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Central Limit Theorem Related to
the Correlation of the Conjugacy Classes
in the Infinite Symmetric Group
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Okayama University

Abstract

We consider a formal sum of elements over a conjugacy class in the group algebra
of the infinite symmetric group and call it an adjacency operator. Using the idea of
algebraic or combinatorial approach in central limit theorems of probability theory,
we exactly compute the correlation function of these adjacency operators. The main
body of this talk is based on [Hol].

1 Introduction
Let S denote the infinite symmétric group:
S;o := {bijection 0 : N — Nj|o(k) =k e#cept finite k’s} = G Sn .
n=1
"The 'adjacency operator corres’ppnding to conjugacy class C in Sy, is by definition formal

sum

Ac:=>z | (1)

- zeC
in the group algebra of S,,. The conjugacy classes are parametrized by the Young dia-

grams through cycle representation of permutations. Let D denote the set of those Young
diagrams which contain no rows consisting of a single box. If A € D contains k) rows of

length j (i.e. j-cycles), we use the notation A = (2¥¥3%% ... ¥ ...) and set

’ 00
|Al :=}f of boxes in A=Y jk¥)

i=2
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where k) = 0 for sufficiently large j’s. C) denotes the conjugacy class corresponding to-
A € D. Then, A — C), gives a bijection between D and the set of the nontrivial conjugacy
classes in So,. A) denotes the adjacency operator A¢, for A € D.

 Let ¢ := (e, * 0e)e3(s,,) denote the (vacuum) vector state, where 4, is the delta function
on unit element e. Our aim is to discuss the correlation of the adjacency operators with
respect to ¢, namely :
HAR A5 A30) )
for A;,--+,Am € D and py, -+ ,pm € N. Since Eq.(2) is a formal expression, we need a
precise formulation. Here the idea of central limit theorem in probability theory comes to
be useful. Taking partial sums in Eq.(1), appropriate normalization, and infinite volume
limit, we will obtain an exact form of the correlation function. Eq.(1) is a sum of noncom-
mutative and dependent observables, though the noncommutativity and dependence are
not so strong. Thus our central limit theorem is related to what is called noncommutative
or quantum probability. In §2, we briefly review ﬁhose central limit theorems which lie in
the background of our problem mainly from an algebraic or combinatoxjial viewpoint.

Now we present the main result. For given A € D and n > ||, we set

cMi=cns,, A=Y =z. (3)
zGCi")

H,.(z) denotes the Hermite polynomial of degree r which obeys the recurrence formula:

H.ii(z) =zH.(z) —rH,_1(z) (r>1)
Hy(z)=1, H)=c. | (4)

Theorem Let A\, -+, \n € D and P1,yPm €N bé given. For each i € {1,---,m},

. (9)
. k.'J

let \; = (2’42)3"53) ---j%"...). Then we have

e/ “Hk{j)(‘”))m , (Hkg)(x))pmd:c.

) AD e (A ™ =11 (
m ¢(( ) ) _122 R V27 \/k—g)—' k!

In §3, we state an outline of the proof of Theorem as well as several remarks including

bibliographical comments.
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2 Algebralc Approach in Central Limit Theorem

2. 1 Noncommutative probablhty

Noncommutative or quantum probability theory is a framework containing probabilistic
interpretation of observables (through their spectral decomposition). Observables, being
noncommuting operators, are regarded as random variables in an appropriate setting.
While classical probability is based on measure theory, mathematical foundation of non-
commutative probability is theory of operator algebras. At the same time, remembering
recent progress in quantitative analysis of finite probability models, I feel that combina-
torial aspects of noncommutative probability are poﬁential research fields.

Let us recall quickly some terminology. A noncommutative probability space consists
of unital (x-) algebra B and unital (positive) linear functional ¢ on B. An element a € B
being regarded as a noncommutative random variable, distribution y of a is determined
by u(f) := ¢(f(a)) where f is taken from Fun(R), Fun(C), C[z] etc. according to
the context. In particular, if a is a self-adjoint operator on Hilbert space #, functional
calculus enables us to consider f € Fun(R) — f(a) € B(H). Thus a is regarded as a
real-valued random variable and its distribution coincides with the spectral measure of
a with respect to ¢. More generally, a (*-) algebraic homomorphism from another (%)

algebra A to B gives an A-valued random variable.

2.2 What is central limit theorém

Let us recall a classical central limit theorem. Assume that X 1, X2, - are independent
identically distributed random variables on a probability space (Q, F, P) with every mo-
ment to be finite. Independence means having no correlations; actually it suffices to

assume
E(XPXE - X2r) = B(XP)E(XE) -+ E(X2") (rpn-pm€N)  (6)
for our purpoée. If E(X,) = 0, law of largé numbers yields
(Xi+--+X,)/n—0 as. a n—oo,

which shows macroscopic behavior in a sense. Central limit theorem yields the effect of

a sum of small fluctuations in more extended scaling near 0. Assuming E(X?) =1 in
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addition, one has

- (X1 + -+ X,)/v/n — standard Gaussian random variable as n — oo

in distribution. This convergence is equivalent to that of all moments:

-z2/2

X1+ + Xnyp [ €
| B(( vn )) — " Von
(The right hand side is 0 for odd p and (2r)!/(27r!) for even p = 2r.)

In this argument, one uses independence of random variables in the sense of Eq.(6)

dr as n—>oo for VpeN.

and checks convergence of every moment. This procedure does not need the underlying
random parameter space {2 explicitly and admits a direct extension to noncommutative
situation. For observables (self-adjoint operators) X, X, - - -, their distributions were the
spectral measures on R. For example, if the spectrum of X; is {—1,1} and X;’s have no
correlations in some sense, then X, X, - - - may be regarded as a model of noncommutative
coin tossing (i.e. Bernoulli sequence). Even in such a simple case, the limit behavior of
(X1 +--- + X,)/+/n is quite nontrivial and may obey either Gaussian or non-Gaussian

limit distribution.
2.3 Noncommutative central limit theorem

One of the most famous noncommutative central limit theorems involves the free inde-
pendence due to Voiculescu. See [VDN] and [Vo]. Let us recall a typical example. Let
F(n) be the free group generated bby n elements e;,---,e, and ¢ := (6., -0} 2(F(n))
denote the vacuum vector state on F(n). (Alternatively, since we let n go to co, we may
consider F(co) and the vacuum state on it from the beginnir'lg.)r ‘Take self-adjoint element -
X; := (e; +€;')/V/2 in the group algebra of F(n), where ¢{"(X;) = 0 and ¢("(X?) = 1.

We note that
‘ X1+ + X, 1 & o
7 =\/§EZ(ej+ej1)

i=1

is the adjacency operator of the Cayley graph of F(n) normalized by the square root of
its degree. The following central limit theorem for free groups is well-known:
X1+ + X,

The right hand side is usually called the standard semi-circle distribution (of Wigner).

1
distribution of —_— g\/ 4 -1 I_s9(z)dz as n—o0.

Its odd moment is 0, while its even p = 2rth moment is (2:)/ (r + 1) (= #{noncrossing

pair partitions of 1,---,2r}, called a Catalan number).
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This situation is generalized to the free independence case. Subalgebras B;, By, - - of

B are said to be free if

il#’é#"'#im a,—GB,-j,¢(a,-)=0(j=1,---,p)=>¢(a1"'ap)=0-

Freeness gives one meaning to “no correlations”. If B;,’s are free and X; € Bj, ¢(X;) =0,
$(X?) = 1are satisfied, then (X;+- - -+ X,)//n converges in distribution to the standard
semi-circle one.

In terms of Cayley graphs, the moments of X; + --- + X,;, a sum of elements in the
group algebra, are closely related to the numbers of the closed walks in the graph, which

is easily seen from
(X1 4+ X,)P) = > H(Xi X, - X)) -
(il,---,ip)E{l,---,n}P

Such a consideration goes to more general graphs beyond lattices — commutative group
Z"™ — and regular trees — free group F(n). In order to treat central limit theorems
for noncommutative sums in a systematic way, often useful is the notion of “singleton
condition”. For this notaion, its variants, and several combinatorial approaches in central
limit theorem, see e.g. [SW], [AHO], and [Ho2]. Also in our present problem, we will

perform combinatorial counting arguments in the next section.

3 Correlation Function of the Adjacency Operators
on Sy |

3.1 Corollaries of Theorem

We mention two facts which follow from Theorem stated in Introduction. One is con-
cerned with the limit distribution of a single adjacency operator. The other characterizes

asymptotic independence of adjacency operators.

Corollary 1 Let A = (28®3+® ... j*%...) € D. The distribution of Af\") / rICi") with

respect to ¢ converges to

(T] Hyn (z)/VED),N(0,1)8>

i3 )

as n — oo, where subscript , indicates the push-forward (i.e. image measure).
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a
Ezample  For two-rows diagram (a?) = [ (k® = 2), the limit distribution is

(VT V2y + 1) le~(Vau1)/ I _1/v3e0)¥)dy (a gamma distribution).
A ‘ : : r )

Haly : Hylx)

TN AN

~1/R -Ig/2

Corollary 2 If ); and ); contain no rows of equal length (Vi,j € {1,---,m}, i # ),
then A(") / \/uC,(\': (")/ \/ﬁC,\ are asymptotlcally independent random variables.
3.2 Kerov’s result

In [Ke], Kerov showed the following theorem. Let C{™ be the conjugacy class of the
k-cycles in S, (hence corresponding to (ITIL}). For @ € &,, x{™ denotes the irreducible
- character and d{™ := dim x{ its dimension. The Plancherel measure M™ is defined by
M®™({a}) := dg‘)z/n!. Set '

(@) = D C /P (e )
where x<")(C(")) indicates the value x{")(g) at Vg € C(").

Kerov’s theorem For Vz,,:--,z, € R, we have

e"yz/(Zk‘)v

Jim, MO (e € Sl (@) Sz, 2 < ¥k < mp) =TT [

Hence {(p(")}k=2 3, is a family of asymptotically independent random variables with
Gaussian limit distributions. | |
 Foran arbltrary finite group G and a € G, let x, and d, := dim x, be the irreducible
character and its dimension. The Plancherel measure M on G is defined by M({a}) :=
d2 2/ |G] For conjugacy classes Cy,---,C, in G, we have

¢(AC'1 ‘ A ) _/ (uCI)Xa(Cl) (ﬂc );:(C )M(d )
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When G =S,
uc,ﬁ",’ =n(n-1)---(n-k+1)/k ~ n*/k- as n—oo.

Hence Corollary 1 and Corollary 2 implies that the above Kerov’s theorem is equivalent

to the case of one-row Young diagrams in our Theorem.
3.3 Outline of the proof of Theorem
See [Hol] for more details. Set nt:=n(n—1)---(n —r +1). Since

fe™ = nlly T %00
i2

holds for A = (2t 3¢ ... %9 ...}, we see

(ucgr:))px/z...(ucgfg)pm/z R e o 1 (1)

In comparison with Eq.(7), we consider which terms survive in

¢(A&’:)”‘---Af\':3’”"‘)= 3 ¢(g{1)...g{?1) ...... (1) ... glom)y o (8)
9?)60,(",') ‘

as n — 0o. Let us express each g,m in Eq.(8) as a product of cycles and set

m Ppi

v = § |J |J{letters which move by "y .
i=11=1 2
" We see that , \ _
(i) if 2v > pi|M1| + -+ - + Pm|Am]|, then g§1)~- . -g{") ------ gl ... gbm) o£ ¢ in Eq.(8),

(i) if 2v < p1|M| + - -+ + Pm|Am|, then the number of such terms in Eq.(8) is of smaller
order than Eq.(7), _

(iii) if 2v = p1|A1| + - + DPm|Am], then such a term containing a letter which appears
only once does not survive.

Thus we have only to consider the following terms.

Reduction 1 Every letter appears in gl gl glh) ... g(pm) in Eq.(8) exactly twice
Or never appears. | | | | "
Lemma 1 Let g;(# e) € S, be expressed as a product of cycles (i =1,---,g). Assume

that every letter appearing in g9, - - - g, appears exactly twice. Then, g;g;--- g, = € holds

if and only if Vcycle S in g1g2--- gg, 35! in 9192+ 9q cleared of S.
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Proof is omitted. See [Hol]
Reduction 1 and Lemma 1 yleld the followmg

Reduction 2 The cycles in g{V .. g ‘)‘5--7-49(1) -g®m) form “cycle vs inverse cycle”

pairs.

Under Reductions 1 and 2, we count up the numbers of terms really involved in Eq.(8).

We construct graph I by assigning a vertex to a cycle in g{" - .- g®)...... gl ... g(om)
in Eq.(8). The j-cycles in g( ) ... g(Pl) ...... g0 ... gPm) induce complete p; + 0+ Pme

partite graph I') like

o . O | o} () o
o . 0 w) O lo) .
18)) : : ] O
) 4}) o
! ' ' . : k" '
T I - ! ! v . : [
o o o o “ o °
0) %) W *) W) (P
3\ ‘j\ al lt -~ . 3&.
Pl P‘ ) . . Pm

where any two vertices in the same column are not joined by an edge, while any two in
different columns are joined. Seﬁ I:= U,->2I‘(j) Then, a set of cycle vs inverse cycle
palrs in g{ ) ne g{p Do gl .. g(”"') in Eq.(8) corresponds to a perfect matching in I
Appendlx (§83.4) explains some necessary materials in graph theory At the moment, we

freely use them to complete the proof

Lemma 2 The limit in Theorem (i.e. LHS of Eq. (5)) comades w1th

pm(T)/ TJ (P17 /2 . (kDryemr2 | (9

i22
Proof is omitted. See [Hol).

In Eq.(9), pm(T) = [1;>2 pm(l"(j)) holds. Since

v P, : P
M=K anU---KmnU:.-- UK,nU---UK.» ,
1 1 m m .

using formulas in Appendix, we have

2/2

pm(T) = /Re:/;—w

1(TD, z)dzx
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—z1/2
e
= /R ﬁM(Kkgj),l')m e p(Kkg),x)”"‘dx

e—z’/z
= R —_%Hkij)(w)m e Hkg)(m)pmdx .

Combining this with Lemma 2 completes the proof of Theorem.

3.4 Appendix

We briefly summarize the notions and the formulas in graph theory used in the previous
subsection. See e.g. [Go] for details. An edge set M in graph G is called a perfect

matching in G if every vertex of G lies in exactly one edge in M. Set
pm(G) := {{perfect mathcing in G} .

An edge set {e1,---,e,} is called an r-matching in G if e; and e; do not share a common

vertex for Vi # j. Set
p(G,r) := f{r-matching in G}, »(G,0):=1.
The matchings'polynomialvof G is defined as

.#(‘G, z) = Z(—-l)"p(a’ r)z™ %

r>0
where n = ﬂ_vé_rtices of G. Cor.n'ple'ment G of G is the graph which has the same vertex
set with G and in which two vertices are joined with an edge if and only if they are not
joined in G. | '
Formula For any graph G, we have
o 6-52/2

rm(G) = o

u(G, a:)da: .
See [Go] for the proof.
K, denotes the complete graph with = verticesv.b The recu»x"rerice formula Eq.(4) yields

u(K,,z) = H.(z). Finally, we note

W(G1U Gy 3) = (G, z)#(Gz'{z)»

holds.
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