
MILNOR NUMBERS
FOR LOCALLY COMPLETE INTERSECTIONS

WITH NON-ISOLATED SINGULARITIES

Daniel LEHMANN (1)

Let $V$ be complex variety of complex dimension $n$ . When $V$ is non-singular and
compact, let us recall 2 very well known formulas:

1) the Gauss-Bonnet theorem: $\chi(V)=c_{n}(V)\wedge[V]$ , where $\chi(V)$ denotes the Euler-
Poincar\’e characteristic of $V$ ,

2) the Poincar\’e-Hopf theorem: $\chi(V)=\sum_{\alpha}\mathrm{P}\mathrm{H}(X, S_{\alpha}),$ whereX denotes a vector field
$X$ on $V,$ $(S_{\alpha})_{\alpha}$ the connected components of the singular set of $X$ , and $\mathrm{P}\mathrm{H}(X, S_{\alpha})$

the (generalized) Poincar\’e-Hopf index of $X$ at $S_{\alpha}$ (the usual index when $S_{\alpha}$ is a $\mathrm{p}\mathrm{o}\mathrm{i}\mathrm{n}\dot{\mathrm{t}}$ )
which depends only on the local behavior of $X$ near (but away from) $S_{\alpha}$ .

The aim of our work is to $\mathrm{u}\dot{\mathrm{n}}$derstand what become these formulas when $V$ may
have singularities. The principle of our method is based on generalizing a formula given
in $[\mathrm{P}, \mathrm{P}\mathrm{P}]$ for hypersurfaces and in [SS2] for (strong) local complete intersections with
isolated singularities: $\dot{\mathrm{f}}\mathrm{o}\mathrm{r}$ an analytic variety $V$ which is locally a set-theoretic complete
intersection (see the precise definition below), we consider some global topological in-
variant representing a kind of obstruction for the Gauss-Bonnet theorem to be true.
This obstruction is in fact “localized” at the singular set Sing$(V)$ of $V$ and the Milnor
number $\mu_{\alpha}(V)$ associated with each connected $\mathrm{c}\mathrm{o}\mathrm{m}$,ponent $S_{\alpha}$ of Sing $(V)$ is then the
contribution of $S_{\alpha}$ to the obstruction. It coincides with the usual Milnor number defined
by J. Milnor in [M] in case of isolated singularities of complex hypersurfaces, and more
generally by Hamm $([\mathrm{H}1])$ for locally complete intersections with isolated singularities
(cf. $\mathrm{a}\mathrm{l}\mathrm{s}\mathrm{o}- \mathrm{C}\mathrm{a}1_{\mathrm{C}\mathrm{u}1}\mathrm{a}\mathrm{t}\mathrm{i}\mathrm{o}\mathrm{n}\mathrm{S}$ in Greuel [G] and L\^e $\mathrm{D}\mathrm{u}\mathrm{n}\mathrm{g}\prime \mathrm{n}\mathrm{a}\mathrm{n}$ [L\^e]). It coincides also with the
Milnor number defined by A. Parusitski [P] for hypersurfaces possibly with non-isolated

(1) The matter of my talk at the RIMS conference is a report on a joint work with
J.Seade and T.Suwa $([\mathrm{L}\mathrm{s}’ \mathrm{s}])$ . This article will be finally included in a more general
hamework, with the further cooperation of $\mathrm{J}.\mathrm{P}$.Brasselet (under progress).
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singularities. Notice that none of the methods used in these particular cases may gen-

eralize to the situation that we wish to look on. Furthermore, our method may also
be efficient for computing new examples, even in the previous situations already known
(see for instance example 1).

In the regular case, $c_{n}(V)$ denotes the $n^{th}$ Chern class of the (complex) tangent

bundle to $V$ . Before to know wether the Gauss-Bonnet theorem is true or not in the

singular case, it is necessary to extend the definition of $c_{n}(V)$ in our situation: it is the

reason $\mathrm{w}\mathrm{h}\dot{\mathrm{y}}$ we shall assume that $V$ is a “locally set-theoretic complete intersection”.

This means that are given a holomorphic vector bundle $Earrow W$ of rank $q=dim(W)-n$

over a complex (non singular) manifold $W$ , and a holomorphic section $s$ of $E$ generically

transverse to the zero section, such that $V=s^{-1}(0)$ : using a local trivialization of $E$ ,

it is clear that $V$ is locally defined by $q$ equations in $W$ ; furthermore, it is easy to prove

that the restriction $E|_{V_{0}}$ of $E$ to the regular part $V_{0}$ of $V$ may be naturally identified

with the normal (complex) bundle $N(V_{0})$ of $V_{0}$ in $W$ . Examples of this situation are:
-hypersurfaces ($E$ is then the line bundle associated to the divisor defined by $V$ ),

-set-theoretic complete intersections (defined by $q$ global equations in $W:E$ is there

the trivial bundle of rank $q$),

-and set-theoretic (projective algebraic) complete intersections in a complex projective

space CP(n+q): if $V$ is the intersection of $q$ algebraic hypersurfaces $H_{\lambda}(1\leq\lambda\leq q)$

of respective degree $d_{\lambda}$ , we may take $E=\oplus_{\lambda=1}^{q}L^{\otimes d}\lambda$ , where $L$ denotes the hyperplane

line bundle , dual of the tautological line bundle on $\mathrm{C}\mathrm{P}(\mathrm{n}+\mathrm{q})$ .

Thus, the restriction $N=E|_{V}$ of $E$ to $V$ is an extension of the normal bundle of
$V_{0}$ in $W$ which will be called “normal bundle ” to $V$ , and the difference $\tau=TW|_{V}-N$

in $KU(V)$ the “virtual tangent bundle” to $V$ . Its (total) Chern class (1) $c(\tau)$ reduces to
the usual Chern class $c(V)$ when $V$ is non-singular. We call “total Milnor number” the

integer $\mu(V)=(-1)^{n}[c_{n}(\mathcal{T})-[V]-\chi(V)]$ .

(1) Let us remark that $\tau$ , as well as $c(\tau)$ and and the Milnor number that we wish to

define, depend on the choice of $E|_{V}$ . However, if we assume furthermore that $s$ is a
“regular” section, i.e. that the components of $s$ with respect to any local trivialization

of $E|_{U}$ generate the ideal $I(V\cap U)$ of (local) holomorphic functions on $U_{\mathrm{V}}\mathrm{a}\mathrm{n}\mathrm{i}\mathrm{S}\mathrm{h}\mathrm{i}.\mathrm{n}\mathrm{g}$ on
$V$ , then $N$ is well defined $(\mathrm{s}\mathrm{e}\mathrm{e}[\mathrm{L}\mathrm{s}])$ , and will be called “the reduced extension” of $N(V_{0})$ .
The usual Milnor number refers to this reduced extension.
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Let now $S$ be a compact subset of $V$ which we assume furthermore to be either a
connected component of $S_{\dot{i}ng}(V)$ or included in $V_{0}$ . For a continuous vector field $X$ de-
fined and non vanishing near but away from $S$ in $V_{0}$ , we define (1) , as generalizations of
the Poincar\’e-Hopf index, two indices of $X$ at $S$ , which are called below the “generalized
Schwartz index” $\mathrm{S}\mathrm{c}\mathrm{h}(x, s)$ and the “virtual index” $\mathrm{V}\mathrm{i}\mathrm{r}(x, S)$ , which are localizations of
$\chi(V)$ and $c_{n}(\tau)-[V]$ respectively, in the sense of parts (i) and (ii) of theorem 2 below.
[The Schwartz index depends only on $X$ and $V$ , while the virtual index also takes into
account the way how $V$ is embedded in $W$ and depends on the choice of $E$].

I Definition of the virtual index:

We first need some definitions. Let $\nabla$ and V’ be connections for $TW$ and $E$ ,
respectively, defined on some submanifold $\Omega$ of $W$ . Denoting by $\nabla$. the pair $(\nabla, \nabla’)$ ,
we set

$c_{n}( \nabla\cdot)=\sum_{f}\varphi l(\nabla)\cdot\psi_{\ell(}\nabla’)$ ,

where the product is the exterior productl. Then $c_{n}(\nabla\cdot)$ is a closed $2n$-form and defin.e$\mathrm{s}$

the class $c_{n}(TW-E)$ on $\Omega$ . If $\nabla \mathrm{i}=(\nabla_{1}, \nabla_{1}’)$ and $\nabla_{2}=(\nabla_{2}, \nabla_{2}’)$ are two such pairs,
we set:

$c_{n}( \nabla \mathrm{i}, \nabla_{2}.)=\sum_{\ell}(\psi\ell(\nabla_{1}J)\cdot\varphi\ell(\nabla 1, \nabla_{2})+\psi_{\ell}(\nabla_{1}^{\prime J}, \nabla 2)\cdot\varphi_{\ell}(\nabla 2))$ .

Then we have:

Lemma

$dc_{n}(\nabla \mathrm{i}, \nabla_{2}.)=Cn(\nabla 2^{\cdot})-cn(\nabla \mathrm{i})$ .

Recall that there is an exact sequence of vector bundles on $V_{0}$ :

$0arrow TV_{0}arrow TW|_{V_{0}}arrow N_{V_{\mathrm{O}}}\piarrow 0$ .

Let $\Omega_{0}$ be a subset in $V_{0}\cap\Omega$ . The pair $\nabla\cdot=(\nabla, \nabla’)$ will be said to be “compatible”
on $\Omega_{0}$ if, on $\Omega_{0}$ , the connection $\nabla’$ is obtained from $\nabla$ by passing to the quotient:

(1) Most of our constructions and results, except the integrality of the virtual indices
and theM-ilnor numbers, would still be valid under the weaker following assumption on
$V$ : there exists a $C^{\infty}$ vector bundle $E$ on a neighborhood of $V$ in $W$ which extends
the normal bundle of the regular part $V_{0}$ of $V$ in $W$ ; if it is just for defining the Milnor
number, we do not need really $V$ to be defined as the zero set of a holomorphic section
of $E$ , not even $E$ to be holomorphic. (See example 4 below).
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$\pi\circ\nabla=\nabla’\circ\pi$ . This implies that $\nabla$ preserves the subbundle $TV_{0}|_{\Omega_{\mathrm{O}}}$ of $TW$ . The
induced connection for $TV_{0}$ will be denoted by $\nabla^{V}$ . Thus the triple $(\nabla^{V}, \nabla, \nabla’)$ is
compatible with (2.3) in the sense of [BB] 4.16.

Lemma

(i) If $\nabla$
. is a compatible pair on $\Omega_{0}$ , then $c_{n}(\nabla\cdot)=c_{n}(\nabla^{V})$ on $\Omega_{0}$ .

(ii) If $\nabla \mathrm{i}$ and $\nabla_{2}$ are two compatible pairs on $\Omega_{0}$ , then $c_{n}(\nabla \mathrm{i}, \nabla_{2})=c_{n}(\nabla^{V}1, \nabla^{V}2)$ on
$\Omega_{0}$ .

Let now $V$ be as above, and let $S$ be either a compact connected set in $V_{0}$ or a
compact connected component of Sing $(V)$ . Also let $\tilde{U}$ be a neighborhood of $S$ in $W$

such that $U-S$ is in $V_{0},$ $U=\tilde{U}\cap V$ . For a $C^{\infty}$ vector field $X$ non-singular on $U-S$ ,
we define the virtual index $\mathrm{V}\mathrm{i}\mathrm{r}(x, S)$ of $X$ at $S$ as follows. First, we take a compact
real $2(n+k)$-dimensional manifold $\tilde{\mathcal{T}}$ with $C^{\infty}$ boundary $\partial\tilde{\mathcal{T}}$ in $\tilde{U}$ such that $S$ is in the
interior of $\tilde{\mathcal{T}}$ and that $\partial\tilde{T}$ is transverse to $V$ . We set $\mathcal{T}=\tilde{\mathcal{T}}\cap V$ and $\partial \mathcal{T}=\partial\tilde{\mathcal{T}}\cap V$ .
We set

$\mathrm{V}\mathrm{i}\mathrm{r}\langle X,$ $S)= \int_{\tau^{C_{n}(}}\nabla_{\dot{0}})+\int_{\partial\tau^{C_{n}(\nabla}}\dot{0}’\nabla\cdot)$ .

This definition depends only of the local behavior of $X$ near $S$ , but not on the various
choices used in the formula.

This virtual index has been introduced in [LSS]. If the singularity $S$ is an isolated
point and if $V$ is a complete intersection near $S$ , then the virtual index coincides with
the “GSV-index” of [Se, GSV, $\mathrm{S}\mathrm{S}1$], which is closely related to $\mathrm{t}\dot{\mathrm{h}}\mathrm{e}$ Milnor fiber and the
(usual) Milnor number. We may also interpret the virtual index in terms of “smoothing”
of $V$ , proving by the way the integrality of the virtual index, thus of the generalized
Milnor number.

II Difference of two vector fields near $S$ :

For 2 $C^{\infty}$ vector fields $X_{1}$ and $X_{2}$ , both non-singular on $U-S$, we define the
difference $d_{S}(X_{1}, X_{2})$ of the vector fields near $S$ by the formula

$d_{S}(x_{1}, x_{2})= \int_{\partial \mathcal{T}}c_{n}(\nabla 1, \nabla_{2})$ ,

where $\nabla_{1}$ and $\nabla_{2}$ denote connections on $T(V_{0})$ defined near $\partial \mathcal{T}$ , and preserving respec-
tively $X_{1}$ and $X_{2}(X_{1}\mathrm{t}\mathrm{r}\mathrm{i}\mathrm{v}\mathrm{i}\mathrm{a}1, X_{2}\mathrm{t}\mathrm{r}\mathrm{i}\mathrm{v}\mathrm{i}\mathrm{a}1)$ . Then we have:
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Lemma

(i) $\mathrm{V}\mathrm{i}\mathrm{r}(x_{2}, S)-\mathrm{V}\mathrm{i}\mathrm{r}(x_{1}, S)=d_{S}(x_{1}, x_{2})$ .

(ii) $d_{S}(x_{1}, x_{\mathrm{s}})=d_{S}(x1, X_{2})+d_{S}(X_{2}, X_{3})$ , for any 3 vector fields $X_{1},$ $X_{2}$ and $X_{3}$

non-singular on $U-S$.

There is also a topological definition of this difference, proving in particular that it
is always an integer.

III Definition of the Schwartz index index:

Let $X_{0}$ be a radial vector field (outbound) $\mathrm{h}\mathrm{o}\mathrm{m}S)$ , that is smooth and non van-
ishing near (but off) $S$ , and transverse out bound from $\partial \mathcal{T}$ , where $\tilde{\mathcal{T}}$ has been chosen
so that $S$ be a deformation retract of T. (Such vector fields always exist after $[\mathrm{S}\mathrm{S}_{2}]$ ).
We define the Schwartz index as

$\mathrm{S}\mathrm{c}\mathrm{h}(x, s)=\chi(s)+d_{S}(X_{0}, X)$ .

The generalized Schwartz index is introduced in [SS2] when the singularity $S$ is an
isolated point. Here we generalize it to the case of non-isolated singularities using radial
vector fields as our basic vector fields. Let us only say that it is equal to $\chi(S)$ in case
of a radial vector field $\mathrm{o}\mathrm{u}\mathrm{t}\mathrm{b}_{\mathrm{o}\mathrm{u}}\mathrm{n}\mathrm{d}\dot{\mathrm{f}}\mathrm{r}\mathrm{o}\mathrm{m}$ S. (There is another generalization in [KT] of
the Schwartz index for stratified vector fields which are possibly not radial. We follow
however the point of view given in [SS2] $)$ .

IV Results

We may now summarize our results in 3 theorems:

Theorem 1.

Let $V$ be an analytic variety satisfying the above assumption and let $S$ and $X$ be as
above.

(i) The numbers $\mathrm{S}\mathrm{c}\mathrm{h}(x, s)$ and $\mathrm{V}\mathrm{i}\mathrm{r}(x, S)$ are integers.

(ii) We have $\mathrm{S}\mathrm{c}\mathrm{h}(x, s)=\mathrm{V}\mathrm{i}\mathrm{r}(X, s)=\mathrm{P}\mathrm{H}(X, S).$
’ if $S$ is in $V_{0}$ .

(iii) The $d\dot{i}fference\mathrm{S}\mathrm{c}\mathrm{h}(x, s)-\mathrm{V}\mathrm{i}\mathrm{r}(x, S)$ does not depend on the vector field $X$ .

In view of the above, we define, for a compact component $S$ of Sing$(V)$ , a general-
ized Milnor number $\mu_{S}(V)$ as being the integer

$\mu_{S}(V)=(-1)^{n}[\mathrm{V}\mathrm{i}\mathrm{r}(x, S)-\mathrm{S}\mathrm{c}\mathrm{h}(X, S)]$ ,
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which is an integer, independent of the choosen vector field $X$ (non-singular near but

away ffom $S$). We remark that there is always such a vector field, e.g., a radial vector

field of M.-H. Schwartz [Sc, $\mathrm{B}\mathrm{S}$].

Assume now $V$ to be compact, and let $X$ be a continuous vector field defined on a
part of $V_{0}$ . Denote by $S\dot{i}ng\mathrm{o}(x)$ the set of singular points of $X$ , i.e. the set of points

in $V_{0}$ where $X$ either vanishes or is not defined. Let $(S_{\alpha})_{\alpha}$ be the family of connected

components of the compact set $S_{\dot{i}}ng(X)=s_{\dot{i}ng0}(x)\cup s_{\dot{i}ng}(V)$ , and assume that each
$S_{\alpha}$ is $\mathrm{e}\mathrm{i}\mathrm{t}\mathrm{h}\mathrm{e}\dot{\mathrm{r}}$ included in $V_{0}$ or is a connected component of $S_{\dot{i}ng}(V)$ .

Theorem 2.

Assuming $V$ to be compact and $X$ as above, we have the $f_{\mathit{0}7}mulaS$ :

(i) $\sum_{\alpha}\mathrm{S}_{\mathrm{C}}\mathrm{h}_{\alpha}(x, s_{\alpha})=\chi(V)$ .

(ii) $\sum_{\alpha}\mathrm{V}\mathrm{i}\mathrm{r}(\alpha x, s_{\alpha})=c_{n}(\tau)\sim[V]$ .

(iii) $c_{n}( \tau)-[V]-\chi(V)=(-1)^{n}\sum_{\alpha}\mu\alpha(V)$ .

where we have written respectively $\mu_{\alpha}(V),$ $\mathrm{V}\mathrm{i}\mathrm{r}_{\alpha}(X)$ and $\mathrm{S}\mathrm{c}\mathrm{h}\alpha(x)$ instead of $\mathrm{V}\mathrm{i}\mathrm{r}(x, s_{\alpha})$ ,
$\mathrm{S}\mathrm{c}\mathrm{h}(x, S_{\alpha})$ and $\mu_{S_{\alpha}}(V)$ .

Remark that (i) and (ii). become both the Poincar\’e-Hopf theorem when $V$ is non
singular, while (iii) becomes the Gauss-Bonnet theorem.

The formula (iii) generalizes the one for hypersurfaces in [P] and the one for

“strong” local complete intersections with isolated singuralities in [SS2] (see also [D1,2,
$\mathrm{P}\mathrm{P}])$ . As noted in [SS2], this formula reduces to the classical adjunction formula when
$V$ is a compact (singular) complex curve in a complex surface $W$ .

Theorem 3.

(i) If $S$ consists of a point $p$ and if $V$ is a complete intersection near $p$, then $\mu_{p}(V)$

coincides with the usual Milnor number of [$\mathrm{M}$ , Hl, L\^e, $\mathrm{G}$ , Lo].

(ii) If $V$ is a hypersurface, $\mu_{S}(V)$ coincides with the generalized Milnor number of
Parusi\’{n}ski [P].

V Examples

Example 1: Let $F=(f_{1}, f_{2}, \ldots, f_{q})$ be a family of $q$ quasi-homoge-

neous polynomials in $n+q$ variables of the same weights $(d_{1}, \cdots, d_{n+q})$ and respective
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weighted degree $r_{1},$ $\cdots,$ $r_{q}$ : this means that
X. $f_{\lambda}=r_{\lambda}f_{\lambda},$ $(\lambda=1, \cdots, q)$ , where $X= \sum_{i^{+}}^{n}=1q_{\frac{z}{d}\mathrm{L}_{\frac{\partial}{\partial z_{i}}}}$ on $\mathrm{C}^{n+q}$ . Assume furthermore:

(i) The point $0\in \mathrm{C}^{\mathrm{n}+\mathrm{q}}$ is an isolated singularity of $V=F^{-1}(0)$ ,

(ii) the sequence $(z_{1,.*}. , z_{n}, f_{1}, . \. , f_{q})$ is regular,

(iii) the natural projection $(z_{1}, \cdots , z_{n}, zn+1, \cdots, z_{n}+q)arrow(z_{1}, \cdots , z_{n})$ induces by restric-

tion to $F^{-1}(0)-\{0\}$ an $N$-fold covering, where $N= \prod_{\lambda=1}^{q}r_{\lambda}dn+\lambda$ .

After [LSS], $V \dot{i}r(X, \mathrm{o})=[\frac{\square _{i=1}^{n+}q(t+di))}{\square _{\lambda=1}^{q}(t+\frac{1}{r_{\lambda}})}]_{n}$ , where $[\cdots]_{n}$ denotes the coefficient of

$t^{n}$ in the power series expansion of $[\cdots]$ in $t$ . Since $X$ is radial outbound from $0$ , the

Schwartz index $\mathrm{S}\mathrm{c}\mathrm{h}(x, \mathrm{o})$ is equal to 1, and the Milnor number of $V$ at $0$ is given by

$\mu_{0}(V)=(-1)^{n}([\frac{\prod_{i^{--}1}^{n+}q(t+di))}{\prod_{\lambda=1}^{q}(t+\frac{1}{r_{\lambda}})}]_{n}-1)$ .

This formula certainly belongs to the folklore for the specialists. Here are some partic-

ular cases:

a) Assume that all $r_{\lambda}$ are equal to 1. Denoting by $\sigma_{i}$ the $\dot{i}$-th elementary symmetric

function of $n+k$ variables, the Milnor number is still equal to

$\mu_{0}(V)=i=n+q\sum n+1\sigma_{i}(d_{1}-1, \cdots, dn+q-1)$ .

In fact, we have $\mathrm{V}\mathrm{i}\mathrm{r}(X, 0)=\frac{\Phi^{(n)}(0)}{n!}$ with $\Phi(t)=\frac{\prod_{i=1}^{n+}q(t+d_{i})}{(1+t)^{q}}$ . Writing further $s=1+t$

and $\Psi(s)=\Phi(t)$ , we have $\mathrm{V}\mathrm{i}\mathrm{r}(X, 0)=\frac{\Psi^{(n)}(1)}{n!}$ . If we set $\sigma_{i}=\sigma_{i}(d_{1^{-1}}, \cdots , d_{n+q}-1)$ ,

we get $\Psi(s)=\sum_{j=0}^{n+}q\sigma jSn-j$ and $\Psi^{(n)}(s)=n!+\sum_{j=1j}^{q}\sigma_{n+}(s^{-j})^{(n)}$ . Since the value for
$s=1$ of the n-th derivative of the function $s^{-j}$ is equal to $(-1)^{n}j(j+1)\cdots(j+n-1)$ ,

we get the formula.

We remark that:

1) For $q=- 1$ , we recover the usual formula for the Milnor number of quasi-homogeneous

functions $([\mathrm{M}\mathrm{O}])$ .

2) In the particular case of functions given by

$f_{\lambda}(Z1, \cdots, Zn+)q=n+\sum^{q}a_{\lambda i^{Z_{i}}}i=1di$ ,
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such that all the $q$-minors of the $q\cross(n+q)$ matrix $(a_{\lambda i})$ are non-zero, this formula has
been proved by very different methods, computing the homology of the Milnor fiber in
[H2], and using methods of local algebra in [G].

b) Assume that $q=2$ and that $P$ and $Q$ are homogeneous polynomials of respective
degree $k$ and $l$ . According to [LSS] section 4, we have:

$\mathrm{V}\mathrm{i}\mathrm{r}(H,p_{0})=\ell_{m}\sum_{j=0}^{n}(-1)j\frac{\ell^{j+1}-m^{j+}1}{\ell-m}$ ,

while $\mathrm{S}\mathrm{c}\mathrm{h}(H,p_{0})$ is equal to 1 (since $H$ is radial outbound from $p_{0}$ ), hence the Milnor
number

$\mu_{p0}(V)=(-1)^{n}(\ell m\sum_{J^{=}0}^{n}(-1)j’\frac{\ell^{j+}1-m^{j+1}}{\ell-m}-1\mathrm{I}\cdot$

In particular, for $\ell=m$ , we get:

$\mu_{p0}(V).=(\ell-1)^{n+1}(\ell(n+1)+1)$ .

In fact, if we write $\Phi(t)=\sum_{i=2}^{n+2}(i-1)t^{i-}2$ , then $\Phi(-\ell)=\frac{1}{\ell^{2}}((-1)^{n}\mu p_{0}(V)+1)$ .
It is easy to check that $\Phi(t)=\frac{d}{dt}(\frac{(1+t)^{n+}2-1}{t})$ . Thus we deduce: $t^{2}\Phi(t)=(1+$

$t)^{n+1}(t(n+1)-1)+1$ , hence from the value of $\Phi(-\ell)$ , we get the above formula for
$\mu_{p0}(V)$ . In particular, for $\ell=2$ , we recover the value $\mu_{p0}(V)=2n+3$ given in [Lo]
p.78, for $P(z_{1}, \ldots , z_{n+2})=\sum_{i=1}^{n+}2z_{i}^{2}$ and $Q(z_{1,\ldots,+2}z_{n})= \sum_{i=1}n+2\lambda iz_{i}2$ , the $\lambda_{i}’ \mathrm{s}$ being
distinct complex numbers.

Application to the computation of $\chi(V)$ : If $\gamma$ denotes the Chern class $c_{1}(L)$ of the
hyperplane bundle $L$ (the dual to the tautological line bundle on $\mathrm{C}\mathrm{P}^{n+2}$ ), the virtual
tangent bundle $\tau$ of $V$ is equal to the restriction to $V$ of $(n+3)L-L^{\ell}-Lm$ , so that

$c_{n}( \tau)-[V]=\ell m[\frac{(1+\gamma)n+3}{(1+\ell\gamma)(1+m\gamma)}]_{n}$ ,

hence $\chi(V)=c_{n}(\tau)\wedge[V]+(-1)^{n+1}\mu p_{0}(V)$ .

Taking for instance $n=2$ , we get:

$\mu_{p0}(V)=-1+\ell m(6-4(\ell+m)+(l^{2}+\ell m+m^{2}))$ ,

while $c_{n}(\tau)-[V]=\ell m(10-5(\ell+m)+(\ell^{2}+\ell m+m^{2}))$ ,

hence $\chi(V)=1+\ell m(4-(\ell+m))$ .
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Example 2: Take for $W$ the projective space $\mathrm{C}\mathrm{P}^{4}$ with homogeneous coordinates
[X, $\mathrm{Y},$ $Z,$ $T,$ $U$], and let $V$ be the cone defined by $X^{2}-\mathrm{Y}T=0$ and $Z^{2}-X\mathrm{Y}=0$ in

$\mathrm{C}\mathrm{P}^{4}$ . It is easy to check that the singular set $S$ of $V$ is the $(T, U)$-axis $X=\mathrm{Y}=Z=0$ .

For any complex number $a$ , the vector field

$R_{a}=(2+a)_{X^{\frac{\partial}{\partial x}+}}(4+a)y \frac{\partial}{\partial y}+(3+a)_{Z^{\frac{\partial}{\partial z}}}+at\frac{\partial}{\partial t}$

(with respect to the affine coordinates $(x, y, z, t)=( \frac{X}{U}, \frac{\mathrm{Y}}{U}, \frac{Z}{U}, \frac{T}{U})$ in the affine space
$U\neq 0)$ is tangent to $V$ , and extends naturally to the hyperplane at infinity $U=0$ .

For $a=-4,$ $R_{a}$ vanishes along the $(\mathrm{Y}, U)$-axis $X=Z=T=0$, which is included
into $V$ and is not included into $S$ while intersecting it. Thus, it does not satisp the
required assumption of the article.

For all other values of $a$ , the only singular point of $R_{a}$ on $V-S$ is the isolated
regular point $p=[0,1,0,0, \mathrm{o}]$ . Thus Sing$(R_{a})$ has two components which are $S$ and
$\{p\}$ .

All $R_{a}(a\neq-4)$ are radial outbound from $p$ , while all $R_{a}$ such that $a\neq-2,$ $-3,$ $-4$

are radial outbound from S. Thus $\chi(V)=\chi(S)+\chi(p)=2+1=3,$ $\mathrm{S}\mathrm{c}\mathrm{h}(R_{a}, S)=2$

and $\mathrm{S}\mathrm{c}\mathrm{h}(R_{a},p)=1$ .

On the other hand the virtual tangent bundle $\tau$ to $V$ is equal to the restriction
to $V$ of $5L-L^{2}-L^{2}$ , hence $c_{2}( \tau)\wedge[V]=4[\frac{(1+t)^{5}}{(1+2t)^{2}}]_{2}=8$ . Since the point $p$ is
regular, $\mathrm{V}\mathrm{i}\mathrm{r}(R_{a},p)=\mathrm{S}\mathrm{c}\mathrm{h}(R_{a},p)=1$ for $a\neq-4$ (this can be easily checked by a direct
computation). We deduce therefore $\mathrm{V}\mathrm{i}\mathrm{r}(R_{a}, S)=8-1=7$, and $\mu s(V)=7-2=5$

Example 3: Take for $W$ the projective space $\mathrm{C}\mathrm{P}^{4}$ with homogeneous coordinates
$[X_{0}, \ldots, X_{4}]$ and for $V$ the algebraic set of pure dimension two defined by

$\{$

$(a_{1}X_{1}^{2}+a_{2}X_{2}^{2})X_{0}^{2}+a_{3}X_{3}^{4}+a_{4}X_{4}^{4}=0$ ,

$(b_{1}X_{1}^{2}+b_{2}X_{2}^{2})X^{2}0+b_{3}X_{3}^{4}+b_{4}X_{4}^{4}=0$.
First, we have:

$c_{2}( \tau)\wedge[V]=4\cdot 4[\frac{(1\prime+t)^{5}}{(1+4t)^{2}}]_{2}=288$.

Now we assume that all numbers $D_{i,j}=a_{i}b_{j}-a_{j}b_{i}(i<j)$ are different $\mathrm{h}\mathrm{o}\mathrm{m}$ zero.
Denote by $p_{i}$ the point $[X_{j}=0, \forall j,j\neq i]$ . Since $D_{3,4}\neq 0$ , the set $V\cap(X_{0}=0)$ of
points “at infinity” is the projective line $L_{12}=(p_{1}p_{2})$ joining $p_{1}$ and $p_{2}$ . Since $D_{i,j}\neq 0$

$(\dot{i}<j),$ $\mathrm{S}\mathrm{i}\mathrm{n}\mathrm{g}(V)$ has two components, which are $p_{0}$ and $L_{12}$ .
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The vector field

$v= \frac{1}{2}(Z_{1^{\frac{\partial}{\partial z_{1}}}}+Z_{2}\frac{\partial}{\partial z_{2}})+\frac{1}{4}(z_{3}\frac{\partial}{\partial z_{3}}+z4\frac{\partial}{\partial z_{4}})$ ,

defined for $X_{0}\neq 0$ (with $z_{i}= \frac{X}{X_{0}},\dot{i}\neq 0$), extends at infinity, and is tangent to $V$ . It is
expressed as

$v=- \frac{1}{2}z_{0}’\frac{\partial}{\partial z_{0}’}-\frac{1}{4}(z_{3^{\frac{\partial}{\partial z_{3}’}}}’+z’4\frac{\partial}{\partial z_{4}’})$ ,

for $X_{1}\neq 0$ (with $z_{i}’=arrow X_{1}X,$ $i\neq 1$ ), and similarly for $X_{2}\neq 0$ . The restriction to
$V$ of this vector field does not vanish off Sing$(V)$ . Since this vector field is radial

outbound from $p_{0}$ , and radial inbound to $L_{12}$ , we get $\mathrm{S}\mathrm{c}\mathrm{h}(v,p\mathrm{o})=\chi(p_{0})=1$ and
$\mathrm{S}\mathrm{c}\mathrm{h}(v, L12)=\chi(L_{12})=2$. Thus we get:

$\chi(V)=1+2=3$ .

By example 1 (a), we have

$\mu_{p0}(V)=3^{1}(4+4)+3^{2}(4-1)=51$ ,

hence $\mathrm{y}_{\mathrm{i}}\mathrm{r}(v,p_{0})=\mu_{p\mathrm{o}}(V)+1=52$ .
Thus we have $\mathrm{V}\mathrm{i}\mathrm{r}(v, L12)=C2(\tau)-[V]-\mathrm{V}\mathrm{i}\mathrm{r}(v,p0)=236$

and $\mu_{L_{12}}(V)=\mathrm{V}\mathrm{i}\mathrm{r}(v, L12)-\mathrm{s}\mathrm{c}\mathrm{h}(v, L_{12})=234$ .

Example 4: Take for $V$ the curve $X^{3}-\mathrm{Y}^{2}Z=0$ in the space $W=\mathrm{C}\mathrm{P}^{2}$ with
homogeneous coordinates [X, $\mathrm{Y},$ $Z$]. This curve $V$ is an irreducible component of $V’$

defined by $\mathrm{Y}(X^{3}-\mathrm{Y}^{2}Z)=0$ . The origin $[0,0,1]$ is the only singular point of both
$V$ and $V’$ . Thus, the normal bundle of the regular part $V_{0}$ of $V$ coincides with the

restriction to $V_{0}$ of the normal bundle to the regular part of $V’$ . It may therefore extend
to $W$ as $L^{3}$ (the reduced extension) and as $L^{4}$ . Thus we get two possible virtual tangent

bundles $\tau$ , and two possible values for the Milnor number which are respectively equal

to $\chi(V)$ for the reduced Milnor number, and $\chi(V)+3$ for the other one. Note that
$\chi(V)=2$ , since the map $[u, v]arrow[u^{2}v, u^{3}, v^{3}]$ from $\mathrm{C}\mathrm{P}^{1}$ into $\mathrm{C}\mathrm{P}^{2}$ is a homeomorphism
$\mathrm{h}\mathrm{o}\mathrm{m}\mathrm{C}\mathrm{P}^{1}$ onto $V$ . Thus, the reduced Milnor number is 2, and we can check that
it coincides with the usual Milnor number, which is also given as the dimension of
$\mathcal{O}\{x, y\}/J_{f}$ with $J_{f}$ the jacobian ideal of the function $f(x, y)=x^{3}-y^{2}$ in the ring
$\mathcal{O}\{x, y\}$ of convergent power series in $(x, y)$ .
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