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1 Introduction

Let R be a real line and E a Banach space with a norm |-|. If z : (—00,a) — E,
then a function z; : (—00,0] — E,t € (—00,a), is defined by z,(0) = z(t +
0),0 € (—00,0]. We deal with the linear functional differential equation with
infinite delay in the Banach space E:

(L) o dz(:) = Az(t) + B(t, z;) + F(t).

Let B be a Banach space, consisting of functions % : (—oo, 0] — E, which
satisfies some axioms demonstrated in Section 2. We assume that Eq.(L)
always satisfies the following hypothesis(H):

(i) A: D(A) C E — E is the infinitesimal generator of a Co-semigroup
T(t),t >0,on E;

(i) B: R x B — E is continuous and B(t,-) : B — E is linear;

(iii) F : R — E is continuous.

If B(t,) and F(t) in Eq.(L) are periodic functions with a period w > 0,

we denote Eq.(L) by Eq.(P,L). If F = 0, we denote Eq.(L) and Eq.(P,L) by
Eq.(Lo) and Eq.(P,Ly), respectively. .
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Chow and Hale [1] obtained the following two fixed point theorems for
a linear affine map on a Banach space. Let X be a Banach space, and
T :X — X alinear affine map Tz = Lz 4 z,2 € X, where z € X is fixed.

Theorem A. If the range R(I — L) is closed and if there is an zo € X such
that {zo, Tzo,T?z0," -} is bounded in X, then T has a fized point in X.

Theorem B. If there is an zo € X such that {z0,Tx0, T*x0o,- -} is rela-
tively compact in X, then T has a fized point in X.

Using Theorem A, we showed a result [8, Corollary 4.9] on the existence of
periodic solutions of Eq.(P,L). Its proof is based on the fact that, if the point
1 is a normal point of L, then the range R(I — L) is closed. More recently,
using Theorem B, Hino and Murakami extended our result. The property
that Cp-semigroup 7'(t) is compact for ¢ > 0 on E plays an essential role
in their proof given in [4]. In such a direction, Li, Lim and Li [5] have also
considered the existence of periodic solutions of Eq.(P,L) with advanced and
delay for the case where A = 0 and E = R". However, Theorem B cannot
apply even to the case where B(t,-) is a compact operator for each ¢t € R, but
either A = 0 in Eq.(P,L), or Cp-semigroup T'(t) is compact only for ¢ > ¢,
where t4 is a positive constant. .

The aim of this paper is to show the existence of periodic solutions for
Eq.(P,L) in succession to [8]. In particular, we will discuss directly the
closedness of the range R(/ — L) in Theorem A in the manner applicable
for the case where the point 1 belongs to the essential spectrum of L. To
do so, indeed, we make use of the theory of semi-Fredholm operators. As a
result, we have general statements, Theorem 3.7 and Corollary 3.9, for the
case that the phase space B = UC,(see Section 2) is a fading memory space;
that is, a uniform fading memory space.

2 Preliminaries

First, we will explain the phase space B. Let B be a normed linear space con-
sisting of some functions mapping (—o00,0] into F; the norm in B is denoted
by |- |s. Throughout this paper we assume that B satisfies the following
axioms.

(B-1) If a function z : (~o0,0 + a) — FE is continuous on [o,0 + a) and
z, € B, then

(1) z; € B for all t € [0,0 + a) and z; is continuous in t € [o,0 + a);

(1) H Y z(t)] < |zels < K(t — o) sup{|z(s)|: 0 < s <t} + M(t — 0)|z,|8
for all t € [0,0 + a), where H > 0 is constant, K : [0,00) — [0,00) is
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continuous, M : [0,00) — [0, 00) is locally bounded and they are independent
of z.
(B-2) The space B is complete.

Let BC be the set of bounded, continuous functions mapping (—oo, 0]
into E, and Cy its subset consisting of functions with compact support. The
space Cy is automatically contained in the space B due to (B-1)-(i). The
space BC is contained in B under the additional axiom (C).

(C) If a uniformly bounded sequence {¢™(#)} in Cyy converges to a function
¢(0) uniformly on every compact set of (—o0, 0], then ¢ € B and lim,_, ., |¢"—
¢|3 =0.

In fact, BC is continuouslly imbedded into B ; put
|¢llec = sup{|$(8)] : 6 < 0} for ¢ € BC.

Lemma 2.1 ([3]) If the phase space B satisfies the aziom (C), then there is
a constant J > 0 such that |¢|g < J||¢||e for all $ € BC.

Define operators S(t) : B — B,t > 0, as

1S(5)4](6) = { e Sy

and denote by So(t) be the restriction of S(t) to By := {¢ € B : ¢(0) = 0}.
The phase'space B is called a fading memory space [3] if the axiom (C) holds
and So(t)¢ — 0 as t — oo for each ¢ € By. If B is such a space, then ||So(t)|
is bounded for ¢ > 0. In addition, if |[Se(¢)|| — O as t — oo, then B is called
a uniform fading memory space. If the phase space B is a fading memory
space, then

|z:|s < Jsup{|z(s)| : 0 < s <t} + Mz,]s, (1)

where M = (1 + HJ)sup, ||So(t)]-

Example. Take the phase space as B = UC,, the set of continuous
functions, ¢(6) such that ¢(8)/¢(6) is bounded and uniformly continuous on
(—00,0] with the norm |

l¢ll = sup{|$(6)|/9(6) : 0 < 0},

where g(0) is a positive continuous function such that g(8) — oo as § — —oo.
Then ||So(t)|| = sup,<9(s)/g(s —t), and it is a uniform fading memory space
if and only if it is a fading memory space (cf.[3, p.191]).
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. Next, we recall the definition of the semi-Fredholm operator on Banach
space X. A bounded linear operator L on Banach space X is said to be
semi-Fredholm if the range R(L) is closed and at least one of nul L :=
dim N(L),N(L) = {z € X|Lz = 0}, and def L := dim X/R(L) is finite.
The set of all semi-Fred holm operators with nul L < oo will be denoted by
Fo(X).

Denote by Fr the set of fixed points of a linear affine map T given in
Introduction. The following fixed point theorem is derived from Theorem A
and properties of semi-Fredholm operators.

Proposition 2.2 Assume that I — L € Fy(X). If there is an zo € X such
that {zo, Tz, T*xo,- -} is bounded in X, then Fr # 0, Fr is an affine set
and dim Fr = dim N(I — L) < oco.

3 The phase space UC,; and the existence of
periodic solutions

A solution operator U(t,0) of Eq.(P,Lo) endowed with the initial condition
To = ¢ € B is decomposed as U(t,0)¢ = T'(t)¢ + K(t,0)¢, where

- T(t+0)$(0) t+6 >0,
ORI

t+6 ,
(K (t,0)4](6) = { /0 T(t+0—s)B(s,zs(0,9)) ds t+6>0,
| 0 t+6<0.
In this section, we will show the closedness of the range R(I — U(w,0)) by
using the theory of semi-Fredholm operators, where U(w,0) is the solution

operator for Eq.(P,Lg). Throughout this section we assume, in addition to
the axioms (B-1) and (B-2), the following axiom :

" (B-3) |¢! — ¢%|s = 0 for ¢!, 4% in B if and only if ¢'(0) = ¢*(6) for
6 € (—o0,0].

Lemma 3.1 If the phase space B satisfies the aziom (C) and T(t) is a Co-
semigroup on E, then a function ¢ of N(I—T(w)) is an w-periodic continuous
function given by #(0) = T(0 + nw)é(0),0 € [—nw,0],n = 1,2,---, where
#(0) € N(I —T(w)), and

dim N(I - T(w)) = dim N(I — T(w))."
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- Proof. Suppose that T(w)¢ = ¢. Since [A(w)¢](’0) (w+0) forw+6 <

, it follows that ¢(w + ) = ¢(0) for 6 < —w ; that is, ¢() is w-periodic on
(—oo 0]. Since T(nw) = T(w)*,n = 0,1,2,---, we have that T(nw)é = ¢.
On the other hand, if —nw < O.S 0, then [T(nw)d](8) = T(nw + 8)4(0) ;
hence, T(nwr+’0)¢(0) = ¢(6) for —nw < 0 < 0 and #() is continuous on
[-nw,0]. Set a = #(0) and z(t) = T(t)a,t > 0. Then z(t) = ¢(t — nw) as

- long as 0 <t < nw. Since n may be arbitrary, we can regarde that z(t) is

w-periodic and continuous in (—00,00), and ¢ = zo. Since z(w) = z(0), it
follows that T'(w)a = a ; that is, a € N(I — T'(w)).
Conversely, if a € N(I-T(w)), then T'(t+w)a = T(¢)T(w)a = T(t)a,t > 0
; that is, T'(t)a is w-periodic in [0,00). Suppose that z(t) is the w-periodic
extenswn of T(t)a to (—o00,00), and set ¢ = zo. From the axiom (C) we see
“that ¢ belongs to B. Then it is obvious that T'(w)¢ = ¢. Moreover, the space
N(I — T(w)) is mapped bijectively onto the space N(I — T(w)). Therefore,
the proof is complete. T _

Let the null space N(I — T(w)) be of finite dimension. Then there exists
"a closed subspace M of E such that E = M @ N, where N = N(I — T (w)),
and let Sy be the restriction of I —T'(w) to M. Then Sy : M — R(I—T(w))
is a continuous, bijective, linear operator. Thus there is the inverse operator
Syit of Spr. Of course, if R(I — T'(w)) is closed, then S}/ is continuous.

To prove that the range R(I — T(w)) is closed, we will solve the equation
(I —T(w))¢ = ¢ and use the above notations.

Proposition 3.2 Suppose that the phase space B satisfies the ariom (C),
and that diim N(I — T(w)) < oo. Then v € R(I —T(w)) if and only if 1)(0) €
R(I — T(w)) and Uy € B,y € B, where U is defined as

k-1
[U](8) = 3 9(8 + jw) + T(0 + kw)Sziw(0), 0 € [—kw, —(k — 1)w], (2)

7=0

fork=1,2,---

Proof. F/‘\irst, we formally solve the equation (I — T(w))¢ = . The
definition of T'(w) implies that :

8(0) = T(6 +w)$(0) = %(0), —w <0 and $(6) — $(6 +w) = ¥(9), 6 < —w.

From the first equation it follows that (I — T'(w))#(0) = ¥(0), and ¢(8) =
P(0) + T(0 + w)é(0) for —w < 6 < 0. From the second equation, it follows
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that, for k = 2,3, -+, ¢(0) = (0) + ¢(0 +w) for § € [—kw, —(k—1)w]. Hence
the solution ¢ is determined as

k-1

$(0) =3 %(0 + jw) + T(8 + kw)$(0), 0 € [—kw,—(k—1)w], (3)

J=0

k=1,2,---, uniquely for ¢(0).

Assume that ¢ € R(] —T(w)). Then 4(0) € R(I —T(w)), and there exists
a function ¢ € B satisfying the equation (I — T(w))¢ = 1. Ovbiously, #(0)
satisfies the equation (I—T'(w))¢(0) = 1(0). Furthermore ¢(0) is decomposed
as $(0) = Sip(0) + ¢n(0), éw(0) € N, Si7p(0) € M. Sel. gn(6) = T(6 +
kw)pn(0),0 € [—kw,0],k = 0,1,2,---. Using Lemma 3.1 we see that ¢n
~ belongs to N(I — T'(w)). Hence ¢ = Usp + ¢n. Needless to say, Ut belongs
to B.

Conversely, assume that 1(0) € R(I — T'(w)) and Uy € B,y € B. Then
[(1 = T(w))U](8) = () for every 8 € (—o0,0] ; that is, (I — T(w))Ux = 1.

The proof is complete.

Theorem 3.3 Suppose that the phase space B satisfies the axiom (C), and
that if |¢™ — ¢|g — 0 as n — oo, then ¢™(0) converges to ¢(#) uniformly for
0 in any compact interval of (—oo,0]. Furthermore, Suppose that I — T(w) €
F+(E). Then R(I — T(w)) is closed if and only if there exists a positive
constant ¢ such that [U|s < c|op|s, ¥ € B, as long as ¥(0) € R(I — T(w))
and U+ € B, where U is given by (2).

Proof. Set D = {Uy : ¢ € R(I — T(w))}. Let F be the restriction of
I — T(w) to D. Then the operator F' : D — R(I — T(w)) have the following
properties : N(F) = {0}, FUy = < for ¢ € R(I-T(w)), R(F) = RI-T(w)),
and F' is a bounded linear operator. If F' is a closed linear operator, then
Theorem 3.3 follows from the well known theorem [8, Theorem 5.1, p.70]
about the closed range property. If D is a closed subspace, then F is a
closed operator. But it is difficult to see that D is closed. So, we show
directly that F' is a closed operator. To do so, suppose that a sequence
¢" :=Uy",n=1,2,---in D converges to a function ¢ in B and the sequence
F¢™ = 9™ conveges to a function 1 in B. From the assumption in the theorem
it follows that ¢™(0) — ¢(6),v"(6) — ¥(f) as n — oo uniformly for @ in
any compact interval of (—o0,0]. Since R(I — T(w)) is closed, we have that
»™(0) — 1(0) as n — oo and ¥(0) € R(I — T'(w)). Then from the definition
of the operator U it follows that Uy™(8) — U(6) as n — oo uniformly for
¢ in any compact interval (—oo,0]. This implies th at Uy(6) = ¢(6) for all
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0 € (—00,0]. Since ¢ € B, it follows that ¢ € R(I — T(w)), ¢ = Uy € D and
F¢ =1,

From Theorem 5.1 in [7], Chapter III, it follows that R(I— T(w)) is closed
if and only if there is a positive constant ¢ such that |4ls < c|F¢|p for all

¢ € D, which means that R(I — T(w)) is closed if and only if |Ut|s <- clv|s
for all ¥ € R(I T(w)). From Proposition 3.2 we have the conclution of the
theorem. |

Let BUC be the set of all bounded and uniformly continuous functions
from (—o0, 0] into E with the supremum norm.

Proposﬂnon 3.4 Take the space BUC as the phase space of T( ). Then
R(I — T(w)) is not closed in general.

Proof. It suffices to show that there exists a sequence {¢"} in BUC such
that |¢"|g = 1, and lim,_& |(I — T( ))¢"|s =0. Let e be a unit vector of £
; that is, |e|s = 1, and define z"(t), n =1,2,-

e tS —nw
"(t) = (~t/nw)e —nw <t<0
0 t>0.

Set ¢" = z3,n = 1,2,---. Since ¢"(0) = 0, we have [T(w)(¢")](§) = 0
for § € [~w,0]; in other words, T(w)¢” = So(w)¢™ Thus it follows that
a—ﬂmwn o™ — (M”MmeWFT@»WM:UnHOwnﬁ&
Clearly, |¢™|g = 1. Thus this is a desired sequence.

Theorem 3.5 IfB=UC, is a uniform fading memory space and if I —T'(w)
€ F.(F), then the range R(I T(w)) is closed ; hence, I — T(w) € F,(B).

Proof. Since B = UC, is a uniform fading memory space, there are
Mo > 1 and €y > 0 such that ||So(t)|| < Moe™¢ for t > 0. Namely,

o I e o
15a(t)ll = sup 20— = sup =y < Moe™™"

Suppose that 1 (0) € R(I — T(w)),Us € B,v € B. Then we have that, for
€ [—kw,—(k—1w],k>1,

RN =I gew ) [0 + )
70 |2 YO+ %) <E o0t )
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k-1
< Z ISo(Ge) 141l

M0||¢||

—cow

< ZM e lpl| <
On the other hand, since S}/ is continuous, we have that

;(%5|T(9 + kw)Sa p(0)| < sup{[|T()]) : 0 < ¢ < WSt llI¥ll.

‘Summarizing these inequalities, (2) is estimated as

09l < (-2 s swp(ml -0 < e <wlls?l) ol (@)

which implies that the range R(I — T'(w)) is Closed, because of Theorem 3.3.
Since I — T(w) € F4(E). From this fact and Lemma 3.1 it follows that
I — T(w) € Fy(B), which proves the theorem.

- The following result is well known in the theory of semi-Fredholm oper-
ators (refer to [2, Theorems 3.21, 3.22, pp.35-37], or [7, Theorems 6.3, 6.4,
p.128]).

Lemma 3.6 Let L € F(X).

1) If S is a compact operator on X, then L+ S € FL(X).

2) There is a positive number ) such that if S is a bounded linear operator
on X satisfying ||S|| <1, then L+ S € Fy(X) and nul(L + S) < nulL.

Summarizing these results we can obtain one of main theorems of this
paper. '

Theorem 3.7 Assume that B = UC, is a uniform fading memory space and
at.least one of the following conditions is satisfied :

(i) T'(t) is a Co-compact semigroup on E.

(ii) For eacht € R, B(t,-) is a compact operator and I — T(w) € ]:+(E)
If Eq.(P,L) has an E-bounded solution, then it has an w-periodic solution.

Proof. The proof easily follows from Theorem 3.5, the assertion 1) in
Lemma 3.6 and Proposition 2.2.

Finally, we consider the case where the both of T(t) and B(t,-) are
not compact in general. Set ||Blo := sup{||B(t)|||0 < t < oo}, where
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|B(t)|| is the operator norm of B(t,:). If B is a fading memory space, if
IT®| < M,e*t,t > 0, and if ||Bljc < oo, then the Gronwall inequal-
ity implies that the solution z(t, ¢) of Eq.(P,Lo) such that zo = ¢ satisfies
lz:(d)|8 < |@|sN(t; || Blle) for t > 0, where

N5 11Bll) = (HIM, + M) exp{t(My || BllwJ + max{w,0})},

and M is the constant in the inequality (1). We denote by S(w) the set of
w-periodic solutions for Eq.(P,L).

Theorem 3.8 Let T(t) be a Co-semigroup on E such that | T'(t)|| < M,e*t,
and assume that [ — T(w) € F(B). Let n be given as in Lemma 3.6 (2)
for I — T(w) € Fp(B), and assume that | B||s is so small as to satisfy the
condition

TM|1BlleeN (w5 |Bl) [ e*ds <.
If Eq.(P,L) has an E-bounded solution, then S(w) is nonempty and
dim 8(w) < dim N(I — T(w)) < .

Proof. Recall that the solution operator U(t,0) : B — B for Eq.(P,Lo) is

~

decomposed as U(t,0) = T'(t) + K(t,0). Since

(K@,0)8ls < T sup [TIT(r = IB(S)lolos(9))]s ds

0<7<w

< IM|BllooN (@i [ Blloo) gls sup [ et ds,
0<7<w v0

we have that

1K (@, 0)ll < TMulBlloo N (w3 | Bllo)lls |~ e=*ds.
Thus, if the right side of this inequality is less than 5, then I — (T'(w) +
K(w,0)) € F,(B) ; that is, ] — U(w,0) € F,(B). From Lemma 3.6 we have
dim N(I - (T(w) + K(w,0)) < dim N(I — T'(w)). This proves the theorem.

Corollary 3.9 Assume that B = UC, is a uniform fading memory space,
[-T(w) € F4(E), and that || B||« satisfies the same condition as in Theorem
8.8. If Eq.(P,L) has an E-bounded solution, then S(w) is nonempty and

dim S(w) < dim NV(I - T(w)) < oo.
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