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ON THE DETERMINATION OF THE HEAT
CONDUCTIVITY FROM THE HEAT FLOW

REUKEKR A #  (YuTaka KAMIMURA)

Introduction

We study the inverse problem to determine a(t) of the paggabolic system
( Ou 0%u ,

§=a(t).8? (0<z<o00,0<t<T),
u(z,0) =0 (0< 2z < 00),

w0, = /(t) (0<t<T), (01

| 2200 =4) 0<t<D)

so that this (overspecified) system admits a classical solution u(z,t) satisfying, for
each T < T,

du

sup {luto. ) +| e o|f =0 @—e) 02)

o<t<T’

with some constant a < 2.

This problem was studied by several authors ([1,2,3,5]), and various existence
and uniqueness results were established. However they have been accomplished
under the assumption that f(t) is a monotonically nondecreasing function. The
purpose of the present paper is to investigate the problem without this assumption.

Let us assume that
(I) a(t) is positive and continuous for 0 <t < T,

(IT) f(¢t) is continuous for 0 < ¢t < T and f(0) = 0.
Then the system

ou 5%u
5 =5z (0<z<00,0<t<T),
u(z,0) =0 (0<z<00),

u(0,t) = f(t) (0st<T),

is uniquely solvable under the assumption (0.2), and the solution u(z,t) can be

expressed as .
e,
w(z,t) = —2 /0 g (g; / a(f)dT> a(r)f(r)dr,
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where H(z,t) is the fundamental solution of the heat equation: A

1 z?
H(z,t):= mexp ik

Hence, as was shown in [2] (also see [5)), if f is differentiable then the inverse
problem mentioned in the beginning is equivalent to finding a positive solution a(t)
of the nonlinear integral equation

T

’ i ! T |
%a(t)/o T I ))l/sz—g(t) (O0<t<T). (0.3)
a(r)dr

We hereafter focus our attention on the equation (0.3). The main goal here is to
show that the equation (0.3) is solvable near ¢ = 0 and the continuation of the
solution can be made as far as it is bounded above, without the monotonicity of

f@).

Throughout this paper we use the notation
Ci(I) :={a(t) eC(I)|a(t) >0 (tel)}..

In Section 1 we shall establish a uniqueness result. In Section 2 we shall establish
a local existence result. In Section 3 we shall discuss the continuation of solution.
The main result will be given in Section 4.

1. Uniueness

In this section we shall establish the following uniqueness result:

Theorem 1.1. Assume that _
(i) f(¥) € C[0,T)NCY(0,T), 1%in(l)tl_“f'(t) > 0 with some p > 0;
(ii) g(t) € C4(0, 7).

If a1(t), a2(t) € C4[0,T) are solutions of (0.3) then a1(t) = az(t).

Before the proof we shall give some remarks on the assumptions:

Remark 1.2. By the substitution 7 = tp, (0.3) can be rewritten as

1 1—p g1
u-1/2, (tp) ~#f'(tp) dp _
t (t) /0 (fla(tr)dr>1/2pl_“ Vrg(t) (0<t<T). (1.1)

Accordingly the assumption (i) implies that there exists the limit

tlir%tl/z_”g(t) >0 | (1.2)
In addition to the assumption (ii) we assume that g(¢) € C[0,T). Then it follows

from (1.2) that the condition p > 1/2 is necessary. Moreover if (0.3) has a solution
a(t) € C4[0,T) then (0.3) holds even at ¢t = 0.
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We now give the proof of Theorem 1:1. Let T} € (0,7 be fixed.. By (1.1) we
obtain for 0 < t < T3,

az(t)/l (tp)' = f'(tp)  dp :al(t)/l )" f'(to) __dp_
0 ( 0 (

fpl az(tr)dr) V2 pie fpl al(tr)dr) 2 pt
By taking the limit as t — 0, this yields |
az(0) = a;(0). (1.4)
We put

(to)=r1tp) _dp_
fpl ag(tr)dr) Y2 pimu

1
b(t) = az(t) — ar(t), p(t) := /0 (

Then, from (1.3), we have A
b(t)p(t) = (az2(t) — a1(¢))p(t)

[y

—a 1 1 B 1. 1 pr dp
l(t)'/o (f,,l CLl(t?")olr)l/2 (fp az(tr)dr>1/2 & f(tp)Pl_“

1/2

1 'fpbtr)dr ‘ - Ve ot dp
=a;(t) /0 - , }(pt) f (tp);r_—u

1 o g
:al(t)/o b(to)do/ : (tp) * f'(tp) dp

(o) e[|

where we have used interchange of the order of integration. Therefore, by setting

a(t,0) = 20 / | (o)1 (tp) dp

- I ( / aj(tr)d )1/2 {ZZ; ( /p 1 a,-(tr)dry/T o

Jj=1 J
we arrive at

b(t) = /0 : O(t,0)b(to)de (0<t<T). (1.5)

In view of (1.1), p(t) = /mt'/2Hay(t)~1g(t). Hence, by the assumption (ii),
p(t) is positive for 0 < ¢ < T'. But, in view of the definition of p(t) and the
assumption (i), p(t) is a continuous function on the interval [0, 73] with p(0) > 0.
So . gtug}F _p(t) =t ¢ > 0. This shows that

- e 1 dpo = M
B(t,0)] < My /0 T i < T (16)




Moreover, from (1.4), we get

- 1 1 7 dp
®(0) = }1_121;1) ®(t,0) = 5 do / (1= p)3/2pl-n ,
fO (1—p)1/2pl~n 0 (1.7)

_1 1 /0 dp >0
T 2B 1/2) Jo 1-p)Pptk

where B(:,-) denote the beta function. Note that this convergence is uniform with
respect to o in the following sense:

lim sup (1—0)Y2|®(t,0) — ®(0)| = 0. (1.8)
t—=0p<o<1

We now define
. |
Jai(t) = / B(0)2(to)do (0<t< A)
0

for all z(t) in the Banach space C0, A] of all continuous functions on [0, A] (with
norm || - ||a given [|z]|a := OrgixA|z(t)[). Then Jg is a bounded linear operator

from C[0,A] to itself, and the operator norm l|Ja||la of Jg : C[0,A] - C[0,A] is
computed as

alla = [ @00 =3 2L 5 7 [ io [
351 ), G / o=

Accordingly, by means of the Neumann series, the operator I — Jg : C[0,A] —
C[0, A] has the bounded inverse (I — Jg)~!, where I denotes the identity operator
in C[0, A].

Since (1.5) can be written as

1
(I = Jo)b(t) = /0 [®(t, o) — B(0)|b(t0)do,

we obtain for 0 < A < T,

1
blla < 112 = Ja) I max / |0(t,0) ~ ®(0)|dor |1b]1a

do '
_ 1/2 —_—
< 2/ Orélf}A(l o) 4|®(t,0) — B(0)| - 0)1/2_]|b||,\.

This, together with (1.8), shows that there exists § > 0 such that ||b]|s = 0, that
is, b(t) = 0 for any ¢ € [0, §].
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For 6§ <t < Ty it follows from (1.5), (1.6) that

1b(t)| = l/ (t,0)b(to)do| < M/ 1Ilj_t:)1/2

¢ ¢
_ ()| |b()]
t1/2 s (t_T)l/sz < 51/2 s (t__T)l/Zd

This 'Ieads to

2 t T S 2 t
|_b(t)|S]V‘; /5 (t-—d:-—)l/2/5 (T‘E(S;‘l/zdsszT/g b(s)|ds (6 <t <Ty).

By virtue of Gronwall’s inequality this shows that b(t) = 0 (6 <t < Ty). The proof
of Theorem 1.1 is complete.
- We wish to point out that, even under the assumption that f(t) is monotonically
nondecreasing, there apear cases in which Theorem 1.1 is of vital importance. For
instance, we consider the case f(t) = t,g(t) = (2/y/m)t!/2. Then it is clear that
a(t) = 1 is a solution of (0.3). Since the assumptions in Theorem 1.1 are satisfied
we can apply the theorem to conclude that this trivial solution is a unique solution
of (0.3).

2. Local existence

In this section we shall establish the following local existence theorem:

Theorem 2.1. Assume that, with some p > 0,

(i) f(t) € C[0,T)NCH(0,T), lim =4 f'(t) > 0

(ii) g(t) € C+(0,T), Lim /27 g(t) > 0.
Then, for sufficiently small Ty > 0, (0.3) has a solution a(t) € C4[0, Tp).

Since the assumptions (i) and (ii) imply that f'(t) > 0,g(¢t) > O near t = 0, in
the case 1/2 < p, this result is a direct consequense of [5, Theorem 3]; and also, in
the case 1/2 < p < 1, of [2, Theorem 4]. We give an alternative proof of Theorem

2.1, however, in order to make the present paper readable, and in order to make
the sprit in the paper transparent.

Proof of Theorem 2.1. Let f(t), g(t) be a function satisfying (i), (ii) and put
— 1 1—p /gy, » T 1/2—p
Pi=lim¢Hf(2); Q= im /" g(t),

Moreover we define a function go(t) by

QPP () . QP i [ () S (k)
©0 = B0,173) Jy -2 T B 1/2)’ '1/2/0 (1-p)l/2pt=s /()2 1)
and consider a mapping defined by .
F(a(t)) = t/?7#a(t) / dr — /Tt 2 g (2).

a('r)dr) 2



It is easy to see that the constant function

tolt) = (“— (Q/1/2>)2

satisfies F'(a(t)) = 0, and tha,t,. for each T} < T, F is a C'-mapping of an open
neighbourhood of ag in C[0,T1] to C[0,T;]. The Fréchet derivative Fy(ag) at ao is
computed as,

Fu(as)alt) = AR/ { /0 t %ﬁm -3 /0 t (t—f_l(—%ﬁdr /T t a(r)dr}
e[ [ )
:A{ (®)a(t) — / o)do / t”l :/le(ip)#dp},
for each a(t) € C[0, Ty]. Here we set
A= (Vigy) o= [ <(1,tp—)1;>_>5_f2/;()f€)udp

Let h(t) € C[0,T}] and consider the equation

Fa(ao)a(t) = h(t), (0<t<Ty). (2.2)

By assumption, the function w(t) is positive for sufficiently small ¢. Hence, if T} is
sufficiently small then the equation (2.2) is equivalent to

a(t) — /01 Q(t, 0)a(to)do = h(t), (0 <t <Ty), (2.3)

where we put

-4 1—u gt _
Q(t, o) 1= — ) /O ((1“’_) p)l/J;/()?j)”dp, R() = (Aw(t) " A(D).

By interchange of the order of integration we have

1
'th-’i%fo (¢, 0)|do = 1/2’M/ da/ 1_p)3/2 =12

Therefore, by means of the Neumann series, the equation (2.3) is uniquely solvable
in the space C[0, T}, provided that T} is sufficiently small. This shows that Fa(ap) :
C[0,T1] — C[0,T;] has a bounded linear inverse. Hence, by the implicit function
theorem (see e.g. [4, Theorem 1.20]), we conclude that there exists § > 0 such that
the equation F(a(t)) = h(t) has a solution a(t) in C[0, T] ifog.?%l |h(t)] < 6.
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We now set
k(t) = V/mtt/2#g(t) — /mt /2Ry (2).
By the definition (2.1) it follows that tliII(l) k(t) = 0. Noting that 6 may depend on
T we introduce a function k(t) so that Zc(t) = k(t) near 0 : in [0,77], say; and so
that [JJax, |k(t)] < 6. Then F(a)(t) = k(t) has a solution a(t) in C[0,T}]. Then
=t>4) .
a(t) satisfies (0.3) for 0 < ¢t < Ts. This completes the proof of Theorem 2.1.

3. Continuation

In this section we shall establish the following continuation theorem:

Theorem 3.1. Assume that

(i) f(t) € C0,T) N C*0,T);

(i) g(t) € C4(0,T).
Let 0 < T < T and there exists a solution a(t) € C,[0, T1] of (0.3). Then the
solution a(t) can be continued to the right of Tj.

The main idea of the proof of Theorem 3.1 is the use of the implicit function
theorem in an appropriate function space setting. Let T5 be fixed so that 77 <
T3 < T and define a constant function ag(t) in the interval [T1, T3] by ao(t) = a(Tp)
and d(t) in the interval [0, T3] by '

o fay  Ost<T,
a(t) = { ao(t) (11 <t <Ty).

Moreover we define a function go(t) in (11, T3] by

do(t) = %ao(t) /0 . @ g (3.1)

: d(r)dr) /

Let X be a function space defined by
X = {b(t) € C[Tl,Tg] ,b(Tl) = 0}

with the maximal norm, and consider the mapping

F(B)(1) = (ao(t) + b(t) / _ £i) . el — VEa(t) (T <t<Ty),
a(r) + b(r)dr
where . 0 0<t<T,
(t) = { b(t) (Ty<t<Tp).

Clearly F(0) = 0. Moreover we have:
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- Lemma 3.2. F is a C'-mapping of an open neighbourhood of 0 in X to X. The
Fréchet derivative Fy(0) at O is written as, for b € X,

Fp(0)b(t) = \/_g°(t ———ao(t/Tb(s ds/ F'(7) 37507 ‘(3.'2)

o(t) t &(r dr

Proof of Lemma 3.2. It is easy to see that F'(b) is a continuous mapping of an open
neighbourhood of 0 in X to X. The Fréchet derivative F(bg) at by is computed as,

t / T
Fy(bo)b(t) _b(t)'/o (ft ” )f (b) r >1/2dT
a(r) + bo(r
ao )+ bo(t)) /T ds/ ') 373 dr,

JEa(r) + bo(r )dr)

for b(t) € X. As is easily seen, Fy(bo) is continuous in by in the sence of operator
norm. In the case bg = 0 we have

Fy(0)b(t) = b(t) /0" (ft ~J:();) )1/2 /T 1 b(s)ds / e 3 7 dT,

which, together with (3.1), yields (3.2). The proof of Lemma 3.2 is complete.

We now let ¢(t) € X and consider the equation
Fy(O)b(t) = () (T3 <t < Ty). (3.3)

If T5 is sufficiently near T; then go(t) > 0 for Ty < ¢t < Ty. Therefore (3.3) is
equivalent to

b(t) - /t L(t, s)b(s)ds = ¢(t) (T1 <t < Th), (3-4)'
T
~where we set
Y SR
Lit, ) = 2/ go(t) /o (ft d(r)dr)B/Zd (i <s<t<T)

ao(t)

VTgo(t)

Since a(r) > 0 for 0 < t < T, there exists a constant M such that |L(t,s)] <
M(t — s)=/2. So, by a standard solving metod (see e.g [6, §39]) of the Volterra
equation of the second kind, it follows that (3.4) has a unique solution b(t) in X
for each ¢(t) € X, and that the correspondence o(t) — b(t) is a bounded linear
operator in X. This shows that F3(0) : X — X has a bounded linear inverse.

at) =

o) (Th <t<Ty).
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Hence, by the implicit function theorem (see e.g. [4, Theorem 1.20]), we conclude

that there exists § > 0 such that the equation F(b)(t) = +/7(g(t) — go(t)) has a

solution b(t) in X if pIHAX V7|g(t) — go(t)| < 6. Noting that 6 may depend on T3
142

we introduce a function §(t) so that §(¢t) = g(t) near T3 : in [T1,T3], say; and so

that A VT|G(t) — go(t)] < 6. Then F(b)(t) = v/m(g(t) — go(t)) has a solution
1>t>42 . -

b(t) in X. Using the solution b(t) we set a(t) := ag(t) + b(t). Then a({) satisfies

(0.3) for 71 <t < T,. This completes the proof of Theorem 3.1.

4. Alternative theorem

In this section we shall establish the following:

Theorem 4.1. Assume that, with some p > 0,
(i) f(t) € C[0,T)NC*(0,T), }in(l)tl"“f’(t) > 0;
(ii) 9(t) € C+(0,T), Lim t1/2~¥g(t) > 0.

Then a solution a(t) € C.[0,T1) of (0.3) that does not become infinite ast — Ti
can be continued to the right of 1.

~ An obvious consequence of Theorem 4.1 is the _followirig:

Corollary 4.2. Assume (i) and (ii). If a solution a(t) € C+[0,T%) of (0.3) can not
be continued any further, then 1tlim a(t) = +oo0.

We base the proof of Theorem 4.1 on the following a priori property of solutions
of (0.3):
Lemma 4.3. Under the same assumption as in Theorem 4.1, a solution a(t) €
C1[0,T1) of (0.3) for some Ty < T satisfies O<itn<fT a(t) > 0.
- 1

Proof. Let T! < T;. From (1.1) we have for 0 < ¢ < T7,

(to)!~#f'(tp) dp
1/2 jJ1—p
(fpl a(tr)dr) %o

. 1
3 1/2-[1. <
0< V7 oslﬁlls%@ 9(t)) < |a(t) /0

max [¢'7f'(t)]

1
0<t<Th dp
Sa(t) ( 1/2 /(; (1—[9)1/2)01—”"
®)

min -a
0<t<T!

which yields

min (#/27#g(t))

- 1/2
VT 0<i<T < ( min a(t))

B(1/2,n) max [#f ()] ~ \ost<1

Noting that the left side is a constant independent of T3, we complete the proof.

Lemma 4.3 leads to the following alternative for a solution of (0.3):



Lemma 4.4. Assume (i) and (ii) in Theorem 4.1, and let a(t). € C.[0,T7) be a

solution of (0.3) for some Ty < T. Then, either a(t) tends to a finite, positive value

ast —T1: 0 < lim a(t) < oo; or a(t) tends to infinity ast — Ti: tlirg a(t) = 4o0.
—d1]

Proof. We proceed in two steps.

Step 1. We shall show that if hm mf a(t) < oo then sup a(t) < oco. By the
0<t<Ty -

assumption there exists a sequence {tk} % . = T1 as k — oo, such that
sup a(tg) < M; < 00, (4.1)
k

with some constant M; independent of k. The equation (0.3) can be rewritten as

Vag(o) =alt) [ B ! ((); )1/2df
r a\r)ar

b 1 1

+ a(t) - fl(r)dr

/0 (f: a(r)dr) Y2 (f:" a(r)dr) V2

C

+ a(t) 5 AT

o /tk (f: a(r)d'r) /
Hence we have :
VAglt) = VAR oft) + Lt t) + La(t, 1), (42)

a(tk)
where :
Li(t, ) = —a(t) 't a(r)drx

X /tk 172 1/2 S0 172 72y 47
0 (f: a(r)dr) (f:'“ a(r)dr) {(f: a(r)dr) + (f:k a(r)dr) }

Ly(t, ) = a(t) : 1) .
bk (f,r a(r)dr)

By subtracting g(tx) from (4.2) we get

VAa(D) - alte)) = VA (g0) - g(t)) — STt te) = S Tl t) (49

for t > tx. By setting
be(t) := a(t) — a(ty), o(t,tx) =

= ) ‘ AU, dr.
/0 (f‘: a(T)dT)1/2 (f:k a(?‘)dr)l/2 {(f: a(r)dfr)l/2 + (f:k a(r)dr>1/2}

bt ty) = /tlt ; i'();))l/zdr,
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we obtain

Iyt ) = —(5e(t) + a(te)) [ ) + ateeyar ott, )

tk

t . t
—p(t, tg)br(t) b (r)dr — a(ty) (t, tx) bi(r)dr

tr te
- bk(t)(t - tk)a'(tk)(p(t, tk) - a’(tk)2(t - tk)QO(t, tk),
IZ(ta tk) = bk(ﬂ‘/’(@ tk) + a(tk)¢(t’ tk)

Substituting this in (4.3) shows that

V= ot ) + “—‘tl“—)w,tk)} bi(t)

9(tk) 9(tk)
ARG N & a(te) t
=AW+ el | b+ Teb et te) | b,

where we put

— a(tx) a(ty)? B N a(.t'k 2
A(t) = vr—=¢ o) 9B —9(t)) + o) ¢ tk) (t,tx) o)

We now set m, = mf a(t) My = , max, |f'(t)|. Note that mg > 0 by Lemma
4.3. It follows that for tk <t<Ty

d)(ta tk)'

b dr M,
o (2, )| < 3f2 / ; <
t—7)(te — T)/2 T (t —t)1/2
o T><k 2 (E— k) ”
1/2
I¢(t tk 1/2/ (t—T 1/2 ——M2(t—_tk) /

~ with a constant M, independent of k. This, together with (4.2), shows that

a(t )2 3 a(tk)
glt) T RIP( T +

if we take Ny sufficiently large. Accordingly, from (4.1) and (4.4), we have

\/— (kZN1)7

Pt te)| <

o) < 40+ LTGRO [y Al (5> ).

So, for k > Ny, if |bk(t)] < 1 then for ¢, <t < Ty,

br(0)] < 1A()] + G2 / 1 () dr
_|A(t)|+(£43—+)]‘lf;3/ {4,4( M‘*”f;;/ be(s) lds} "

< B(t) + (M3 + My)? lbk(S)Ids,

17>



where

B(t) .= |A@®)| + (_]\_43_:—)_]\14/42/ |A(r)|dr.

By the definition of A(t) and (4.4), it follows that hm B(t) = 0 uniformly with

respect to k. This, together with Gronwall’s 1nequahty, shows that hm b (t) =

uniformly with respect to k. Hence if we take N(> Np) sufﬁc1ently large then
|bk(t)] < 1/2 for k > N, t, <t < Ty, provided that |bg(t)| < 1. In other words, for
k> N, ty <t <11, either |[bg(t)] > 1 or |bk(t)] < 1/2. But the former does not
occur because by (t) is a continuous function in the interval with b (t) = 0. Thereby
we conclude that there exists a number N such that, for k > N, a(t) < a(tg) + 1/2

in the interval ¢, <t < Tj. This shows that sup a(t) < oo.
0<t<T

Step 2. We shall show that if sup a(t) < oo then a(t) tends to a finite, positive
0<t<T,

value as t — T;. Let Ty < s <t < T;. Using (4.3) we have

—a(s)) = ﬂg(_s) -g(s _als) s—g@ S
VAalt) = als)) = VS (9(6) = 9(6)) = (6 s) — S5 Dt s)

= i) e ey 4 d8a®) [ a(s)a(t)
= VA0 o) + TS [ amdrtes) - L5y e, ).

It follows from this equality, the assupmtion sup a(t) < oo, (4.4), and the uniform
0<t<T

continuity of g(t) that a(t) is uniformly continuous on [0,7}). Hence a(t) is extended
as a continuous function on [0,T}]. The proof of Lemma 4.4 is complete.

We now give the

Proof of Theorem 4.1. If a solution a(t) € C[0,T}) of (0.3) does not become infinite
as t — Ti, then, by Lemma 4.4, a(t) is extended as a positive solution on [0, T}].
So, by Theorem 3.1, a(t) can be continued to the right of T;. The proof of Theorem
4.1 is complete.

We treat the case when f'(¢) > 0. The following result is useful.

Lemma 4.5. In addition to the assumption in Theorem 4.1 we assume that f'(t) >

87

0 for each t € (0,T). Then any solution a(t) € C4[0,T1) of (0.3) for some Ty < T

satisfies sup a(t) < oo.
0<t<T

Proof. Let T < T7. It follows from (1.1) that

L (tp) £ (tp) dp
VT _max (151/2 #g(t)) = alt) 172 Jl-n
0<t<Ty /0 (fpl a(tr)dr) /2 P

a(t) [T o) S ()
2 1/2 OEI}LHTI/O (1- p)1/2p1—udp’
( max a(t)) :
0<t<T!
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for 0 <t < Tj. Since the function

/ ) )
o (L=p)/2pt-s
is a positve, continuous function on [0,77], we get

1

v (o, [ (ﬁt‘fl—)ffz,(ff)pdp)_ max (£/24g(0) > ( max a(t))m-

0<t<T) 0<t<Ty 0<t<T!

Notmg the left 51de is a constant independent of 7] we complete the proof.

By virtue of Lemma 4.5 the following is an immediate consequence of Theorem
4.1: :

Corollary 4.6. In addition to the assumptions in Theorem 4.1 we assume that
f'(t) >0 for each t € (0,T). Then (0.3) has a solution a(t) € C+[0,T).

We wish to point out that Corollary 4.5 is also obtained 1mmed1ately by [5, Chap
1, Theorem 3]. In the case 1/2 < i < 1 this follows also from [2].
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