At the present time, only for n = 1 and n = 2, answer to the problem is already known.
As for the case n = 1, the problem is trivial, because the base space C*\S4, consists of
one point. As for the case n = 2, answer to the problem is a classical result, which we
will see later (in subsection 2.4). In the present paper we think of the problem for n = 4.
Here we avoid the problem for » = 3. If n is an odd integer and n > 3, there are some
circumstances, in which, the case of A, is rather different from that of A;. Therefore
we cannot apply the way used in solving the problem of the case n = 2, simply, to the
problem for the n. As for the problem for the n, we have no idea now. In the case n = 2,
using a period mapping and applying a well-known frame of automorphic forms, we can
see that the transition functions of the bundle S4, are given as a factor of automorphy.
In the following section we review the frame of automorphic forms. '
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2 A frame of automorphic forms.

In this section we review a well-known frame of automorphic forms.

2.1 Equivariant group action on a trivial bundle and a factor of auto-
morphy.

Suppose X be a complex manifold, and G be a group acting on X discontinuously. Then
the following (2-1-1), (2-1-2) are equivarent.

(2-1-1) To give a factor of automorphy j : G x X — C*.

(2-1-2) To give a G-action on C* x X which satisfies the following (i),(ii).
(1) The G-action is commutative to the natural C*-action on C* x X.
(i1) The G-action is equivariant to the natural projection C* x X — X.

In fact, if a factor of automorphy j is given, we can give a G-action on C* X X using ] as
follows:

C"‘ X X 3 (A z) = (j(o,2) A\, 0(z)) € C* x X (c €G). (1)

It can be easily seen that this G-action satisfy the above (i) and (ii). On the other hand,
suppose that a G-action on C* x X satisfying (i) and (ii) is given. Then we define a map
j:GxX->C by the followmg relation:

(1,z) v (_1(0' z)” l,a(x)) (c €G,z€X). (2)

Then this j is a factor of automorphy. Those two procedures now explained are inverse to |
each other.

2.2  Invariant ring.and ring of automorphic forms.

In general, when a group G is acting on a ring R, we denote by RC the G-invariant
subring of R. And for any complex analytic space Y, we denote by O(Y) the ring of all
of holomorphic functions on Y.

When (2-1-1) (or, equivarently, (2-1-2)) is satisfied, there are well known relations of
four rings as follows:

[the ring of (G, j)-automorphic forms on X] (3)
= O(X)[A, A% C O(C* x X)) = O((C* x X)/G) .

It seems that in (3), only the first isomorphism is non-trivial (at least, to me). Here we
explain the correspondence which gives the first- isomorphism of (3). Suppose f be an
element of (’)(X )[A,A~1]¢. We express f as Laurent polynomial in A:

f(Az)= Z A% fi () ( finite sum) s (4)

kezZ

where fr € O(X). From the expansion, f satisfies the equality

f((0,2)7 N 0(2)) = 3 3(0,2)FA¥ fir(o (=) ()
k
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for any o € G. Because f is G-invariant, (1), (4) and (5) imply that
fi(o(z)) = §(0, ) fu(z) (Vo € G, Vz € X, Vk € Z).

That is, fx is a (G, j)-automorphic form of weight k. On the oter hand, for given finite
set {fr} (Where each f; is a (G, j)-automorphic form of weight k), if we define f by (4),
we can easily see that f is an element of O(X)[, A71]C.

2.3. Our plan.
We denote by D4, the discriminant set of S4,:
Dy, = {t € Sa,|Fa.(2,0,t) has multiple roots.} (6)

We treat S A, —D 4, tather than Su, itself. Suppose that there exist X and G which make
the left hand side of the following diagram

Sp—Dy €—— (C*x X)/G €<——C*x X 3> (1,z)

0s .
\ s s  Diagram-1

C*\(S4,—Dy,) €—— X/G < X 35 z

commutative, where u is a natural projection, and s is a global section of the trivial bundle
C* x X — X defined as in the above diagram. Then by (3), the ring C[t2,...,tnt1] is
regarded as a subring of O(X )[A,A71]%, and hence it is regarded as a subring of the ring
of (G, j)-automorphic forms. Moreover, transition functions of the bundle S, — D4, is
given as a factor of automorphy j. By the way, the G-actions on the total space and on
the base space of the bundle C* x X — X are equivariant to the projection. Hence, by
the relation (2) the section s satisfies

s(o(z)) = j(a,:z:) - o(s(z)) (Vo € G, Vz € Xj .

Moreover, the C*-actions on (C* X X)/G and on C* X X are equivariant to the map u.
And, in addition, u is G-invariant. Therefore, we have

(uvos)(a(z)) = j(o,z) - (uos)(z) (Vo € G, Vz E.X) .

Keeping the above frame in mind, we consider the problem 1.1 for n = 4 according to the
following plan.

(2-3-1) First we find X and G which give Diagram-1.

(2-3-2) Next we investigate the effect of G-action on the map u o s to obtain a factor of
automorphy j explicitly.
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2.4 Example. (A;-type curve singularity.)

As an example, we review the answer to the problem 1.1 for n = 2. In order to adapt the
problem to the theory of Weierstrass’ elliptic function, we modify the definition of Fg, as
follows:

Fy, = -—y2 + 423 — g2T — g3 -

Then S4, = C? and Da, = {g € Sa,lg3 — 27¢Z = 0}. In this case, using the following
multi-valued holomorphic mapping: '

S —Da 3 / / €C*xH, 7
A2 gH(A(g)y (g)y/A(g)y) Q

we can apply the above frame to S4, — D4,, where G = SL(2,Z) and X = H(:= {r €
C|ST > 0}). As a consequence, we obtain that S4,—Dj4, = C* x H/SL(2,Z). Moreover,

we have j (( Z 3 ,7 | = ¢r + d, and obtain the expression of g; (¢ = 2,3) as (G, j)-

automorphic forms, which coincide to the well-known expressions as Eisenstein series.

3 Definition of period mapping.

We denote that § := S4,, Z := E4,, and D := Dj,. Discriminant of the polynomial
Fy4,(z,0,1) € (C[t])[z] is as follows:

A(t): = 3125t — 3750151583 + 200052312 + 2250628412 — 900£31412 + 82524242
+108t512 — 1600t3t3t5 + 560t513t3ts — 630t5t3t4ts — T2thtatsts + 108515
+16t3t3ts + 25615 — 128t5t5 + 144851313 + 161513 — 271512 — at3t22 .

By (6), we have D = {t € S| A(t) = 0}. In addition, = denotes the natural projection
=3 (z,y,t) — t € S, and X; denotes 7~1(¢). We take a point to € S—D. o is used
as a base point of the fundamental group of S— D. Projection « : = — r~}(D) —» S—D
has the property of local triviality. Hence 71(S—D, ) acts on H1(X4,,Z). Moreover, this
action preserves the intersection form ( , ) on Hy(X¢,,Z). Therefore we have the following
representation:

p i mi(S—D,to) — Aut(Hi(Xeq, 2):( 5 ))

(monodromy representation), where Aut(H1(Xy,Z),(, )) denotes all of automorphisms
of H1(Xt,,2) which preserve the intersection form ( , ). T := p(H1(X4,,2)) is called as
monodromy group. We take a symplectic basis of H;(X¢,,Z) as in Flgure-l Then by
the basis, the following group isomorphism holds: .

Aut(Hy (X0 20, )) = Sp(4:2) | - ®)

and by the isomorphism, I is regarded as a subgroup of Sp(4,Z). Now we define a covering
space of S—D as follows:

—

S—D := (universal covering space of S— D)/(kernel of p).
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S$—D is called as monodromy covering. Natural projection $§=D — $—D is denoted by o.
Here we can define a period mapping.

& () wia(h) wis(h) walh) \ . coax
P.-S—Da h — (w;(h) w:z(h) w;z(h) w::(h) ) € o

= 1dg
wi(h): = /A -
v

where A;(R), Aa(h), As(h) = By(h), A4(h) = Ba(h) are symplectic basis of Hy(Xo(n), Z)
and depend on k “continuously”. That is, each A; (h) is a local system. Note that, On
some ho € 07 1(tp), we take 4;(ho) (j = 1,2,3,4) as in the Figure-1.

B:
e
/f .
Al A2 [ >
el €2 €3 €4 es ! i (=]
i \ o
1 S N e e e - - ]
\ ’ :
. s, o
Sl -~ Figure-1

-
T - -———

Remark. Each’Aj(t) is multi-valued on $—D. But, on §—D, each A;(t) is single-
valued. In fact S—D is the minimal covering on which each A;(¢) is single-valued. Therefore
the above period map P is single-valued.

By the definition of P, each P(k) (h € S—D) is a 2 X 4 matrix. We define a map ¢ as
¢ : Image(P) 3 (R QB) — (2'0p) € H,

where Qg4, Qp denote the left 2 x 2 part, the Iight? X 2 part of the 2 x 4 matrix P(h),
respectively, and Hy denotes the Siegel upper half space of genus two.

4 Results(1) — towards (2-3-1).

The C*-action on S— D can be lifted to an action on S—D, where the C*-action is fixed
point free. Hence it can be easily seen that $=D is regarded as the total space of a C*-
bundle in the strict sense. By the way, in the Problem for n=2, we can see that S A;—\DA2
is isomorphic to the trivial bundle C* x H via the period mapping (7). As for the Problem
for n=4, we obtained the following theorem.

Theorem 4.1 ([4]) The above period mapping P gives an isomorphism

§h=cC* x H 9)
as C*-bundles, where
H) := H; - 4, A:={Mo1|M € Sp(4,2Z), 7 € Hs, 7 is a diagonal matriz} . (10)

(Definition of M o T is given in subsection 5.2.)
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__(Outline of the proof.) To prove the theorem we give a global section of the bundle
$5-D — HY by using Rosenhain’s formula [7]. The formula says that, in our situation, the
following equalities

2 2 2 2 2 2
€3 —€ __ Y5000Y5100 €4 —€1 510090001 €5 — €1 _ Y5000Y6001 (11)
= 92 2 =92 3 =93 2
e2—e1 Yio0Yt100 e2—e1 Yi100Y%1001 e2—e1  FopTio01
hold, where

e e1,...,es are five roots-of F(z,0,0(h)),

e T is a period matrix, which is obtained from Xo(n) with a basis Aj(a(h)) {7 =
1,2, 3’4} of Hl(Xa(h)aZ):

and for any € = (¢'e”) = (¢}...e4e]...€)) € Z%9 and T € Hy,

'1 ts ”

de = (7 Z exp |mi(n + = )'rt(n + —) + 27i(n +5 (12)
nez9 .

are theta constants of genus g, where H, denotes Siegel upper half space of genus g. Here
we use only theta constants of genus two

In our situation, the equality e; +---+e5 =0 holds. Therefore, by using some formulas
of theta constants, (11) imply that the following equality holds,

(e1,...,es5) = (Aaq;.. ., A2as)

for some A € C*, where

a; = —( —93000%3100%3001 — 0007510093001 — F1000P5100%0001 — Va000P3100%5001) +
ay = ‘5('*‘19100019%1.0019%001 — Dg01098110%3001 — Fo01195110%T000 — Pa011%0010%3100) -
oz = ¢ (+75000%51009 3001 + Fao10Pa110%3001 — F3110%3111%8100 — P01093111%8000) »
a4 = g(+19%00079%10079(2)001 + D301195110%3000 + 19311079%111 Pa100 — Poo1197111%0001) »
as = é(+19(2)00079§100'93001 + 95011980109 1100 + Yo01091111 %5000 + Fo011 92111 88001) -

'Using those functions, we define a map F : HY 3 7 — (¢2,...,%5) € S—D by

Hi=(-1 Y ey e, (i=2,3,4,5). (13)
1<y <<y <5 ]

Then, the map F is “lifted” to a map ¥ : HY — S—D and F' is a global section of the
bundle S—D — HY. Therefore, the isomorphism (9) is obtained. O

By the theorem, we can take H as X and I as G in the Diagram-1.
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5 Results(2) — towards (2-3-2).

5.1 Preliminary.

In the previous section, we used F" as a global section of the bundle S—D — HY to give
isomorphism (9). As a result, in our trivialization, we obtain a factor of automorphy
j : T x HY — C*. From now on, we obtain j explicitly by clarifying factors of automorphy
of t,13,%4,1s5 (or a1,...,5) under the action of I', where we regard ¢; as functions on HY
by the equality (13). Here we note the following three points.

(5-1-1) Each t; (or ;) is a homogeneous polynomial of theta constants.
(5-1-2) T is regarded as a subgroup of Sp(4,Z) by the isomorphism (8).

(5-1-3) The transformation formula of theta constants under the action of the full mod-
ular group is well-known. (cf. [6])

So we investigate the effects of I'-action on aj, ..., as.

5.2 Transformation formula of theta constants.

Following to [6], here we give short review of the transformation formula of theta constants

b C) € Sp(29,Z), T € Hy, € =

defined in (12). It is well-known that, for M = ( B A

(e'€”) € 2%, the following equality holds:

Intoe(M o 7) = k(M) exp(rig(M,e))/det(CT + D)3 (7) , (14)

where ‘

Mor:=(AT+B)(Cr+D)™', Moe:=eM '+ ((C'D)o(AB)o),

1 .

$(M,e) := Z{—é'tDBte' + 26"'C B’ — "'CA%" + 2(¢"'D — ¢"'C){ A'B)o}
where for g x g matrix X = (z;;), we write Xo := (211, %22,..-,Z4¢)- In (14), k(M) is a
constant, which depends on M and is independent to € and 7. Moreover, It is well known
that x(M)® = 1 for any M € Sp(2g,Z). As for k(M ), more various properties are known.
5.3 Definition of a group I".

For any two positive integers g and n, the principal congruence subgroup of level n, genus
g is defined as follows:

Ly(n) := {M € Sp(2¢9,Z)|M = I, mod n} .

(Note that T'y(1) = Sp(29,2).) It is well known that I'y(1)/T2(2) is isomorphic to the
6-th Symmetric group Se¢. (See, for example, [3].) Usually, the isomorphism is given by
the action of I'y(1) over the following six odd theta characteristics of genus two:

(1):= (0101), (2):= (0111), (3):= (1011), (4):= (1010), (5):= (1110), {6):= (1101).(15)

- Here we give an isomorphism explicitly.
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For any M € I'3(1), the following map:
e mod (2Z)* — M o e mod (2Z)* (16)

gives rise to a permutation of the six elements in (15). Hence for any M € T'3(1) and for
any i € {1,...,6}, there is a M (%) € {1,...,6} such that

(M(3)) = M o (i) mod (2Z)* .

Then the map ¢ — M(%) is a permutation of {1,...,6}. Terefore we have a group homo-
morphism I'z(1) — Se. It can be easily seen that the homomorphism is surjective, and
that its kernel is I'2(2). So we obtain an isomorphism I'y(1)/T'2(2) = Se.

Here we treat the following subgroup I":
Definition 5.1 I := {M € I'3(1)|M o (1101) = (1101) mod (2Z)*}.
This subgroup I' has the following property.
[y(2)cI'CcIy(l) and TIY/Ty(2)=Ss.
The following lemma brings the above subgroup I to our notice.

Lemma 5.2 (A’Campo [1]) ' =T.

5.4 Factors of automorphy of o;.

We denote (M) := x(M)? exp[2rig¢(M,(1101))] for any M € T'z(1). We can easily obtain
the following obvious lemma by using transformation formula of theta constants.

Lemma 5.3 '3 M — x(M) € C* is a group homomorphism.

Moreover, the transformation formula (14) implies the following lemma.

.

Lemma 5.4 ([4]) For any i € {1,2,3,4,5}, for any M = ( bc

B A ) € I, and for any

T € Ho, the following equality holds.
api(Mot) = x(M)det(Cr + D)3a;(1) .
By the lemma, consequently, we obtain the following theorem.

Theorem 5.5 ([4]) Under the trivialization of S=D by I, we conclude that

D C

HM,7)? = X(M)det(CT + DY (VM = ( b & )errem.
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6 Comparison with the ring of Siegel modular forms.

In the frame glven in section 2, if we take X = Hj, G = I'y(1) and ](( g i ) T) =

det(Ct+ D), then the ring of (G, j)-automorphic forms on X is the ring of ordinary Siegel
modular forms of genus two. Igusa showed (in [2], [3]) that the ring is

C[v4, %6, X10, X12, X35]  (indices denote weights) 7

where 14, Vs, X10, X12 are algebraically independent over C, and x§5 € Clv4,vs, X10, X12]-
On the other hand, the ring which we pay attention to is

Clt2,t3,14,15] (indices denote half of weights)

where 15,13, 14, {5 are algebraically independent over C. Therefore, though we have not yet
found conditions which determine the ring C[t2,%3,%4,s] in the ring of (I, j)-automorphic
forms, we can already see that algebraic structures of our ring C[tz,t3,t4,t5] is different
from that of the ring (17). :
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