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s Abstract

Based on certain conditional expectations leading to conditional local states we provide
a Gibbs Theory analogous to [20,21]. As example, we look at specifications correspondmg
~ to coherent states and the ideal Bose gas.

1 Introduction

In classical statistical mechanics one wants to determine equilibrium states for infinite particle
systems, suppose the interaction between the particles is given. The first possible definition
is proposed by the so called thermodynamical limit. Dobrushin, Lanford and Ruelle [6,16]
proposed, based on an equivalence theorem for lattice systems, another scheme: The equilibrium
state should be invariant under the action of certain (sub-) stochastic kernels. Related to the
potential ® these kernels are formally determined as Qg( - |9,c), the conditional probability
inside a bounded region A under the condition of the outside o-field Myc. ,

The situation in quantum statistical mechanics is not so simple. One can introduce the same
formalism [1], but the main problem is the existence of the conditional expectations (2,22]. The
requirement of the existence of such norm one projections which leave the state invariant would
shrink to much the set of possible (equilibrium) states. From [18] we know that. for locally
normal states of boson system there exist some analogon, the conditional local states. This
approach avoids the problems of existence of conditional expectations as it works essentially with
projections on the center of certain von Neumann algebras. From this approach we establish a
clear-cut connection to classical abstract theory of Gibbs measures as developed in [20,21].

Acknowledgement. The author thanks Luigi Accardi for helpful comments.

2 Preliminaries

Let G be a complete separable metric space. The (bounded) Borel sets are B and & respectively.
We use the description A¢ = G'\ A for the complement of A € & and 1, for the indicator function
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- of A. 6, is the Dirac measure concentrated in z € (G, o denotes the zero measure on ®. Further,
we fix a measure v on (G, ®) which is locally finite (v(A) < oo for-all A € B).
Now let M be the set of all locally finite counting measures on G, i.e.

M = {¢: ¢ is measure on &, p(A) € Nforall A€ B}.

If A€ ® and ¢ € M we denote by ¢, the measure pp(-) = ¢(- NA). Under abuse of notation,
we write ¢ € @ if p({z}) > 0. 9, is the smallest o-field on M making the maps ¢ — @(A)
measurable for all A € B, A C A. We set M = M and call a probability measure on (M, om)
point process. ' |

Remark 1 It is well-known [19] that any ¢ € M is a countable sum of Dirac measures. So we can
interprete ¢ as point configuration and a point process as distribution of a random point configuration.

For A € & we define a o-finite measure F on (M,9N) by setting for Y € M

n=1

‘FA(Y) = 1y(o) + i % / 1y (XF, 6)v®(dzy, . .. ,dz,). (1)
An.

We set My = L&(M,9M, Fp). Note that M = Mg is canonically isomorphic to the symmetric
Fock space over L%(G,v) (cf. e.g. [13, Satz 2.5]). -

Now we introduce the quasilocal algebra corresponding to locally finite boson systems. If
A, A € & are disjoint M, ® My and M,y are isomorphic under the isomorphism. Jj n
characterized by '

Iy (%1 ® ¥2) () = P1(a)¥2(on) ' ~ Fae
for all ¥ € My, 3 € Mys. Under this identification we set for A € B

'AA = E(MA) ® ﬂAC — £(M).

Thereby 1,c is the identity in £(Mjc). The algebra of quasilocal observables is given by
A = Upesm Ay, where the bar denotes the closure in the uniform topology of £(M). Then the
pair (A, (A,) Ae%) is a (bosonic) quasilocal algebra in the sense of [3, Definition 2.6.3].

As usual a state w on A is a positive continuous linear functional on A. '

Definition 1 (cf. [3, Definition 2.6.6]) A state w on A is called locally normal state if for
‘all A € B there is a trace class operator g5 on My such that for all A € M A) '

wA(AQ 1) =w(A® Lyc) =tr(gad).

Now one can search for good descriptions for locally normal states. ‘A first possibility is to
fix (wa)pem- But the compatibility condition is easy to handle. Another method developed
in [10,14] is the characterization of locally normal states by their position distribution and the
conditional local states. As it was proved in [17] this provides a complete description for all

locally normal states. . ,
For Y € M let Oy € £(M) be the operator of multiplication by 1y, i.e. for all ¥ € M

(Or¥) () = Iy (P)(%) F-ae.

Obviously, for A € B and ¥V e 9, we have Oy € A,. A special case of the following result
was already proved in [9] but it is valid also in the above described general situation.
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Proposition 1 (cf. [10, Theorem 2.15]) For any locally normal state on A there ezists ez-
actly one point process P, on G which fulfills for all A € B and all Y € My

P,(Y) = w(Oy). 1
Remark 2 Oy is interpreted as position measurement. Thus we call P, the position distribution of w.

Theorem 2 ( [18, Theorem 3]) Letw be a locally normal state on A. Then there is a family

(wx)Ae%,weM fulfilling for all A € B the following conditions:

(i) Foralloe M wf isa (normal) state on A,.
(ii) For all A € A, the mapping ¢ — wj(A) is Myc measurable.
(iii) For all A€ A, and allY € My for some X € B, ANN =0 it holds

w(40y) = [ Pu(dp) () | @
Y

If (GK)AGSB,cpeM is another family fulfilling (1)-(iii) then for al] A € B for Pw—a.a; peEM

@ _ pe
wy =671

The states “"K are called conditional local states.

Remark 3 The conditional local states are related to certain conditional expectations. Let (Hy, 7w, Q)
be the GNS-triple w.r.t. the locally normal state w. The position distribution is the restriction of
(Qu, - Q) to the range of the canonical embedding of L®(M,9M, P,) into m,(A)". Then

ER(A) = ¢ — wi(A(9))-
is the (Umegaki) conditional expectation from the algebra given by the embedding of
Ay ® LM, Mye, Ru) = 7 (A)” |

onto the embeddlng of L%®(M,Mpc, P,). The latter being the center of Ay ® L°°(M Muc, P,) assures
existence of the conditional expectation [22]. In general, we work with the conditional local states, but
‘the GNS picture is useful for reference.

Definition 2 The tail-field M is defined as M™® = Naes DJTAc We say that a point process
Q is MM trivial if Q(Y) € {0,1} for allY € M. ‘ '

Remark 4 Sometimes 9 measurable bounded functions are called observables at infinity (see [16]).
They are interpreted as quantities which can be observed from outside the system.

There exists also a conditional expectation onto the tail field . Nameiy there are locally
normal states (*w¥) ¢y, fulfilling P,-a.s. for all A € Jpcm Ay

“wf(A) = lim wf (A)
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where (An),cn C B is a cofinal sequence. Moreover, for all A € A,
u,*(A) = Ep, (w(A')(A)l ) (¢) - P, -a.s.
‘and forall A € A

w(4) = [ Bude) (4. (3)
The choice of position distribution and conditional local states to determine some locally

normal state is not completely arbitrary.

Lemma 3 Let w be a locally normal state and A € B. The P,-a.s. for all Y € Iy
- wi(Oy) =P (Y| Myc) () B
Lemma 4 For N,A € B with A D N it holds true for P,-a.a. ¢ € M, all A € A, and all
Y € mA\N ‘that
[ R @5] ) (o) (4) = (40 )
Y .
Remark 5 This relation is just the projectivity of the conditional expectations related to the condi-

tional local states.

3 Classical Gibbs Theory for Point Processes

We just rephrase the so called Gibbs formalism used in [15,20,21] to formalize the conditional
expectations @ (- | 9 ,c) () for point processes Q.

Definition 3 (cf. [21, Definition 2.1.1]) Let be € C Qird”set system. A triple (7,%R, C) where
T = (TaA)rcer R = (Ba)ace 15 called local specification with sets of regularity R if

(LS1) Ra € Myc for all A € €.

(LS2) For all A € € we have wp : M x9N+ [0,1] and a(e, *) is for all ¢ € Rp a probability
measure on J0N.

(LS3) If A € € and ¢ & Rp then mp(p, - ) = 0.
(LS4) For all A € € andY € M the function wp(-,Y) is Myc measurable.
(LS5) IfAe €, pe M andY € M, Z € Myc then

A9, Y N.Z) = 1z(p)ma(9,Y).
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(LS6) ForallA,Ne ¢, AC N andallp€ M:
Ty * A, ) = /wAl(cp,dcﬁ)‘/rA(c;é, N =7a(ep, ¢ )

We will assume that € contains a cofinal sequence and G ¢ €.

Remark 6 The regularity sets are introduced due to the following reason. In some examples the
natural way to define the “conditional distributions” 74 (y, -) may fail for some “irregular” configurations
. The way out is the assumption that invariant measures Q are concentrated on regular configurations.
On the other hand the measures @ (- | Mac) () are defined only on a @ essential set of ¢ so that we
can redefine them on the inessential set of irregular configurations. If we set them O on that set then
that set has automatically Q measure zero for all invariant measures Q.

Moreover, the standard construction of = is like follows: Let ® : M' — R be the interaction of some
given finite point configuration. The energy function H is then given by H(p) =)<, ®(¢), in general
this is infinite if ¢ is itself infinite. For A € B define the conditional energy function —HX : My — R by

H{@)= ). o) | (4)
P<ppctP .
?(A)>0

Such a way we can interprete H}(¢) as the energy difference occuring if we add the configuration ¢ to
the points of the configuration ¢. The ansatz for the conditional probability in equilibrium w.r.t. H is

fF(d‘Pl) exp {— HY(p1)}
QY| Mac) (p) = 71{ (Y, ) = f F(dps) exp (= B (o)) B

Unfortunately, H§ is an infinite series and we face again a convergence problem. Now we set

Rr={y: Z ®(p) converges absolutely-}
. @S‘pAC+¢ '
B(A)>0

and the associated local specification 7 is well defined. Recently [7] it was pointed out that pointwise
convergence of the sum in (4) is the right object in this framework, as stronger assumptions shrink to
much the set of feasible Gibbs measures.

Definition 4 A point process Q is called Gibbs process w.r.t. the local specification (1r R, C) if
it fulfils: for all A € € and Y € M the DLR equations

) = [ Q) (oY), ®

We denote the set of Gibbs processes by GP(r, R, €).

The DLR equations determine the conditional distributions.

Lemma 5 Q fulfils Q € GP(r,R,€) iff for all A € € it holds Q-a.s. for allY € My
TA(Y,9) = Q (Y| Myc) () A
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Due to [21] the set GP(r, R, €) is closed w.r.t: mixings, especially convex. The set of extremal
Gibbs processes is denoted by exGP(r, R, ).
The tail-field plays an important réle in classical Gibbs theory

Lemma 6 ( [20, Theorem 2.1]) (i) Q € GP(r,R,€) iff Q is trivial on M.
(i) If it holds Q1jame = Qaran for Q1,Q2 € GP(r,R,€) then Qy = Q1
In the case gP(r, 9‘{; C)#0 Von‘e gets an entrance boundary for all Gibbs'processes:

Proposition 7 ( [20, Theorem 2.2]) Assume the local specification (w,R, €) has at least one
Gibbs process. Then there is a stochastic kernel #*® from M to M with the followzng properties:

(7°1) For all ¢ € M we have 7°(p, - ) € exGP(r, R, ©).
(7°°2) For all @ € GP(r,%,¢) and Y € M
Q| M) () =7(-,Y) | Q-as.
(r°°3) For all p € M
| o873, ) = 75, )N = 1.

(7r°°4) Q€ Q'P(ﬂ' R, €) is true iff for allY € M

Q)= / Qo) 7(, 7). 1

Formally 7, is a measure on the whole 91, but for arbitrary Y € 90t it holds (cf. [21, Satz 2.1.4])

TA(@,Y) = ma(p, {@ : @ + pac €Y' }).

Thus 7, is fixed by its values on 9. Following this we get the followmg connection to purely
locally deﬁned local specifications:

Lemma 8 Let R and € be as above. For a famzly (WA)AEE of maps from M x 9, to [0,1]
consider the following conditions:

(LS'1) #a(ep, «) is for all A € € and all ¢ € Ry a probability measure on My
(LS'2) IfA € € and o & Ry then #a(p, - ) = 0. |

(LS'3) IfA € € and Y € My then #5(-,Y) is M,c measurable.

(LS'4) Forall A\Nec &€ ACNalloe M andallY' € Mana, Y € My it holds

*u(p, Y NY) = / Tl dB)EA(PH + Py, Y). ()
Y’ . . .
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Such a family # corresponds uniquely to a local specification ™ which is determined by
Ta(0,Y) = #a(, {1 @+ pac €Y}
Moreover Q € GP(r,R, €) iff it holds Q~-a.s. for allY € My
Fa(Y9) = Q(¥ | Myc) (9)- |
Proof: Assume we are given the local specification (r,R, Q) Forall A € Cand Y € 9N, it
follows
a0, Y) = ma(e,Y).

It is easy to see that # fulfills (LS’1)~(LS’3). The condition (LS'4) we derive like follows: For
ANeC ACKN with A”=N\Aand Y7 € My, Y, € My» we conclude from the properties of
T .

7?1\’(97’}/1“}/2) = WN((P:HHYZ):/WA’((P,d(ia)WA(Qa?},lnYZ)

= [ mulo adtn@m(e, 1) = [ male,d)ia, 1)
Y

= ‘/irl\’((t’,d‘ra)irA(‘ﬁA' +<P(A/)C,Y1)-
Y,

On the other hand, let # be given with (LS’1)-(LS’4). Then for the respective « all properties
are obvious exept of (LS6). We choose A, A,Y,Y? like above and get the following chain:

/M(% d@)ma(@, Y1 NY2)

TN * 7FA(<,0,Y1 n'Yz)

[ 7l 09)in(6, (5 @+ orc € VinTa))
JEN I ACINER S
/ﬁm(sa,dé)fm (@A' + <P(A:)c,Y1)-

Y
= #a(e,Y1NY2) =ma(p,Y10Y).

As 9y, is generated by the sets of the form Y N Y, with Y7 € My, Y2 € Mpn, malep, - ) is
determined by its values on 9s. Thus = is a local specification. _
The formula for the Gibbs process is obvious. 1

4 A Gibbs Formalism for Locally Finite Boson Systems

Now we come to the quantum case. Point processes have to be replaced by (locally normal)
states on A. The réle of the conditional expectation @ (- | M ,c) () is taken by the conditional
local states wy. ' :
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Definition 5 Let € C B. A triple (7,R,€) is called generalized local specification with family
of regularity sets R if ¥ = (Ya)pee and R = (Ra)pce fulfill the following conditions:

(GLS1) For all A € € is Ry € Me.

- (GLS2) For all A € € we have yp : M X AA — C and 7A(<p, ) is for all ¢ € Ry a normal
state on A, .

(GLS3) If A€ € and ¢ € Ry then v5(p, - ) = 0. _
(GLS4) The map ¢ — ya(p, A) is Myc measurable for all A € B and A € A,.
(GLS5) For all A,N € ¢, ACN, allpe M and all A€ Ay and Y € My, it holds true

7/\'((!97 AOY) = ‘/P.YA,(%.)(d@)’YA(QBN + SO(AI)C) A).
4

Then we define the local specification (n7,%R, €) by setting for Y € M

WX(QOa Y) =TA (‘P7 O{¢:¢A+<PAC€Y}) :

Definition 6 We call a locally normal state w on A Gibbs state w.r.t. the generalized local
specification (v, R, €) if forall A€ € P,-a.s.

1A, - ) = wi(-)-
The set of Gibbs states is denoted GS(v, %R, €).

Remark 7 We would like to formulate the Gibbs property with conditional expectations. But there
lacks a description of conditional local states as conditional expectations on an algebra universal for
all locally normal states w: Moreover, v5 replaces #4 and not w4 in the classical formalism. Roughly
speaking, 7a is something like a A mapping in the sense of [5].

Gibbs states are closely related _tb Gibbs processes of the associated local specification.

Theorem 9 Fiz a generalized local specification (v,R,€). Ifw € GS(7,R, ¢) then P, €
GP(r7,R, ). Conversely, any point process @ € GP(n7,R, €) determines unzquely a locally
normal state w € G5(, R, €) wzth P, =@Q. ‘

Proof: Let be w € QS(')/, R, ). Due to definition it holds for all A € € and all ¥ € Ma
[ Rd9)Bry o (¥) = w(0r) = BufY).

Thus P, € gS(ﬂ'" R, €).
Now assume @ € Q'S(7r’7 R, ). We set for Aec

@)= [ m, )
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Suppose € 3 A D A. Due to Q € GP(r",R, €) and Lemma 5 we get for each A € A,

wy(A)

/Q(dsv) (9, AOn) ='/Q(d99)‘/7f”(¢;d95)7/\(¢~ +<,9(A;)§:,A)

[ @) [ QaapME+ o ) = [ Qo) 1a(0,4) = n(4).

Thus the local states (wA) Ace are compatible. As € contains a cofinal sequencé they determine
uniquely a locally normal state w on A. Because of @ € GP(7",R, ) we have P, = Q and
w € GS(7,MR,<). The uniqueness of w follows 1mmed1ately from the definition of conditional

local states. 1
Now we look at mixings, an immediate consequence of [21] and the above proposition is
Proposition 10 The set GS(v,%R, €) is closed w.r.t. mizings.l
Again, exGS(7, %R, €) denotes the set. of extremal Gibbs states. .
Lemma 11 Let (v,R, ) be a generalized local specification. Then
(i) w € GS(7,R, ) is extremal iff P, € exG'P(fri,D‘i,QZ). ’
(i) for wy,wq € GS(7, %R, €) the measures P,, and P,, coincide on IM™ iff wy = ws.

Proof: 1° For w € GS(v,R, €) and P, € exGP(7",R, €) we choose A € (0,1) and locally normal
states wy,wy € G5(7,R, €) with w = Aw; + (1 = A)w,. Thus P, = AP, + (1 — A)P,,, accordmg
to P,,,P,, € GP(x",R, ) also P,, = P,,. With Theorem 9 we derive w; = w; = w.

Now assume that w € exGS(7v,R, <€) and there are @1,Q2 € GP(x7,R, ) with P, = AQ; +
(1 = A)@Q2. Due to Theorem 9 there are wy,w; € GS(7,%R, €) with- P,, = @; for : = 1,2. The
definitions of Gibbs states and conditional local states yield w = Aw; + (1 — A)ws. This implies
w; = wp and @ = Q3. Thus P, € exGP(77, R, €).

2° Take wy,wq € GS(7, MR, €) with P, jone = P, tme. Theorem 9 implies P, ,Pwz € G’P(ﬂ"’ R, ).
From Lemma 6 we conclude P,, = P,, and Theorem 9 yields wy = wy.

We can also construct an entrance boundary:

Theorem 12 Assume GS(v,R,C) # @ for a generalized local speczﬁcatzon (v,R,€). Then
there are two maps v : M X A — C and 7 : M X M — [0, 1] with the following properties:

(v*°1) '7°°(¢, - ) is a locally normal state on A foi‘ each cp EM.
(7%°2) ©%°(¢p, - ) is for all ¢ € M the position distribution of Y>°(¢p, - ).

(7°°3) The maps @ — 7°(p, A) and ¢ — 7°(p,Y) are M® measurable for all A € A and
Y € M respectively.

(v*°4) For allw € GS(v,R,€) the following formula is P,,-a.s. valid:

() =1, ).
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(y°5) For each ¢ € M it holds 7°°(<,9, ) € exGS(7,R, ). .

(v°6) If 9 € M then 7°(0,{® : v°($, - ) =7=(, -)}) = 1.
(v°°7) A locally normal state w on A is from GS(v,%R, €) iff

[Ror=e =u @

Proof: Due to Theorem 9 we have GP(r?, R, €) # 8. Now Proposition 7 provides a stochasfic
kernel 7> with the properties (7®°1)—(7°°4). Due to Theorem 9 and property (7°°1) there
exists for any ¢ € M a unique locally normal state y*(¢p, - ) € GS(7v,R, €) with Pye(, ) (Y) =
m(p,Y) for all Y € M. (7°°1) together with Theorem 9 and Lemma 11 implies y*(¢p, - ) €
exGS(7, R, €). Thus (7*°1)-(7*°3) and (y*°5) are fulfilled.

The property (‘y°°4) follows from the respective property (r*°2) of 7 and the.properties
of “w®.

The locally normal states y>°(¢, - ) are determined by 7°°(¢, - ). Thus (y*°6) follows from
(m>°3). '

Suppose w( - ) = [P,(dp)v*(¢p, - ). Proposition 10 and condition (y*°3) imply w €
GS(v,R, Q). On the other hand we can derive from w € 08(7,9‘{ €) with property (7%°4),
Equation (3) and the properties of *w?®

o) = [RR) () = [ Rulde) (e, )

5 Examples
Example 1 (Coherent states) Define for h € L%(G,v) the exponential vector exp, € M by

I (h(z))*=D if 0< ¢(G) < o0
exp,(p) = i 1 if p=o | |

0 - otherwise

and let L} (G,v) = {g : fA v(dz)lg(z)|? < coVA € B} denote the space of locally square

integrable functions. We assign to g € L2 _(G,v) the generalized local specification (v9,R,B)
with Ry = M and

(exPQA ? A €XPgs ) ; | . :
ep{Tlgal} )

7X(¢$ A® ]]-AC) =

for all A € B and all local observables A € £(My). Thereby g is an abbreviation for g - 1.
It is easy to see that v9 is a generalized local specification. As 73 is independent of ¢ it holds
wp = 73 for any Gibbs state w. Thus there is exactly one Gibbs state, the coherent state
corresponding to g in the sense of [12].



124

Example 2 (Ideal Bose gas) We want to deal with the ideal Bose gas in the above formalism.
Assume G = RY, equipped with Lebesgue measure {¢. Suppose we are given a potential, i.e. a
function U : M — R. Under certain conditions on the function U the operator

H=—d[(A)+ U,

where U acts by multiplication, dT is the differential second quantization and A is some (self-
adjoint) form of the Laplacian, is selfadjoint and should give the Hamiltonian of the particle
system. If H has suitable spectrum, e PH js of trace class and represents the unnormalized
(normal) equilibrium state of the system at inverse temperature 3.

Like in [11] we do not want to go into self-adjointness problems but assume that the unnor-
malized kernel of the trace class operator representing the normal equilibrium state is given by
a Feynman-Kac formula

k(Z?:l 52.'1 3-1 6y,) = E Z

TESn

nd, ~ [P e@yu (X0 buu
/ R IR C COPRRR )L 1 ¢ (Xiey ‘ ). (10)

Thereby u?:lﬁ 2§12 ) is the conditional Wiener measure (cf. [4]), Sn is the group of

permutations of {1,...,n} and Z is a normalizing constant. Additionally, k(o,0) = 1 and
k(p1,92) = 0 if |@1] # |p2|. In the sequel we will follow only that part of the kernel with

o1l = Il € {1,2,...}.
As we are dealmg with the case of an ideal gas we only accept an outer potential, i.e.

U(Ei_:l 0g;) = Lim (zi)

where h : R? — R. So we can rewrite (10) as follows
k(zz—l 6zn i=104;)

nd,B i | T 18 h(ws ()(d
-—z Z/ (zll,,,'z")‘(y”(l),,,_’yﬂ,(n))(d(w1,...,wn))ne J§ r(wi(t))e(dt)

wESn =1

- [B h(w; ‘
T Z —Z Z H/”“’nyn()(dwi)e Jo hlus(eede), - (11)

‘TESH 1=1

Like in the proof of [13, Theorem 4.8] the respectzve condmoual local states ¢ can be ngen by its
unnormalized kernel k% (assume (p(A) = 0) through

n+p

z: 6" n n - - B wi
R (D b S ) = 2 Y TT [ W (e BHee, 1z)
. L . ) . . ‘ﬂ'GSn+p 1=1 : o ‘
where (S1,. .. ,Sn4p) = (:bl, vty Tny UL, ... ,Up) and t is defined similarly by y and u.

The first crucial point is that in the case of no interaction the Gibbs state is in general not a
normal state (cf. [4]). To cover this situation we want to apply the Gibbs formalism from above:
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Formally the conditional local states w¥ are given by (12), but as ¢ has in general infinitely

many points, we must deal with some limit procedure to define A (¢, - ) for infinite . To this
- ®
goal we rescale ki by dividing it by k¥(o,0), leading to k¥ (1, p2) = ’“,cﬁ,‘;;’f;’ and bring this
: 2o,
kernel into a more suitable form.

Remark 8 It is easy to see, that
) éx(?l;%?) = kw((Pl, 902)(10)
if ¢(A) = 0. k, is the so called conditional reduced density matrix (cf. [10]).

‘ h(w(s))e(ds)
With the abbreviation a(z,y) = [ p2P(dw)e © f we derive

ETESn+p H?:lp a('l‘i, s""‘i)

Eresp II5; a(ui, ur)

Set ¢ = 316z, ¢ = X168, and o = Y 7_, 6,. In the denominator of the RHS we can
divide ¢ and ¢ in two parts respectively: @ = ¥; + 92, ¢ = U3 + 94, thereby assuming that 93
is exactly the image of ¢ and ¥, in ¢. Thus ¥, is mapped into ¢ and Y4 is the complete image
of points from . Denote by I(p1, ;) the set of all injections from the support of ¢, into the
support of @9. This yields

- ' PL
Wed = Ha(u,r(u»X( PN VI DR >

rel(prp) €@ @=101+702 ¢=03+94 g1 €I(F2,0) g2€I(V4,)

-ZP= Su
ky =t Z(Z?-_q 0z J_l ‘5y,) =

(13)

»> II ez @) [T de@.y) ]I a(%f(ﬂ)))
)

TEl(0=01(02),0~q2(Y4)) €J2 Y€, u€(v—q1(¥2)
Now

a(u T(u))

TEI(cp 91(92),0—92(94)) u€(p—a1(¥2)) .

> II a(u,m(u))

T€I(p,p) u€W

is some probablhty for a random permutatmn of the support of ¢ with transition rates given
by a, cf. [8]. Assume P7 is the assoc1ated probability law, i.e.
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Under some conditions on @, P{ makes sense also for infinite point configurations ¢ (cf. [§]). If
we have a “good” point configuration, we can define an unnormalized kernel of w by (14). The
question whether we have a good configuration is related to some classical Gibbs problem on the
countable phase space @, in [8] it was dealt with such problems. That reference provides also
some uniqueness condition. But it is also possible that Py is only a subprobabzlzty measure.

Then we get
F2(0,0) = PE(I(p,9)) < 1

which does not coincide with our assumption k¥ 2(0,0) = 1. Thus our sets of regularity should
contain only configurations for which Py exists umquely as probability measure.

From a limit we get by the reduction due to Theorem 9 another (classical) Gibbs problem,
which waits for a solution. Roughly speaking, the first Gibbs problem is related to momentum
(as the Feynman-Kac formula provides some perturbation of the contraction semigroup associ-
ated to the square of the momentum operator), whereas the second one comes from positions.

The above algorithm should remain applicable if boundary conditions are involved and Bose-
Einstein condensation occurs. In that case u and a depend on addmonal parameters. Thus the
limit problem is more complicated and no solutzon in sight.
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