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Abstract
We prove that strong subadditibity(SSA) of entropy holds for fermion
systems. '

1 Main result

Probably,strong subadditibity(SSA) is the one of the most powerful prop-
erties of entropy. In this paper, we prove SSA holds for fermion systems.
We consider Fermonic systems on an integer lattice 72 the set of d-tuples of
integers. The creation and annihilation operators will be denoted by a} and
a; (j € Z%). They satisfy the canonical anticommutation relations,

{aj1ak} =0,
{a},a:} =0, |
{aj,ak} = 6iel, (1)

where {A, B} denotes the anticommutator AB + BA.

The C* algebra generated by these operators will be denoted by A. Py(Z%)
will denote the set of finite subsets of Z¢. For each A € P;(Z¢), A, denotes
the subalgebra of A algebraically generated by {aj,a] j € A}. Ay is
sisomophic to the tensur product algebra ®;ea M2(C) , where My(C) is the
full matrix algebra of 2x 2 complex matrices. If w is a state of A, then it
will induce a restricted state w, on A, for any finite region A of Z%. wy is
determined by a unique density matrix D, satisfying

w(a) = TrA(DAa)

for all @ € A and the matrix trace of A.
The entropy Sy(w) of w is defined by

Sp(w) = =TrpDy log Dy.



The strong subadditibity property is related to the composition of three
different systems. Let A; € Py(Z%)(i=1,23) be mutally disjoint. For a given
state w of A , we denote the entropy Sy(w) for A = AJUA;UA3, AyUA,, A U
A3z, Ay by S123,51,2,51,3, 51, Tespectively. |
Our result is the following theorem.
Theorem(SSA property of entropy in the fermion systems)

S1,23 + 5 < S12 + Sis (2)

E.H.Lieb and M.B.Ruskai([3],[4]) already proved the same type of result.
However, they considered the case where the combined system 1,2,3 is de-
scribed by the tensor product of the algebras of composed systems 1,2,3.In
the present case, this is not the case, for example, annihilatition operators in
the systems 1,2,3 mutally anticommute ,i.e. they do not commute.

2 Proof of Theorem

2.1 Relative Entropy and Conditional expectation
Let w and ¢ are states of A ,the enfropy of w relative to ¢ is defined by

S(w,p) = TrD, (logD —Tog D,)

Suppose that A € A/(€ P;(Z%)) , and that T is a normalized trace on Ay
As is well known, there existe a unique linear mappingF : Aj:. — A, such
that

(1)E(z"z)
(2)E(y) =y for every y € AA . |
(3)E(zy) = E(z)y holds for every z € .AA, €A,
(4)r(E(z)) = T(:c) for every T € .AA, - | - (3)

This mapping is usually called a conditional e:rpectation.
It is known that

S(w oEI.AA: @ o E|Ay) > S(w]Ap, 0l Ar) o (4)

‘QIV

This is the monotonicity property under the conchtxona.l expectations. (see

[6]Ohya, Petz)

2.2 Proof

Let o be a one to one mapping from {1,2,---, |A; U.A2 U Az} onto
ArUA,UA;. Thus, AyU A UAs = {a(k)}ior... i unsun,) - HeTE |A| denotes
the number of points in A . Now we fix a, and denote a(k) by k. Let 7 be
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a normalized trace on A, ;3. (For simplicity ,we drop A and write A, 53 for
A uAzuns, etc.) Let F, G be a conditional expectation from Aj230nto A3
, and from A, ; onto A;, respectively. We assert first that G = F|4,2. From
(1)(the cannonical anticommutation relations), it is easy to see that A;»3
consists of linear combinations of /d and products o :

{ II ®HII ok},

| k€A UA keAs -
where b(k) € {azak, arai, ax, ay, I}

Set ;
(2 if b(k) = ajax, or aka:
fe)=< 1,  ifb(k) = a, or aj
0, if b(k) =1
From (3),

F{ T sRHIT bok)}) ={ II b(k)}-F ({ IT 5(k)})

k€A1UA3 keA2 kEA1UA3 keA2

Thus our aim is to determine F ({er,\z b(k)}) .
If Tren, (k) = 2Z we have, from (1), that

a{ TT b(k)} = { I] b(k)}a, for ea,ch a € A?,3. |

keAa- keA2

From (3), ' -
oF ({ TT (&)= F({ I] b(k)})a-

k€A : keA2 . ‘

Thus F({erA2 b(k)}) is in the center.. And by (3), we have
F({T] top=r({I] e0}-1. (5)
k€A - keAz : o

If Spen, f(K) =2Z +1, there is a m € A, such that f(m) = 1. Now, let
m be the smallest number with the above property. ,

By (1) | |
Tk =bm){ II ek}
keAz k#m keAa
| S f(k) =22.

k#m k€Aa
Next, note tha,t
- aj(2¢ja; —1) = 2aja}a; —a;

2aj(1 - a,-a;-') - aJ-
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= 2a; —a;
= q;
-and (2a¢}a; —1)a; = -—a;
Similary a;(2a;a; ~1) = a;
(2¢ja; —1)a; = =—a]

Thus
b(m) - {2b(m)"b(m) —= 1} = b(m)

{2b(m)"b(m) — 1} - b(m) = —b(m)

‘For'each a € A; 3, we have

'r<a b(m TI (k)})
k;ém keAs '
- T(ab )-{2b(m)"b(m) -1} { TI 5(K)})
k;ém k€A2
= r(e-sm){ T o) {2h(m) b(m)—l})
= T({zb m)"b(m) — 1} - a - b(m) { k;é IT ok )})
= r(a {Zb(m m)—l} b(m) { b(k) })
k;ém keAz
= —r(a-bm){ I b&)})
7 k#m kEA2

So, T(a - b(m) {ITkstm kens 'b(/c)}): 0. From this, we have

am){ [ b(k)}=0 (6)

k#tm k€A
From (5) and (6), we conclude that
G =Flaa. | (7)

Let w be a state of A , and Dy 23, D12, D13, D1 denote the density of the
state w; 2.3, w1 2, W1,3, W12, and wy, respectively. It is easy to see that

S(D123, D12®D3) = S12+S3— 5123
S(D13, D1 ®D3) = S1+4 53— 513 (8)

By definition,
F(Dy23) = D13, G(Diz) = Di. (9)
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Apparently,
D3 = F(D3) A (10)

From (7),(8),(9),(10)

(S12 + S1,3) — (S1+ S1,23) .
= S(D123,D12® D3) — S(F(D123), F(D1,2) ® F(D3))

Thus, it follows from (4) (monotonicity property of relative entropy) that
S1+ S123 < S12+ S18: o
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