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1. Introduction. This note is the successive part of Prof. Accardi’s lecture in this
volume. Motivated by the central limit problem for algebraic probability spaces arising
from the Haagerup states on the free group with countably infinite generators, we in-
troduce a new notion of statistical independence in terms of inequalities rather than of
usual algebraic identities. In the case of the Haagerup states the role of the Gaussian law
is played by the Ullman distribution. The limit process is realized explicitly on the finite
temperature Boltzmannian Fock space. Furthermore, a functional central limit theorem
associated with the Haagerup states is proved and the limit white noise is investigated.

2. Singleton Condition. A quick review. In order to prove a central limit theorem
with the method of moments it is necessary to observe that only a few singletons give a
non-zero contribution to the limit. The role of the singleton condition was first pointed
out by von Waldenfels [28], [29]. The content of this section is rather standard and is

included for completeness.

DEFINITION 1. Let A be a *-algebra, C a C*-algebra with norm |- fjand E: A—-Ca
real linear map. A finite or countably infinite set of sequences

(bgll)):.o=1’ (b£12))r°zc=1a R} (bgi,))rotczlv e
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of elements in A with mean E(bglj)) = 0 is said to satisfy the singleton condition with
respect to B if for any choice of £ > 1, j;, -, 7k € N, and nq,---,n € N

E(b{0) ... p{i)) =0 (1)
holds whenever there exists an index n, which is different from all other ones, i.e., such
that ns # ny for s # t.

In the above definition the condition E(bflj)) = 0 is, in fact, a consequence of (1).
The singleton condition is equivalent to the usual independence in the classical case and
follows from free independence [27]. We may generahze the (E,)-independence [10] by

replacing the condition E( m) = 0 with ¢(bn ) =0.

DEFINITION 2. We say that sequences (bn (1 )), ( S"’), - - - of elements of A satisfy the con-
dition. of boundedness of the mized momenta if for each & € IN there exists a positive
constant v > 0 such that

B0 5| < (2)
for any choice of ny,---,n, and j1,---, Jk.
Given a sequence b = (b,)3%, C A, we put
N
Sn(b) =Y bn. (3)
n=1 ’

LEMMA 1. Let ( (1)) (bn (2 )) - be sequences of elements of A satisfying the condition
of boundedness of the mized momenta. Then, for any a > 0 it holds that

i SN(b(l)) SN(b(z)) SN(b(k))
z\}‘i"va< Ne T Ne T Na

= lim N=°F 3 > Y E(bf,l,},,(l)l bff?ﬂk)) (4)

N—ox
ak<p<k {1, k}—{1l.--op} {1, p}—{1.--.N}

sune«.hve order—preserving

in the sense that one limit exists if and only if the other does and the limits coincide.
(The limit.is understood in the sense of norm convergence inC.)

LEMMA 2. Notations and assumptions being the same as in Lemmal assume that the
sequences ( nﬂ) satisfies the singleton condition with respect to E. Then » '
Sn(dD) Sy(®) Sy (6® " '
limE( N(_ )N( )... N(--))=0 : ()
“\ 7 N Ne Ne o}
takes place if a > 1/2 or if « =1/2 and k is odd. Ifa= 1/2 and k is even, say k= 2n, |
the left hand side of (5) is equal to the limit

(1) (2n) Y
1\}1_1.n°¢,N - Z o Z E (baow(l) baow("n)) (6)
w:{1.-2n}—={1.m} o:{1.:c-.n}=s{l,-.- N} )
2—1map order —~preserving
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Moreover, the following Gaussian bound takes place:

(1) (2) (2n) !
p(Sn00) Sw@®) | SyGeM)Y| et (7

lim sup
N—oox

3. Properties of the Haagerup States. In the notations of Section 1, the two
sequences {(gn), (9, !)} satisfy the singleton condition with respect to the Haagerup state
¢~ only when v = 0. However, ¢, satisfies a weak analogue of the singleton condition.
When the state ¢, under consideration is fixed, we write for simplicity

9o = Ga — -
Obviously ¢,(Ga) = 0.
DEerFINITION 3. (i) A product §o, - §a,, is called separable at k, 1 < k < m, if
ap # a; whenever 1 <p<k<qg<m.
(ii) Gy is called a singleton in the product §a, * - fa,, if G, # 5, for any I # k.
(iii) Let go, be a singleton in the product oy " Ja,,- It is called outer if §o, # g, for
anyp<k<g.

(iv) A singleton g, is called inner if go, = &, for some p < k <gq.

forth g3 and the last g, are outer singletons. Notice that g, is not a “singleton” in the
sense that g, appears twice, cf. Definition 1.

LEMMA 3. If o, *** §a,, is separable at k, then
Oy(Fas *** Gam) = Pv(Far * ** Gou ) Py (G +1 " * Farrn)
LEMMA 4. If o, * - §a,, has an outer singleton, then
‘P(ga; “** Ga,n) = 0.
Proof. If g, is an outer singleton, applying Lemma3 twice we find
%(s"ra, o Gam) = ‘P'y(gnu tee gak)‘P'y(gaHl o o)
= Oy(far ** Jar-1)Py(Ge )ﬁpv(gaku “* Gon) = 0,
asdesired. = . .
The next result is a generalization of von Waldenfels’ argument [28], [29] to products

with inner singletons.

LEMMA 5. Assume that a product Gay * "fa,,. has no singleton at all or has no outer
singletons. Let s be the number of inner singletons in the product and let
p=|{g;; there exist 1 < k,I < m such that o = (j,+), a1 = (j, =)}
Then o

m-—s

2

(8)

s<m-2 and p<
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Proof. Since there is no outer singleton, there exist at least two factors §,, and §a, -
with af = a;. Hence m > 2 and s < m — 2. If §,, is not a singleton, there exists at least
one element gq, such as aj = a; and then ji = j; (k # ). Therefore 2p+s<m. =

DEFINITION 4. Assume that a product gg, - - - §a,, contains s > 0 inner singletons and
no outer singletons. Let a;,,- -+, a;, be the suffices which correspond the singletons and
denote the rest by £y, -, Bm—s in order. We say that the product satisfies the condition

(NCI) if gﬂl e gﬁru—s =é€.

LEMMA 6. If the product o, - - - Ga,, consists only of non—crossing pair partitions and
of s inner singletons then

Oy(Jas** Gara) = (=) + (7)1 P(v) | (9)
where P is a polynomial. If the (NCI) condition is not satisfied then
Py(Gos *** Gan) = (=7)° T P(7). ‘ (10)

From Lemma6 one can deduces the central limit theorem for the Haagerup states. For
more detailed argument see [4].

THEOREM 7. Let NCIﬁ(s,s) be the set of equivalence classes of products §u, -+ §a,,
with the index € = (€1,---,€m), which consist of p = (m — 5)/2 non-crossing pairs and
of s inner singletons. Then,

m-—2
Jim, s 88) = 3 ()" INCIn(sre)l, (11)
8=

where
N N
1 1
at = — i Ay = — 1 12
RE DI Do 1)

Remark. Inthe previous paper [4] we proved the existence of the limit and obtained
an explicit realization of the GNS space of the limit by means of a finite temperature ana-
logue of the usual Boltzmannian Fock space. This finite temperature analogue, which was
first introduced by Fagnola [13], appears also in the stochastic limit of quantum electro-
dynamics at finite temperature [1], [3] and, hence, possesses a similar characteristic as the
finite temperature (or universally invariant) Brownian motion. As for the symmetrized
random variable Qy = a} + ay, the limit limy 2V ﬁ(va) is investigated in [18]
for any £ > 1 and A > 0, and coincides with the k-th moment of

242 2-)2-
(s) V(2 +2+5)( 5) 4
1-2As
which belongs to the Ullman family of probability measures introduced in connection with

potential theory. Beyond potential theory the Ullman distributions also have emerged
naturally in quantum probability and in physics, see e.g., [1], [10], [19].

1
_U,\(s)ds = o X[-2-22-2
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4. Limit Process. By a general theory [2] there exist an algebraic probability space
{Ax, %2} and two random variables ay,a} such that

Jim o, m(@f - a) = palag o) (13)

For v = L, R let
o o<
rc), =capce (: @c)
n=1 n=0

denote two copies of the full Fock spaces over C with free creations a; and free an-
nihilation a,. Let H = @, ,_o Hm.» be the free product I'(C )r * T'(C)R, that is, the

(m, n)-particle space Hpm,, is the complex linear span of the set of vectors {a] ---af @}
which satisfy the followmv conditions:
g lvi=LY=m, [{7lv;=R}=n
and the scalar product is given by
! !

1, if (vi, - vk) = (vy,+,0p),

1 2%

<a+ .--al @, af, ...aj‘,q>>ﬁ =
1 .
0, otherwise

The actions of the creation operators
Lt .= a{ *1: Hmn = Hmtin Rt :=1x a} : Hmon = Hmant1

are given respectively by

+ot . —  gtat +
L a,, - a,,,ki’ = a.La,,,l---a,,ktI'_
tgt ...gt® = atat -..at
R"a a, - ,,kQ = apa, - Vk<I>

and the action of the annihilation
L=ap*1: Hm,,n — Hm—l_.n i R=1lxap: Hm,n - Hm,n—l

is given by

(o) ---af @, ifvy=Land k > 2

La;fl---a;:t} = ( P fry=Land k=1
L 0, otherwise

(a} ---at B, if vy =Rand k> 2

Ra}---af® = { 9, if vy = Rand k=1
. 0, otherwise

Let P : H — H be the orthogonal projection onto ’Hd:o. Put
Ay =L*4+R-)\P, A} =L+R'-)\P,
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where A > 0 is a constant.

THEOREM 8. The limit process (al,ay,¥y) is represented on H. That is, all its corre-
lations (13) are given by

Yalay' ---aym) = (P, A% - AV B)y

Proof. In Theorem7 we have seen that the ¥ ,-correlators are completely determined
by the cardinalities of the sets NCTI,,. We thus need only to establish a bijective corre-
spondence between NCI,,-partitions associated with a$ - -- a{™ and terms in the expan-
sion of

(6, A3 ASmg) = D (4, Bt Bro),

€y €
qu L u;::

where B, = LT, Bf = R, Bf = R*, B} = L and B; = Bf = —\P. In a product
Bgr--- Bem, we call (B2, B;?) (p < q) a pair if B, = L and B;? = LY or B;? = R
and B;! = R*. If B;? = —\P we call it a singleton. From the definition of 7, Af{,A,\ we
see easily that (¢, BS!--- Bim¢) # 0 if and only if By} --- By forms a non-crossing pair

Vi Vin
partition with s inner singletons (0 < s <m —2). In tlus case,

(¢, B} -~ Byng) = (=A)°.

Vin

Therefore we obtain the desired bijective correspondence. =

5. Functional Central Limit Theorem for the Haagerup State. In general, a
central limit theorem is extended in a canonical manner to a functional central limit
theorem (or invariance principle) from which the corresponding process is derived, see
e.g., [26]. Given a sequence {b;} of random variables, for the functional central limit

theorem we consider
[Nt} ~ LNt]

\/'—Z ‘/——\/ ZX(: lz) bds7

which is in the limit N — oo equivalent to

= X[o, s X(i-1,0(8)bids = —= bi/ XJo, s)ds
\/N A [O,Nt]( ); (i—-1, )( ) \/]—Vg i1 [Oth]( )
1 = i s
= e—aenes b‘l — .
VN ; »/i—1 X{o. (N) ds

Thus, we consider more generally

, —j_ﬁ;bi_ /1—1 f(%) ds,

where f is a suitable test function. ‘
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Going back to our case, we put

s (s Z/ ()dt e = 1,

where f is an R-valued continuous function with compact support. Then we calculate
the mixed momenta:

5(61)(f1) - (Gm)(fm) _
\TIN JN )~

1 ol ~€1 =€ “ | R tm

il’...?i"‘=1

where €; = *1 and f; is a continuous function with compact support, j = 1,2, ---,m.
In view of the uniform bound ||f;]|z2 < C we apply the arguments in Section 4 (only
- non-crossing pair partitions with inner singletons contribute to the limit). Then, in the °
- limit (14) is equivalent to

m-—2

(\/—)m Z( 7)° >

(a,f.wYENCI,,(3,¢)

1'0(1) iw(#) t
X Z / fw(l) ( ) dt- / 1 fots) (ﬁ) dt
(s)~

u(l) w( sy u(l) ™
distinct

Ta(s) Tals) tac;
() A
X 3 Il _/ / fat) ( (;v )fm (—N’ )dtamdtﬁm

“(J)E(wll) rwle)) J— 1(,(,)"1 Tali)

distinct

+0 (=), )
where p = (m — s5)/2 and

(a, B,w) = (af1),-- (P),ﬁ( )+, B(p ) w(1),-- w(s));
{a(1),---, a(p), ﬂ(l) B(p),w(1),---,w(s)} = {L,-+-,m},
a(7) <B(5), e(s) < a(J +1), w(j) < w(J +1), Eas) = —€p(5),
for each ! there exists j such thata(j) < w(l) < B(j)

NCI,(s,€) =

In (15), the indices i4(;)’s and i,;’s are different each other But again by the uniform
boundedness of f;’s, one obtains, for instance,

Z /‘Lw(l) f ( t d
o | = | dt
Sy N)

. . k3
lu(1)¢{za{l)7"'1’1.!(11).-zu(Z):"'siu(a)} b

= ¢ 1 o »
:A fu(n) (N) dt+ O (ﬁ) = N/; fw(l)(s)d3+ (0] (-1%,—)



and

(1) (1) ts
/ / fa(1) ( ) o (TV—) dtidts
i(!(l)g[il (2) (I(P)’ u(l) '(1’_1 tal1)”
t 1
fa(l) fa) N dtidts + O e

1
/ f fa(l)(Sl)flj(l)(s';)dsld.% + 0 (N2> .
(i-1)/N J(i-1)/N

Recall that v = O(l/\/ﬁ) Then (15) becomes
-2

(=7)° N/ foy(s S"'N/O lfu(s)(S)ds

3=0 (a/iw)ENCI,,.(s €)

o< P o 1‘,(_1')/N iu(j)/N
X 3 T~ / /{ Fati) (Sai)) Fac (8 )dsar 4550

=1 j=1 (‘i,_,,(j)"l)/N ":I-I(J')_l)/N

89

+0 <_-) . 16
VE (19)
LEMMA 9. Let fy, f2 be continuous functions with compact supports.- Then,
' < pi/N i/N x
lim N / / f1(s1) fa(s2)ds1dss = / F1(s) f2(s)ds
N—ow =] J(i-1)/N J(i-1)/N 0
The proof is easy. By this lemma the limit of (16) as N — N becomes
1 m—2 :
lim — Z (-v)° N/ funy(s N/ fus)(s)ds
NoN (V) o (a.f, w)ezvcrm(s o)

XN./() fa(l) f/j(l)( ds N/ fa(p) fﬁ(?)()

m-—
= (—)\)8 > H/ foti) S)dSH/ fajy(8)fpci (s)ds
s=0 (. B\ w)ENCI,,(3,6) =1
Consequently,

THEOREM 10. For j = 1,2,---,m let f; : R — R be a continuous function with

compact support. Then one has

(61) (eiu) v
: SN (fl) SN (fm)
NI PAIVE < N VN
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= (=A)? | Z H/ foir(s dsn/ fn:()) f/i())()

s=0 (a B, w)ENCI,,(3.€) i=1

The above is a functional central limit theorem. We now put S(e) (f) = S;i)(x[g.,]f).
By modifying the above argument, we obtain :

THEOREM 11. For continuous functions fj, j = 1,2,--:,m, with compact supports, we
have

! (f vn)
) Sy (f) Sy (fm)
N2 VIV TN N

m—2 s (m—3)/2
=S (=2 oo I fa Ve, TT (Fatin Foei dminttac tocsy)
3=0 (e.f.w)ENCI,.(3,6) i=1 o=l

where

(fra)e = / f()a(s)ds

Now we have the Fock representation of this process. Let H be the Fock space intro-
duced in Section 6, and X = L?(C). Using the notations in Section 5, put

Ak_‘t(f) =L" ® X[O,t]f +R® X[O,t]f - )‘<1) f)tP’
Aj\-,t(f) =L ®xpf + Rt ® x[0.9f — M1, )eP.

Then by Theorem8 and Theorem11, we have

THEOREM 12. The limit process (af,a{,x/),\) is represented on H ® K, and its all cor-
relators are given by

¥aasi (1) - afn (fm) = (8, A5, (1) ASE, (Fm)@)

HRK
6. Singleton Independence. We are led to the following

DEFINITION 5. Let A be a *-algebra and let S = {gj, g} ; j € N} be a countable subset
of A. Assume we are given a family of states ¢, ¥ > 0, on A such that ¢,(ga.) =7 for
any go, where a = (j,¢) and g, = g5. Then the sequence {g;} is called to be singleton
independent with respect to ¢, if

l09(9as 9o )| < Yk P(Gor * - Fars =+~ Geu )l (17)

whenever a; is a singleton for (ay,: -, ag).

The case of ¥ = 0 is reduced to the usual singleton condition. Condition (17) and
boundedness (2) implies that

I‘P'Y(gax “*“gan)] £ Cm?* (18)
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whenever gq, - - go, has s singletons , :

Conditions (17), (18) are easily verified for the Haagerup states. Another examples are
found in the unitary representations of the free groups [14]. By specializing a parameter
of spherical functions associated with representations. of the principal series, we obtain a
family of positive definite functions:

¢Mw=(LHﬂN

where Fy is the free group on N generators. This state satisfies the singleton indepen-

dence. In fact, one sees that
N-1 0
=11 _—
¢N ( + N 767) 90’?’

where ¢, is a Haagerup sta.te with 7 = 1/v/2N — 1. Suppose that ¢ = g4, - ga, has s
singltons. Then ¢, (g) = 'y with somet > s and ¥ y(g) = v*P(7) where P is a polynomial.

Since Yn(g;) = a = V2N — 1/N > 4, the singleton mdependence |¥n(g)] £ Cra® holds.
As before, we put

‘“)@N—H*W, 2 € Fy,

SS)—ZgP €= =1,

and, for fixed kK € N and €1, ---,ex € {:l:l} we consider the product

(e1) (ex) = = ~
Syt S = Z g5t gj:— Z Gy Geur-
Sie=1 Jrvendk

Put Iy = {(1,€1), -+, (k,€x)} and consider a as a function @ : Itz — {1,---, N}. For
given a put p = |a(l;)|. We denote by () = {@i,---,ap} its range (with @; # @;)
and put ' '
Sj=a"l(@), Ji=1L-,p
Prp = {(S1,--, Sp); partition of I} of cardinality p},
[S1,-++,Sp] = {a; als; = a(S5;) = const. and a(S;) # a(S;) if i # j}.

With these notations our goal is to study the large NV asymptotics of the rescaled expec-
tation values -

S(el) S(n) o
ww(r“'r L YRD VD DR L )

P_]- {Slv . P)Epk.y aE[sls"'ysp]
(19)

LEMMA 13. Given s =0,1, . ,k, denote
Pip = {(S1,+++,Sp) which have ezactly s singletons},
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where a singleton of (S1,---,Sp) stands for S; with |S;| = 1. Then it holds that p <
(k+ s)/2. Moreover, if p < (k+ s)/2 then

. —k/2 - ~
pim N7 D Y. ervwlia ) =0,
(sh...,s,,)e’P,:"yQE[SI,...’SP]

Proof. For (S1,---,5p) € Pg, we have

» .

k=Z|Sj|= Z |Sjl +s>2(p—s)+s=2p—s.
i=1 {e{1,p}lSi122) ‘

Then, in view of the boundedness of the mixed momenta (2), we see that the sum is

dominated by a constant times of

b
N-(HS)/gl'Pzﬁ,pI;,- NP — 0.

We see from Lemmal3 that the non trivial contribution to the limit of (19) comes from
those partitions (S1,---,Sp) € P; , satisfying p = (k+s)/2, that is, k = 2p — s.

LEMMA 14. Assume that k = 2p — s holds. Then for any (S1, -+, Sp) € Py, it holds
that |S;] =1 or |S;| = 2 for all 5.

Proof. Suppose otherwise, say, |S1| > 3. Then we have

ko= 34+ Y. |Sil+s>3+20(p—-s-1)+s
J'ZZsISjIZ‘-’-
= 3+4+2p-25—-2+s5=2p—5+1,

which is incompatible with k =2p — 5. =

Suppose that a partition (S1,--+,Sp) of {1,---,k} has s singletons and |S;| = 1 or 2
forj = 1,---,p. We denote by (S1,--+,Sp—s) the set of all §;’s with |S;| = 2 and say
that (Si,---,Sp—s) is the pair partition associated to (Sy,-+-,Sp). The pair partition
associated to a 2-1 map 8: {1,---,2p} — {1,---,p} shall be called negligible if

oy (98, - - 9pa, )| < €7 - | (20)
LEMMA 15. Suppose that . satisfies condition (20). Fiz s = 0,---,k and let ’ﬁk’,l,g,,

dénote the set of all partitions (S1,---,Sp) with s singletons such that |S;| =1 or 2 and
such that the associated pair partition is negligible. Then

. —k/2 - -
Jim NTEEZ 2 > eawllarda) =0. (21)
(sl""ssp)€¢k.l,2.s CtE[S],,"‘,Sp]
Proof. Iterating (17), we see that the sum (21) is majorized by

—_— k 2 ‘ ) ) ‘ .
CN—(k+39)/2 Z Z l‘PA/\/ﬁ(gﬁl @) (22)
(S1.+.8p)EPL 1.2, ®E[S1,04,5,)]
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where (81, -, Bk-s) is obtained from (a1, -+, ax) by removing the singletons. Since the -
pair partition associated to (S1,---,S,) is negligible, and (20)
- - A
lo(dp, - Gp_ ) S - Wi

so the sum (22) is majorized by a constant times

- A
CN'(k+’)/2|'Pk,1,g,s| . ﬁ . NP, (23)

Since p = (k+5)/2 by Lemmal3, (23) is dominated by ¢/VN — 0. =

Summing up, we come to

THEOREM 16. Keeping the notations in Definition 5, suppose that the states . satisfy
conditions (17) and (20) for v € [0,7], ¥ > 0. Then it holds that

(€1} (ex)
. SN SN _ . -—’\7/2 j : z :’ ~ ~
1\;l—lvnoc' PMVE (W \/N) B IJI—»HLN 1<s<k «a (p"/VN(g"‘l"'g“'*)’ (24)

where Z; means that a runs over the non-negligible pair partitons with s singletons.

Remark. Condition (17) is easily verified for the Haagerup states. In that case
the negligible partitions are nothing but the crossing ones. Another examples shall be
considered elsewhere.
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