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QUANTIFICATION OF THE SINGULARITIES
- OF OSGOOD AND WHITNEY '

E#AET $ R (Shuzo IZUMI)

We introduce a few quantities and functions for germs of complex spaces or their mor-
phisms. Some are related to zero estimate developed in transcendence theory and others
to Chevalley’s theorem on homomorphisms of local rings. These allow us to measure how
singular are the classical examples of singularities, Osgood’s dimension raising morphism
and Whitney’s nonalgebraic singularities. Outline of the part concerning transcendence-
is already announced in [I4]. This time we add a few new facts and lay emphasis on the
examples. The detailed proofs will be given in [I5].

Let X, be a germ of a complex space and @ := {®,, ..., ®, } a finite subset of its local ring

 (Ox¢, m) (we call this analytic local algebra). If ® is considered mapping components, it

determines a germ of a holomorphic map X; — (C"),, with ®(£¢) = 2, and the associated
homomorphism ¢ : C{z — 25} — Ox such that o(f) = f(®y,...,®n). Let us define

o order vy : Ox ¢ — N:={0,1,...}

by va(f) = supfp: f € m7};
e growth function of order g : N — N

by 0g(k) := sup{vm(f) : f # 0 is a polynomial in ® of degree < k};
e growth exponent of order a(®) € [0, ]

by o(®) := IZi_)Eoologk 05 (k).

The growth function and the growth exponent are not determined only by the map germ
(or homomorphism). They depend upon the choice of the affine coordinates of the target
space C" of the holomorphic map. A value a of a(®) is called to be attained if there exist
¢, ¢ > 0 such that 65(k) < ck® holds for sufficiently large k£ and if f(k) > ¢’k holds for

an infinite number of k.
The followings are fundamental.

Fact I (cf. [P,], [P2], [P-W]). Let Ly,..., L, be independent C-linear forms in z :=
(21, .., Tm) and put ,

® := {1 exp L1,...; A1i; €xp L1, ..., Ap1 €xp Ly, ..., /\pip-exp L,},
V.= {z}U® C C{z}.
Then we have

"'k ’ik
a(®) = max dimQFZ1 Qrrj. a(¥) =1+ max dimg Z QXg;.

1=1
These values are attained.

Fact II (lower estimaté, [Is]). Let (R,m) be an analytic local algebra and ® C m a
subset. Then a(®) > trdege C(®)/ dim R.

Fact III (upper estimate, [I5]). If the elements of ¥ are algebraic over C(®), then 6y
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is estimated from above by a linear function of 63 and hence a(¥) < a(fl)).

We define other invariants for a germ of a holomorphic map @ : X; — Y, or for the
associated homomorphism ¢ : (S := Oy,,n) — (R := Ox ¢, m) as follows.

o Chevalley function k, = kg : N — NU {o0} v
by p(f) = malt) = sup{vm(e(f)) : va() < 8
o Chevalley exponent B(¢) = B(®)
by B(p) = A(®) = I log, (0.

Fact IV ([C]). ,(t) < oo for all ¢ € N if and only if the completion ¢ is injective.

Fact V ([I5]). Let ¢ : C{y} — R (v := (y1, ---,Y»n)) be the homomorphism of analytic
local algebras determined by @ := {®,,...,®,} C m (¢(y;) = ®;), where m denotes the
maximal ideal of R. Then o(®) < B(y).

Fact VI ([I;]). Suppose that the integral analytic local algebras, R and S, are integral
domains in the above. Then k,(t) for the associated homomorphism ¢ : S — R is
majorized by a linear function of ¢ if and only if the generic rank of ® is equal to dimY,,.
Here the generic rank is a half of the topological dimension of the image by ® of a
sufficiently small neighbourhood of ¢ (cf. [G,]). If this is the case, we have B(¢) = 1 and
a(¥) = a(e(¥)) for any subset ¥ C S. ‘ ’

Osgood’s example ([G-R]). Let ¢ : C{y1,y2,y3} — (C{.T/'I,."Ziz} denote the homo-
morphism with ¢(y1) = 21, ¢(y2) := 2122, ©(y3) := T1z2expz2. If we put & :=

The image of Osgood map

{z1, 122, T1Z2exp x2} and ¥ := {z;, 2, expz2}, we have 2 = a(¥) = a(P) < B(yp) by
Fact I, Fact III and Fact V. ' '

Now suppose that v(,)(f) = t. Let f; denote the t-th homogeneous part of f. Then
the general form of o(f;) is zig:(z2) with g; € Clz,,exp 23] of degree not greater than
2t. If t # t', then o(f;) and ¢(fy) have no common monomial in {z;,z,}. By Fact I,



108

Y(z)(gt) < at? for some a € R and for all t € N. Hence, v(,)(¢(f:)) < at?+t and B(p) < 2.
Thus we have obtained the exact value of Chevalley exponent of ¢: B(¢) = 2.

Hence the completion of ¢ with respect the maximal-ideal-adic topologies is injective
by the trivial half of Fact IV. Then, as Osgood has pointed out, ¢ is itself injective and
the analytic closure of the image of the holomorphic map associated to @ is 3- dlmensmnal
although the source is 2-dimensional.

(This pathology can be removed by a point blowing up of C°. Namely, take a homo-
morphism 7 : C{y1,y2,ys} — C{Y1,Y3,Ya} with 7(y;) = Y1, 7(y;) = VY3, m(ys) =
Y;Y;. Then the canonically induced map 3 : C{Y;,Ys, Y3} — C{z1, 22} with ¥(¥;) =
z1, P(Ya) = z9, ¥(Y3) = z2expzy is surjective. This means that the associated map
C? — C? is an embedding.)

Whitney’s example ([Wh]). There exists a germ of an analytic set which is not locally
isomorphic to algebraic one. A simple example which is normal is the 3-dimensional
singularity X, defined by the equation

o= w® — gy — 2)(y — (3+ )2)(y — vexp) = 0.
Let us consider its local algebra (R, m) at 0 with
R :=C{z,y,z,w}/fC{z,y, 2z, w}.

Then & := {Z, ¢, Z,w} form a system of generators of m (bar indicates the class mod f).
Let us take the 3-dimensional local algebra (S, n) with

S = C{s,t,u,v}/(t + uexpv)C{s,t,u,v} = C{s,u,v}.
Then there exists a holomorphic map germ 6 : S — R such that grk§ = dim S and

05) =7, 0() =a° — 5535 —5)(7— (3+2)2),
0(a) = 5°5(5 - )T — (3+2)7), 0(5) = 2.
Since the elements of ® := {z,y,z,w} C R are algebraic over the image of ¥ :=

{3,%,u,v,8Xpv} C S and vice versa, it holds that a(®) = a(8(¥)) = a(¥) = 2 by
Fact III, Fact VI and Fact 1. Since every system ¥ of generators of m corresponds to an
embedding of the singularity into an affine space, We may call the quantity

a(R) = a(Xe) := 1nf{a(2) ¥ is a systems of generators of m}

the intrinsic growth ezponent of the singularity. In this sense, a(R) < a(®) = 2. Since
X, is locally non algebraic, trdege(X) = 4 for any system I of generators of m. Then we
see 4/3 < a(R) < a(¥) = 2 by Fact II. What is the precise value of o(R)?
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