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1 Introduction

In order to treat dissipative systems dynamically, we constructed the method of Non-
Equilibrium Thermo Field Dynamics (NETFD) [1]-[5]. It is a canonical operator formal-
tsm of quantum systems in far-from—equﬂibfium state which enables us to treat dissipative
quantum Systems by a method similar to the usual quantum field theory that accommo-
dates the concept of the dual structure ‘i'n the interpretation of nature, i.e. in terms of
the operator algebra and the representation space. In NETFD, the time evolution of the

" vacuum is realized by a condensation of y¥+¥*-pairs into vacuum, and that the amount
how many pairs are condensed is described by the one-particle distribution function n(t)
whose time-dependence is given by a kinetic equation (see appendix A).

Recently we succeeded to construct a unified framework of the canonical operator
formalism for quantum stochastic differential equations with the help of NETFD [1]-[5].
To the author’s knowledge, it was not realized, until the formalism of NETFD had been
constructed, to put all the stochastic differential equations for quantum systems into a
unified method of canonical operator formaiism; the stochastic Liouville equa.fion [6] and
the Langevin equation within NETFD are, respectively, equivalent to the Schrédinger
equation and the Heisenberg equation in quantum mechanics. These stochastic equations
are consistent with the quantum master equation which can be derived by taking random
average of the stochastic Liouville equation. | v

" In this paper, we will investigate the structures of the stochastic differential equations
in a systematic manner by means of martingale operator by paying attention to the non-

commutativity between the annihilation and the creation random force operators.

*An invited plenary talk provided for the International Conference on Stochastic Processes and Their
Applications held at Anna University in Chennai (Madras), India during the period of January 8-10,
1998. .
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2 System of Stochastic Dlﬁ'erentlal Equatlons

2.1 Stochastlc Liouville Equatlon

Let us start the consideration with the stochastic Liouville équation of the Ito type:
dos) = =Fpedt Of®). ()
The generator Vf(t), defined by |0(t)) = V;(t)|0) satisfies
dVi(t) = —iH dt Vi(t), | | (2)

with V,(O) = 1. The stochastic hat-Hamiltonian # sedt is a tildian operator satisfying
(27:{ f,,dt)N =iH sedt. Any operator A of NETFD is accompanied by its pa,rtnef (tilde)
operator A, which enables us treat non-equilibrium and dissipative systems by the method
similar to usual quantum mechanics and/or quantum field theory as was pointed out
before. Here, the tilde conjugation ~ is defined by (4;4:)~ = A4z, (c1A1 + A)™ =
AL+ GAs, (A)~ = A4, Ah~ = At, with A’s and ¢’s being -operators'and c-numbers,
respectively. The thermal ker-vacuum is tilde invariant: [0£(2))™ = [04(2)).

From the knowledge of the stochastic integral, we know that the required form of the

hat-Hamiltonian should be

ﬂf'tdt = ﬁdt +: th ' ' » . (3)
where H is given by |
ff=Hs+iﬁ, - with ﬁsZHs—ﬁs, II= i]R—i-ﬁD, ) (4)

where [T and Ip are, respectively, the relazational and the diffusive parts of the damping
operator /T. The martingale dM, is the term containing the operators representing the

quantum Brownian motion dB;, dBI and their tilde conjugates, and satisfies
(ldM) = 0. (5)

The symbol : dM, : indicates to take the normal ordering with respect to the annihilation
and the creation operators both in the relevant and the irrelevant systems (see (23)).
The operators of the quantum Brownian motion are introduced in appendix B, and

satisfy the weak relations:

dB! dB, = ndt, dB, dB} = (7 + 1) dt, ~(6)
dB, dB, = adt, dB} dB!=(#n+1)dt, _ (7)
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and their tilde conjugates with 7 being the Planck distribution function defined by (40).
(| and |) are the vacuum state@represenhing the quantum Brownian motion. they are
tlde invariant: ("= D~=1tis assumed that, at t = 0, a relevant systemn starts
to contact with the irrelevant system representing the stochastic process included in the

martingale th A

2.2 Quantum Langevin Equations

The dynamical quantity A(t) of the relevant system is defined by -

A(t) = Vi'(e) A Vi(t), B C)
where Vf_l(t) satisfies |
AV (t) = V() i, o (9)
with
5, dt = Fyodt + idM, diV,. (10)

In NETFD, the Heisenberg equation for A(t) within the Ito calculus is the quantum

Langevin equation of the form
dA(t) = i[Hs(t)dt, AQt)] —d'M(t) [dM(t), At)], (11)

with

Hp(t)dt = V() Hyadt Vi),  d'M(t) = V() dM, Vi(2). (12)
Since A(t) is an arbitrary observable operator in the relevant system, (11) can be the Ito’s
formula generalized to quantum systems. '
2.3 Langevin Equation for the Bra-Vector

Applying the bra-vacuum (1] = (|(1] to (11) from the left, we obtain the Langevin
equation for the bra-vector ((1]A(t) in the form

d(1|A(t) = i(1|[Hs(t), A(O)de + (LA IT(8)dt — iGUIA() d'ML(2). (13)
In the derivation, use had been made of the properties
(11A%2) = (1A,  (dBYt) =(dB(t),  (UdM(t)=0. (14)

Here, the thermal bra-vacuum (| of the relevant system is tilde invariant: (|~ = (|.

tWithin the formalism, the random force operators dB; and dBZ are assumed to commute with any
relevant system operator A in the Schrodinger representation: {A, dB:] = [A, dBZ ]=0fort>0.
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2.4 Quantum Master Equation

Taking the random average by applying the bra-vacuum (| of the irrelevant sub-system

to the stochastic Liouville equation (1), we can obtain the quantum master equation as
. 5 B
S:1006)) = ifilo(e), (15)

with Hdt = (|H;,dt]) and |0(2)) = {|0f(t)).

3 An Example
3.1 Model |

~ We will apply the above formalism to the model of a harmonic oscillator embedded in an
environment with temperature T. The Hamiltonian Hg of the relevant system in (4) is

given by o
Hs = wa'a, (16)

“where @, a! and their tilde conjugates are stochastic operators of the relevant system

satisfying the canonical commutation relation
' [a, af] =1, @, @ =1 | (17)

The tilde and non-tilde oberators are related with each other by the relation
(1laf = (1/a, | (18)

where (1| is the thermal bra-vacuum of the relevant system.

We are now confining ourselves to the case where the stochastic hat-Hamiltonian 7,
is bi-linear in a, af, dB;, dB,f and their tilde conjugates, and is invariant undér the phase
transformation a — ae, and dB, — dB, €®.

Then, Il and Ilp consisting of iT introduced in (4) become
Ie=-r(v"%+3%.), b =260 +v)7*, (19)
respectively, where we introduced a set of canonical stochastic operators

Y = pa + val, '}'9“ =a' - @, . | (20)

with g + v = 1, which satisfy the commutation relation

[7!/’ 72] = L. o ' ‘ (21)
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The new operators 4* and 4* annihilate the relevant bra-vacuum:
(1y* =0, (13* =o0. (22)

3.2 Martingale Operator

Let us adopt the martingale operator:
dM, = ['y*th + #dw,] — i) [dwm + de*’y,,] . (23)

Here, the annihilation and the creation random force operators dW; and AW are defined,

respectively, by
dW; = V2k (udB, +vdBf), ~ dW;t = v2x (dB] - dB). (24)
The latter annihilates the bra-vacuum (| of the irrelevant system:
(dW;t =0,  (ldWf=0. (25)

The real parameter A measures the degree of non-commutativity among the random
force operators. There exist at least two physically attractive cases [5], i.e., one is the
case for A = 0 giving non-Hermitian martingale, and the other for A = 1 giving Hermitian
martingale. The former follows the characteristics of the classical stochastic Liouville
equation where the stochastic distribution function satisfies the conservation of probability
within the phase-space of a relevant system (see [6] for the system of classical stochastic
differential equations). Whereas the latter employed the characteristics of the Schrédinger
equation where the norm of the stochastic wave function preserves itself. In this case, the

consistency with the structure of classical system is destroyed.

3.3 Fluctuation-Dissipation Theorem of the Second Kind

In order to specify the martingale, we need another condition which gives us the relation

between multiple of the martingale and the damping operator:
di, dM, = —2 (I + M) dt. | (26)

This operator relation may be called a generalized fluctuation dissipation theorem of the

second kind, which should be interpreted within the weak relation.
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3.4 Heisenberg Operators of the Quantum Brownian Motion

The Heisenberg operators of the Quantum Brownian motion are defined by
B(t) = V7'(t) B Vp(t),  B'(t) = f/,-l(t)_ Bf Vi), (27)
and their tilde conjugates. Their derivatives
dBY = d (f/f'l(t) B} V;(t)) , (# : nul, dagger and/or tilde) (28)

with respect to time in the Ito calculus are given, respectively, by

dB() = dB, + V3R (1 - N (@(0) - ®) — Aalt)] (29)
dB'(t) = dBf - V2k [(1 -ANp (af(t) - a(t)) + Aaf(t)] dt, (30)

and their tilde conjugates. Then, we have
dW () = dW; — A2k, (D)dt,  dW*(t) = dW;F — 2k7*(t)dt. (31)
Since, by making use of (31), we see that |
diI(t) = AN () = i [y} ()W, + A OdW] — ix [dWpn(t) + dWFR 0], (32)
we kno;ar that the inartingale operator in the Heisenberg representation keeps the property:

(|dM(t)]) = 0. | (33)

3.5 Explicit Forms of the Quantum Langevin Equation
The quantum Langevin equation is given by |
dA(t) = i[Hs(t), A(t))dt

+1{(1=20) (YOO, A®]+ OG0, AQT)
+0r* ), A(t)m(t)+h*(t) AW} dt

+26 (7 + v) [34(1), [vH(t), A®)])dt
- {b*w®), Aw) dmm() AD)dW:}
A {dWin(8), A®)]+dWR(E), AW} (34)

= i[Hs(t), A(t))dt |
e {rH O (0, AG]+ 7O, AW
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+(1=23) (W40, AV + T, ABRL(0)}dt
+25 (7 +v) [7H(1), [YH(E), A(t)])dt
—{IrH(®), AWW () + ), ARl (1)}
A {d RO (), AB)+AVHOREO, AL}, (35)

with Hg(t) = V,“(t)Hsz(t) = Hg(t)— Hs(t). Note that the Langevin equation is written
by means of the quantum Brownian motion in the Schrédinger (the interaction) represen-
tation (the input field [7]) in (34), and by means of that in the Heisenberg representation
(the output field [7]) in (35). '

The Langevin equation for the bra-vector state, ((1|A(t), reduces to

d(1IA®) = i(1I[Hs(t), At
-k {(UIA®), a'(D]alt) + (Llal(Dlalt), AD]}dt
+26n{(1][a(t), [A(t), af(t)])dt L
+(UA®), o'()]V2x dB, + (1|V2k dBfa(t), A(t)] - (36)
= i(1|[Hs(t), A(t))dt | |
—w(1 = 2X) {(UIA®), a'(D)]at) + (Ua'(B)la(t), At)]}at
+26a((1|[a(t), [A(t), af(t)])dt
+(LUIAQ®), o'(t)]V2k dB(t) + (11V2 dB'(t)la(t), A®).  (37)

The relation between the expression (36) and (37) can be interpreted as follows. Substi-
tuting the solution of the Heisenberg random force operators (29) and (30) for dB(t) and
dB(t), respectively, into (37), we obtain the quantum Langevin equation (36) which does |

not depend on the non-commutativity parameter A.

4 Concluding Remarks

We enumerate here the steps how to derive the quantum Langevin equation from the
microscopic point of view with the help of the field theoretical formalism, NETFD, in
order to show what was revealed and what is to be solved. We interpret that the process
in deriving the quantum Langevin equation starting with the Heisenberg equation, whose
time evolution generator is unitary, is realized by changing representation spaces, i.e.,

Changing the representation space to the one representing the quantum Brownian motion
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from the ordinary one [8], the term given by the interaction Hamiltonian reduces to the
martingale term (23) with A = 1 [5]. Then, the Heisenberg equation should be interpreted
as the stochastic differential equation of the Stratonovich type. Note that the introduction
of the stochastic calculus is nothing but thé introduction of coarse graining [9]. In rewriting
the Langevin equation of the Stratonovich type into that of the Ito type, we see that there
appear the terms taking care of relaxation and diffusion as can be shown in (35).

-Introducing the parémeter A in the martingale term as given by (23), we can transform
the equation to the non-Hermitian version by shifting A — 0 (see (35)). In other words,
it seems that the non-commutativity is renormalized into the relaxational and diffusive
terms. Substituting the solution of the random force operators in the Heisenberg repre-
sentation (the output field), we have the Langevin equation expressed by means of those
" in the Schrédinger (or, more properly, the interaction) representation (the input field).
Note that the Langevin equation for the bra-vector state ((1/A(t) does not depend on A
when it is represented by the random force operator in the Schrédinger re'presentation
(the input field). We are intensively investigating what is the physical meaning of the
renormalization of non-commutativity by changing the parameter .

We would like to close the paper by quoting several comments. An extension of
NETFD to the hydrodynamical stage is one of the challenging future problem related to
the dynamical mapping (3, 10]. An 'interpretation of the stochastic calculuses in terms
of the projection operator method will be published elsewhere [9]- The system of the
stochastic differential equations within NETFD will be applied to the problem of the
well-localized paths of ionized molecules in the cloud chamber as an example of the non-

demolition continuous measurements, i.e., the quantum Zeno effects [11].
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A Condensation of Thermal Pair

The time-evolution of the thermal vacuum |0(t)), satisfying the quantum master equation

(15) with the hat-Hamiltonian (4) for the semi-free system specified by (16) and (19), is
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given by . _ ‘
0(8)) = exp{[n(t) — n(0)]7*5*} |0), (38)
where the one-particle distribution function, n(t) = {(1|a’(t)a(t)|0)), satisfies the kinetic

(Boltzmann) equation of the model:

d _ L

—n(t) = =2k [n(t) — A, (39)
dt

with the Planck distribution function

= (e“’/T —‘1) : ’ ' (40)

Here, T is the temperature of environment system, and w represents the frequency of the

harmonic oscillator under consideration.

B Quantum Brownian Motion

Let us introduce the annihilation and creation operators b, b and their tilde conjugates

satisfying the canonical commutation relation:
[be, BE) =6(~1t),  [b, b)) = 6@t —1t). (41) -

The vacuums (0| and |0) are defined by
b|0) =0, 5]0)=0, (0o} =0, (0151 =0 (42)

The argument ¢ represents time.

Introducing the operators
t—dt t e, op
B, = / dBy = / dt' by, Bl = / dB} = / dt’ b}, (43)
0 0 0 0
and their tilde conjugates for ¢t > 0, we see that they satisfy B(0) =0, Bt(0) =0,
[B,, Bj] = min(s,t), (44)
and their tilde conjugates, and that they annihilate the vacuums |0) and (0
dB,j0) =0, dBi[0)=0, (0ldB}=0, (0ldBf=0. (45)

These operators represent the quantum Brownian motion.
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Let us introduce a set of new operators by the relation

dCt = B*dBy, (46)

with the Bogoliubov transformation defined by

, [1+7 —-a |
s (1T, | ()

where 7 is the Planck distribution function. We introduced the thermal doublet:
dBF=' = dB,, dB!*=dB}, dB~'=dB{, dB!~*=—dB,, (48)

and the similar doublet notations for dC¥ and dC”. The new operators annihilate the

new vacuum (| and |):
dC) =0, dC|y=0, (dcf=0, (dC}=0. (49)

We will use the representation space constructed on the vacuums (| and |). Then, we

have, for example,

(|dBi|) = (|dBf|) =0, (50)
(|dBfdB|) = adt, (|dB:dB]|) = (7 + 1) dt. - (51)

C Stratonovich-Type Stochastic Equations

By making use of the relation between the Ito and Stratonovich stochastic calculuses, we
can rewrite the Ito stochastic Liouville equation (1) and the Ito Langevin equation (11)

into the Stratonovich ones, respectively, i.e.,

djo(t)) = —iHys 0 [0(2)), (52)
Hyodt = Hsdt +i (f]dt + éthth) +dN, (53)
and | | |
dA(t) = i[H (t)dt 2 A(t)], (54)
with
Fy(t)dt = Ho(t)dt +i (ﬁ(t)dt + %d’M(t)d’M(t)) +rd M) (55)

The symbol o indicates the Stratonovich multiplication in the stochastic calculus.
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Hat-Hamiltonians of the Model

The hat-Hamiltonians (53), (10) and (55) of the model are, respectively, given by

Hpydt = Hgdt +i(1 — N) Ipdt + dM,, (56)

iyt = Hsdt — i (o + (22 — 1) 1) dt + d, | (57)

H(t)dt = Hg(t)dt +i(1 — N [Ip(t)dt+ : d’M(t) : . | (58)
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