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The Hot Free Algebra
L. .Ac.cardi, S.V. Kozyrev and 1.V. Volovich

Abstract

We consider the stochastic limit of the standard non relativistic QED (but our results
also hold for the polaron interaction of a particle with a Boson field). Extending the Fock
case results of [AcLu92], we take the initial state of the field to be a Gibbs state at a given
temperature. We show that a new algebra, with commutation relations depending on the
temperature and acting on a Hilbert module, emerges. This algebra, that we call the Hot
Free Algebra, generalizes the QED Hilbert module algebra in the sense of [AcLuVo97c] and
[Ske96] and therefore also the Free (or Boltzmannian) algebra. It is interesting to notice
that, when the module structure is neglected, the algebra we find is precisely the algebra
that was found in the singleton independence central limit theorem of [Aho98a], [Aho98b).
So the present result also gives a natural physical interpretation for that algebra.

(1) Introduction

In the present work we will consider the standard non relativistic quantum electro-
dynamics (QED) Hamiltonian (neglecting polarization) (but our results also hold for the
polaron model, a model describing the interaction of a non-relativistic particle with a Bo-
son field). We investigate this model as an application of the stochastic limit technique
which consists in considering the time rescaling ¢ — t/A? and then in investigating the
asymptotics of the correlation functions for A — 0. This asymptotics captures the domi-
nating terms in the limit of large times and small coupling constant. After this limit the
dynamics became in some sense integrable, and one gets explicit formulae for the correla-
tion functions. The name stochastic limit is due to the fact that the initial quantum fields
are shown to converge to some new fields which are d-correlated in time, so they exhibit
a typical white noise behaviour in the sense of Hida [HiKuPoStr93]. The main result of
the present work is that the Boson creators and annihilators converge, in the temperature
stochastic limit for the model considered, to some new operators (master fields), defining
a new interesting mathematical structure that we call the Hot Free Algebra. ThlS is a
deformation of the free algebra in two senses:

i) a deformation parameter appears, depending on the temperature.

i) the commutation relations are Hilbert module rather than Hilbert space relations
in the sense they cannot be realized in a usual Hilbert space, but require the introduction
of a Hilbert module, in fact of the so called interacting Hilbert module (cf. the remark at
the end of section (6)).

These new features are due to the strong nonlinearity. In particular, after the stochas-
tic limit, the Bose statistics becomes a Hilbert module deformation of the Boltzmannian
(or Free) statistics.



(2) The stochastic limit: general idea

The stochastic limit is a scaling limit of quantum theory. In the weak coupling case
this rescaling can be described as follows. Let us consider a system described by the

Hamiltonian
H=H,+ \H;

and define the evolution on operator U, A = g-itH gitHo , solution of the followmg Schré-
dinger equation in interaction picture:

gtUt()‘) —MH; () U -, UM =1 @
H;(t) = e'tHe Hre#Ho is the evolved interaction Hamiltonian. Here X is a small constant
and we will investigate the cumulative effect of small perturbations on a large time scale.
For this aim we make the time rescaling, in the evolution equation, ¢ — ¢/A? and then
take the limit A — 0. This is equivalent to consider the simultaneous limit A — 0, t — oo
under the condition that A%t tends to a constant (interpreted as a new slow scale time).
This leads to the rescaled equation

8. |
atrﬂ/gz:__H (t/32) U (1)

It is natural to conjecture that, if the limits

llm U /)\2 Ut (2)

" .
}IH%) Y HI (XE) = Ht . (3)

exist in some topology to be specified, then Uy is the solution of the equation
8tUt = -—thUt 5 Uo = 1 (4)

We use this limit because after the limit many problems become integrable. In this sense,
the stochastic limit allows us to calculate the main contributions to the behavior of a
quantum system in a regime, of long times and small coupling.

We will consider a quantum mechanical system as a triple (algebra of observables
A, state space, evolution operator). Moreover, we will take the state space to be the
Hilbert space of the GNS-representation generated by the equilibrium state (-) for the free
evolution on the algebra of observables, at a given inverse temperature 3. This is a mean
zero (Boson) Gaussian state. We will study the evolution operator in the interaction picture

U, ) The stochastic limit of the algebra of observables (master algebra) is constructed in
the following way. We associate to an observable A its free evolution A(t) = e?*Ho Ae~itHo,
and we look for observables A; such that the limit of the correlators

Jim (3 Al(tl/)\z) ;Ak(tk/Az)).



exist and is non—trivial. By the general reconstruction theorem of [AcFriLe82] , there exists
an algebra B, whose elements we denote B;, and a state (-} on B such that

~ hm( Al(tl/)‘z) XAk(tk/).‘z»=<Bl(t1)--'Bk(tk)>

The pair {B, (-)} will be called the stochastic limit of the algebra of observables or simply
the master algebra. In fact, for the investigation of the evolution defined by equation (1),
it is sufficient to find the stochastic limit for observables that are implicitly defined by
the interaction Hamiltonian H;. The analysis is done by considering matrix elements of
the perturbative series expansion of equation (la) and using Gaussianity to represent this
series as a sum of diagrams. Then one separates the negligible diagrams from the relevant
ones and finally one resums the series of the relevant diagrams and proves that the result
is a unitary operator satisfying an appropriate stochastic equation driven by a given white
noise (master field). The first and most important step of this procedure is to determine
the structure of the master field and the space where it lives. This is what we do in the
present paper for the model considered.

(3) Statement of the problem and main result

We consider the simplest case in which matter is represented by a single particle, say
- an electron, whose position and momentum we denote respectively by ¢ = (g1, ...,¢4) and
= (p1,...,pq) and satisfy the commutation relations

lqn, pk) = i5hk

The EM field is described by Boson operators (in fact operator valued distributions)

a(k) = (a1(k),...,aa(k)) ; a*(k)=(af(k),...,af(k))

satisfying the canonical commutation relations

la;(k), a; ()] = 8;n8(k — ¥')

The Hamiltonian of the system under consideration has the form

H=H,+ \Hj = / w(k)al (k)a(k) dk + -;—pz +AH;

where w is a positive function on ¢, a typical example is w(k) = |k|. H; describes the
interaction of a free particle with an EM field neglecting polarization. The interaction
between the particle and the EM field is expressed in terms of a potential A(z), describing
the field strength at the space point z € R%, more precisely A(z) is the potential felt by



the particle in position z as a consequence of its interaction with the field The explicit
form of the interaction Hamiltonian is

Hr=p-A(q) +Aq) - p (5)

where p, ¢ are as above and

A(g) = / dk {g(k)e™? - a* (k) +g(k)e™™ - a(k)} - (6)

The time dependence of is defined by letting the original interaction H;, given by (5), (6),
evolve under the free Hamiltonian H, and then performing the time rescaling (2.1a). A
simple calculation shows that this is equivalent to replace the operators ai(t, k) in (6) by
the rescaled fields '

1 . a ‘
| a)\(t, k) —_ _}\_ez(w(k)-%kp)t/)\ ?_qua(k‘) (7)
We will consider the limit of the correlation functions

}\ii)%(ui” (tN, kN)af\N‘l (tN—la kN~1) - af\l (t1, k1)> (8)

where € = {en,...,e1} € {1,0}V, ¢ € {1,0} (e =0 for a, e = 1 for a™) and (-) denotes the
Gibbs state of the reservoir at inverse temperature (3, i.e. the mean zero Boson Gaussian
state with pair correlations vanishing on the off-diagonal terms and, on the diagonal ones,
equal to ’

(axaf) = ZEE) ©)
(a,t,ak) = % (10)

(the other correlators can be calculated using Gaussianity). By our assumption one only
needs to consider the case N = 2n. If the number of creators is equal to the number of
annihilators, one can consider the partition o(g) of ¢ into pairs of 0 and 1, that corresponds
to the expansion of the Gaussian expectation of

bN (tn, k)b N (EN—1,kN-1) . . . b (21, K1)

into sums of products of pairs of creators and annihilators. An arbitrary partition of this
kind corresponds to some Feynmann diagram. The main result is the following: in the
stochastic limit only the partitions that correspond to halfplanar noncrossing diagrams
survive. These partitions will be called nontrivial. The simplest context in which these di-
agrams arise is that of the algebra of free creation-annihilation operators with commutation
relations

A;AT = 5.

After the stochastic limit we find a generalization of this algebra which is based on the same
diagrams. In particular the Bose statistics becomes a generalization of the Boltzmannian



(or Free) statistics. Furhter analysis of this algebra and of the corresponding statistics is a
subject of particular interest and should serve as a fundament for the investigation of the
limit dynamics. :

In the present work we prove convergence of these correlators and show that in the
stochastic limit we have non-trivial cancellations as a consequence of which in the limit
the crossing diagrams vanish. More precisely we show that the above limit exists and has
the form : '

(beN (tN, kJN)b€N_1 (tN_]_, kN—-l) .. b (tl, k1)>

THEOREM 1. The limit temperature correlation functions exist always and

i) if the number of creators is not equal to the number of annihilators, then the above
correlator is equal to zero (even before the limit);

ii) if the number of creators is equal to the number of annihilators (N = 2n), then the
limit (8) is equal to the following sum over the nontrivial partitions

Z H 6(kmh - kmh)cmhm%(kmh)27r6(tm'h — tm)

o(e) h=1
4 (w(kmh) + km,D + Z(_]‘)E&X(maam’a)(mh)kma -k, ""5hk72nh) (11)
(84
where {(m';,m;) : j =1,...,n} is the unique non-crossing partition of {1,...,2n} associ-

ated with € and X(m,, m’,)(mn) is equal to 1 if my, is between m,, and m},, while it is equal
to 0 otherwise. The indices mj, corresponds to annihilators, my corresponds to creators,
and

1

Crmnmi, (k) = 1= o—Bwn’ my, > mp,
1 /

thm;‘ (k) = m’ my, < myp

(=1)*» =1 for mj, > my, and (=1)*» = —1 for mj}, < mp,.



(4) Proof of the result for the 2- and 4-point correlat ors -

In order to explain the main idea we shall prove the statement of Theorem (1) in the
simplest examples, i.e. the 2—point and the 4-point correlators. For the 2-point correlator
one has:

(be(ka)BE (k2)) = B (5 a4/ (k) 5 07 (k2)) =

1. ' . '
= )1‘1_{% i (ezt/A2(w(k1)+k1p)e—zq(k1—kz)e—zv(w(k2)+kzp))<akla;:2> (0)

Using the formulae (3.9), (3.10) we get

1 §(ki — ka)
i i5F (w(ka)+kip) O\F1 — F2
jim Sz ¢ 1— e—Palk)

Using the module extension of the limit formula of [AcLuVo93]:

N | |
lim 7 o3 I —ambw(k) + kp)3(t) )
we get 2—point correlator
0(ky — k .
(be(ka)b (ka)) = 2m8(t = 7)3(w (k1) + Fap) - = ( ;—ﬁw&)l) )

Let us now investigate the following 2—-point correlator

(bi_(kz)bt(kl» — hm %2- (a+ eik2qp iy (w(k2)+k2p)eyi% (W(k1)+k1p)e—ik1qak1>

Using the commutation relation for Weyl operators
e'iapeiﬁq — eiﬁqeiaqeia,@ (3)
where [p, q] = —i we get for (0)

i — 1 5(k2 - kl) zT(w(k1)+k1P kz)
250 A2 efuwlki) — 1

Using formula (1) we get

O(ke — k1)

(bF (k2)bs (k1)) = 2md(t — 7)5(w<k1) +kip - k%)m )

Let us now calculate the 4—point correlator

(be, (k1)be, (k)b (K3)b7 (k1)) | (5)



By Gaussianity and (3.9), (3.10) we get

1 1 :
+ )\ —
. <aklakzakéakrl> - 1 — e—ﬁw(kl) 1 — e_ﬁ‘f’(’%‘)
(8(ke — k3)d(ky — k1) + (k1 — k3)8(k2 — k1)) (6)

Formula (6) for the bosonic correlator (ax,ar,af, af,) contains two terms proportional to
2 1

d—functions that correspond to two Wick diagrams. Let us calculate the first term, that is
proportional to §(ky — k7)d(ke — kb). We have

: T 1 1 . )
1 st term = ,{1—% 1 — e—Bw(ki) 1 — e—Bw(k2) (k1 — k1)d(k2 — k3)
Xlzei tlét’l (w(k1)+k1p)ei9—§;-’2(w(kz)+k2p)ez’fz—;§flz kiko (1)

Using formula (1) we get

1 1
— e~Bw(k1) 1 — g—Buwlkz)

1— st term = (27r)?‘1

6(ky — K1)6 (k2 — k3)o(t1 — £1)8(t2 — t3)d(w (k1) + k1p)8(w(ka) + kap + kiks)  (8)

Let us calculate the second term of correlator, that is proportional to §(k1 — k%) (ko —
k}). We have '

L 1 1 / /
2 — nd term = )1‘1_13) T et T e—ﬁw(kz)d(kl — k5)d(ka — KY)-

%ei‘—ﬁ%ﬁ (k) +hip) i 2t ((ka) +hap) i B2 kaka _

according to formula (1) and the Riemann-Lebesgue Lemma (cf. [AcLuVo97c] for more
details in the Fock case). We get therefore that the 4-point correlator is given by formula,

(8)



(5) The vanishing of the crossing diagrams: general case

We follow the pattern of the proof given in [Gou96] and [AcLuVo97c] and we shall
introduce the necessary modifications due to temperature. To calculate the correlators
in the stochastic limit we recall that the 2-parameter family of Weyl operator W (a,b)
(a,b € %) is defined by

W(a, b) — etlaptbq)

‘The unitary operators W (a, b) satisfy

W(a,b) = iPibqo—ia-b/2 _ ib-qia-pia-b/2
W(a1,b1)W(az,b2) = W(a1 + az,b1 + bz)exp{—(al by —ag - b1)} (1a)

W{(ay,b1)..W(an, n) = ZaJ,Zb exp{ Z aj by —a;-bj)} (1b)

J<l
W (a, b)+ = W(—a, —b) _ (1c)
Under the free system evolution we have
pr=p , G=q+tp

so the Weyl operators evolve as
ez'tpzw(a’ b)e—i‘tp2 = eil@Petba) = (i@ tth)p+59) — Y (q + b, b)

Recalling that the rescaled field operators (3.7) are

ax(t, k) = z(cu(k)+kzo)t//\2 e~ (k) (2)
we will consider the limit temperature correlation functions,

(0N (tn, kN )ON " (tn—1, kn—1) ... b (t1, 1)) =

N- l(tN_l,kN_l)...af\l(tl,kl))
Here € = {en,...,e1} € {1,0}"Y, e € {1,0} (¢ = 0 for a and € = 1 for a*). For N = 2n

one can consider the partition o(g) of € into pairs of 0 and 1, that correspond to Wick
partition of

= 11m (a;” (tN, kN)a

beEN (tN, kN)bEN‘l(tN_l, kN—l) L b8 (tl, k1)

to pairs of creators and annihilators. An arbitrary partition of this kind corresponds to
some Wick diagram. We will be interested in partitions, that correspond to halfplanar
noncrossing diagrams. We will call these partitions nontrivial.

THEOREM (1) The limit temperature correlation functions exist always and



i) if N is odd, then the above limit is equal to zero;
ii) if N = 2n, then the above limit, i.e. the limit

}\%(aiz" (tans k2n)a™ " (b2n—1, kon—1) - . - a5 (t1, k1)) (5)

is equal to zero if ¢ is trivial; is equal to

: Z H 5("7711;l - kmh )cmhm;t (kmh)27r6(tmlh - tmh)

o(e) h=1
Eo 1- (_l)eh 2
5 (k) + Emap + 3D Xy (Tl iy — 02 ) ()
a
where {(m’ jymj):j=1,...,n} is the unique non-crossing partition of {1,...,2n} associ-

ated with €. description Here the index m}, corresponds to an annihilator; my, to a creator

and
1

. 1 ’
Cmpmy, (k) = o1 M <™
(=1)*» =1 for mj, > my, and (—1)** = —1 for mj, < ma.

Proof. From (2) and the identity

eloPoiBe — i(ap+Bg) gizalB

we deduce . ; - .
— . € 21 €
ay = 3 expi(—1) {ﬁ(w(k) + kp) — kq — —Z—S\Ek Yaf(k). (4)
For & = {ean, ..., €1} € {1,0}*" non—trivial, we have
2n
(H a:;,k,.) =
j=1 |
on 1 K . £ 2n
[1{5emit-0o (50 + k) - ba- 55k b AT av @) ©)
j=1 h=1

but

{m} #mp} h=1

(TLe )y = 3" TI8Gm:, = kmn)emumy (kims) (7)
h=1 ‘
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that is, we sum over all possible pair contractions of annihilator—creator indices {(my,,mp) :
h = 1,...,n}. All operators in these products are ordered from the right to the left.
Therefore we may write

H at,,k,
I=I {.— exp (= 1)61{)\2 (w(ks) + ka) kiq— 2 )\12 k3 }

Z H5(k ' —kmh)cmhm ( mh) (8)

{m} #mp} h=1

Now, using the rules for multiplying Weyl operators and our product convention, we
have that

2n

1 . €5 -t 2
j];[i {—)\- expi(—1) {X%(w(kj) + k;p) — kjq — 5 /\32 ks }

i e t;—t
= exp{i | Z (—1)stek; . kl"JTz"i}
1<j<i<2n

2n

(—) expzz< 1) (k) + hyp) — ga = 515K )

the phase factor is then
. 2n
7 €45TE€E »
3 YD (Ch)etky - kit — )
1=1 j<l

and, using that the m’y run over half of the 2n indices | and the my, run over the other
half, (=1)**'» =1 and (—1)*"» = —1)

h=1 { 1<j<m/y 1<g<mh

%Z{ Z (‘"1)6jkj'km’h(tj—tm’h) Z ( 1)61k kmh( tmh)}=

m'D‘(m’h m5<m'h

. n
1 )
= 5 Z{ Z km,a ) kmlh(tmla - tm'h) - E : kmﬁ . km'h(tmﬁ — tm'h)
h=1 a 3

1
m 4 <mp ms<mp,

. n
7 )
Z k., * kmp (tme, = tmy ) + Z Emg * kmy, (bms —tmh)} = Z(Ih +1II) (11)
o ) . h=1
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We use that kpn,, = kpn,. Putting together the first term with the third and the second
~ with the fourth we get '

7
mo<m’y m', <mp

In= ) kme kmplma —tm) = . kmy - kmy (b, — tmy) =

a v
ma<m/n m'a<m’n m'y<mp
= Z kmo km, (tm'a“tmh)'*' Z kmo Kmp (bmy, —tm?s ) — Z ' km»,’kmh (tm’—y —tmy) =
o o Y
mp<m o <m’y - m/a<m’y

= > ke k(e —tm) Y. kg Ky (bm — t)

2 a

for m'p, > my, and

mp, <m’a<mp ! m’a<m’y
In=- Z kma km, (tmla—tmh)+ Z ke kmy, (tm,, ~tmn ) Fhmp km,, (Em,, ;‘tm;t )
a a

for m'p, < my. For the sum of the second and the fourth term we get

: mg<m’p ms<mp ‘
~IIh= Y kmy kmy(tms —tm) = Y Kmg  kmy (bms — tmy) =
] S
mg<m'p ms<mp ms<mp

Z kmﬁ'kmh(tmﬁ_tm'h)_ Z kms - kmy (bms —tm, ) — Z kms Ky, (bmy, —tm,) =
i & 4 &

mp<mg<m’y’ ms<mp
Z kmﬂ Ky, (tmﬁ — ) + Z kms * kmy, (tm), — tm’h) + kmy, - km,, (tmh - tm’h)
B 6 ‘

for m'y, > my, and

my, <mg<mp ms<mp
_'IIh == - Z kmﬁ 'kmh(tmﬁ _tm’h)+ Z kma 'kmh(tmh —tm’h)
B ]

for m’p, < my. For (11) we get

mp<m’ o <m’y m’ a<m/y
Ih+IIh= Z kma ‘kmh(tm,a _tmh)+ Z k:ma 'kmh(tmh —tm’h)—
[ ¢4 '
mp<mg <m'h mg<mp

- Z kmﬁ : kmh (tmp - tmlh) - Z kmﬁ . kmh (tmh - tm'h)_
B B8
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—kmh ' kmh (tmh - tm’h) (12)
for m'p, > my, and
m}, <m’ o <mp m’a<m’y
it Ilh== > kmg k(e —tm)+ D mg - By (b — tmry)+
03 o
m} <mg<mp mg<mp
+ ) Emp kmu(tme — ) = D Kmg - Ky (bmi, — by )+

B B
+hmy, - kmy, (tmh - tm;b)

for m’p, < my,. Let us now investigate the following term in (9)

'1 2n .2n s v n ' o '
(5) i 08 (et rtn k535 5 T 6 ~bm)emum Gims)
J=1

{m},#mn} h=1

Notice-that

Z (_l)qtlkl = Z (tmh - tm’h)kmh (10)
1<i<2n 1<h<n
> (-)%kig=0
1<i<2n

because km, = km;. We get for the term in (9)

ne tm, — tony
(X) exp—i 3 T (k) + ki — 5K, )

1<h<n

Z H5 = Kma )Cmpm), (Kma)

{mh #mp} h=1

With the change of variables

vmh — tmh - tm’h

{om =tm, (13)

obtain the following lemma.

LEMMA 1. The correlator equals to

n
Hat” = }2‘% Z{Ih +IIh}

h=1
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(%) " exp—i Y

Ump,
>\2
1<h<n

(w(kmh) + kmyp — §kr2nh)

Z H 5(km; = kma )Cmpm, (kmp) (14)

{m}, #mn} h=1

The phase factor in (14) is equal to
mp<m’ o <m’p m’a<m'p ’
Z kme * kmn(—Vmg + Um, — Umy, ) + Z kme * KmaUm,—
[s% .

«

mp<mg <m'h mg<mp

- Z kmﬁ : kmh ('Umh + Umg — 'U'mh) - Z kmﬁ ’ kmhvmh - k"nh ’ kmhvmh (15)

B _ B
for mj, > my and

7 !
my, <m’ o<mp m'o<m'p

— Z km, * kmy (—Vm, + Um, — Um,) + Z kmg * kmy,Vms+
) v a

(8]

m} <mg<mn mg<mp
+ Z kmﬁ * kmh (Q)mh + Umﬁ - Umh) - Z kmﬁ * k;mhvmh + kmh ¢ kmhvmh
B - B

for m’y, < my. The Riemann-Lebesgue lemma implies that the oscillatory factors of the
type expik?u/A? cause the associated term to vanish in the limit A — 0. Therefore, in
this limit, a partition {(mp, m},)} survives in (14) if and only if, for each fixed h =1,...,n
and for any o

mp < Mg < M) & mp < m, <mj (16)

or ,
mp > Mg > mp, & my >ml, >m) (16)

ji.e. if and only if it is a non crossing partition. This means that only the non—trivial
sequences € = {€zn, ---, €1} € {1,0}*" give a non trivial contribution in the limit. Denoting
{(mn,m},)} the unique pair partition associated to such a sequence, the corresponding
value of the phase term (15) is :

mp<m/ o <m'y, m/ o<m'p,

Z kma : kmh("‘vm(‘, - Umh) + Z kma ) kmhvmh“
a

[e

mg<mp

- Z Kmg - KmnVmp — Ky * Kma Ums, . (17)
B
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for mj}, > my, and

7 A
my <m'o<mp ma<m’n

- E Fmo - kmy, (_vma - Umh) + Z . kg - kmy Um, —
L a .

«

mg<mp

Z kmﬁ . kmh’Umh + kmh * kmh’Umh
ﬂ .

for m'y, < my,.
Let us investigate the calculated phase term. We have for mj, > my

1
m o<m'y, mp<m’ o <m’y, m' o <mp

Z kma mh'Umh = Z kma : km;;vmh + Z kma : kmhvmh
a : a

(04
Because m/,, 75 my,, we have for the last term

m' o <mp m’ o <mp

Y ke kmaUm = D Emg - kmyUm,
« «

Therefore the phase term is equal to

mp<m o <m’y m’a<mp mg<mp

~ Y Eme Emma Z K., - Ky, Vmy, — Z Ky * Ko Vrms, — Ky, K U,

«

For the case m’j, < my, due to the non crossing condition we have ’

m}, <m' o <mp, : my <me<mp
- E : kg = kmy, (—Yme = Umy,) = — § , kme * kmy (—Vma — Ymy,)
(o7 83 .

Therefore the phase term is equal to

mp,<m’o<mp m’ o <m’s mg<m},
v E kma : kmhvma + E kma" kmﬁvmh - E kmﬁ : kmhvmh + kmh : kmhvmh
o @ B i ‘

Let us denote the phase term as
Ip + 11, = &3 — (—1)8hkmh . kmh'umh

Here (—1)*» =1 for m}, > mp, and (—1)*» = —1 for mj, < my. One can get for the phase

term the formula
op =~ > (=1)% ki, Ky U — 3 (=1)% rm, - Ko U

a€(mp,m})or(m}, ,mp) azhe(mq,ml)or(ml, ,my)
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Y dh=-2 ) Y (=1)%kp, - kmy Umy, =

1<h<n 1§hSncmh€Onaﬂn;yw0n;ﬂna)
—_ €
o —2 Z Z( 1 X(ma,m’ )(mh) Mo mhvmh
1<h<n «

Here X(m, ms.) is the 1ndlcator of the mterval (mq, m'y) or (m’ a,ma) We have proved
the followmg lemma.

LEMMA 2. The noncrossing part of the correlator is equal to

() ewi &

1<h<n

;\nh ( (kmh) + kmhp) + Z( l)eax(maam’a)(mh)kma Chmp T

——Ekfnh + '2‘(_1)6”‘52 Z H 6(km 1 — km, cmhm (kma)

{mh;émh} h=1

Using the Riemann-Lebesgue lemma and keeping only noncrossing partition we get
that the correlator from the statement of the theorem namely that the limit

;EI%)(GEZn (t2n7 an)aezn ! (t2n—15 an—l) s af\l (tl’ kl)) (5)

in nontrivial case is equal to

Z H 5(/@','”; - kmh)cmhmg (]'Crrth)2"r5(trn;L ey

{m} #mp} h=1

5 (u)(kmh) + kmhp+ Z(_l)eaX(ma,m’a)'(mh)kma : kmh - —%k’?nh> (6)

where {(m},m;) : j = 1,...,n} is the unique non-crossing partition of {1,...,2n} associ-
ated with €. The theorem is proven.



16

(6) The hot free algebra

In analogy with [AcLuVo97c] now we want to condensate the apparently complicated
expression (6) of the correlators into a simple and easy to use set of algebraic rules.

LEMMA 1. The correlators of the previous theorem are satisfied if we take b;(k) equal to
the sum of free independent noises

be(k) = bi(t, k) + b (t, k) (1)
where b; satisfy the following hot free algebra relations

. 0(k1 — k
b1, k)b (1, ka) = 28(0 — 7)) + k) o R

bﬂahﬁﬂnhgi%ﬁ@—ﬂﬁw®ﬂ+kﬂp—h»g%%5%%

biby =boby =0
by (t1 k)p = (p + k)bl (ta k)

by(t, k)p = (p — k)ba(t, k)

and take the functional (-) to be the expectation with respect to the free product of the two
Fock vectors. In terms of the master field (1) this corresponds to the mean zero gaussian .
field with covariance

(5% ()b (K) = T 0t — )3k — K

A 1 Ny /
Be(R)bF (K)) = = (¢ = £)8(k — )

Idea of the proof. The fields b; of the hot free algebra arise as the stochastic limit of the
Araki-Woods standard identification of the GNS representation of a boson field algebra,
associated to a Gaussian equilibrium state, with the tensor product of a Fock and an anti
Fock representation. To construct such a representation we introduce two independent
bosonic fields ¢y (k), ca(k) o

[ei(k), cf (K")] = 650k — k')

such that every c;(k) acts in the Fock representation. We then consider the operators
a(k) = vVm(k)ei(k) + /m(k) — 1cd (k)
at (k) = vVm(k)ct (k) + /m(k) — 1ca (k)

la(k),a™ (k)] = 8(k — k')

Clearly
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and, for the vacuum expectation we get
(a(k)a™ (k') = m(k)5(k — &)
Taking
1
m(k) = T =pr
we get the thermal state (9), (10).
The stochastic limit of the rescaled operator (3.7) will then be

N .
lim = e*32 (w(k)+kp)e quak —

A—=0 A
. . 1 .t .
— ili% % ez;‘; (w(k)+kp)e——qu /m(k)cl(k) + )l\lf}) 'X v (w(k)+kp)e—qu /m(k) — 1c—2+-(k)

where now the two limits are in the Fock representation. But from [AcLu92] we know that
such limits give rise to QED Hilbert module white noises. So it is natural to expect that
the master field in the temperature case shall be the sum of two such white noises b; (t, k),
b3 (t, k). So that the above limit is equal to

b(t, k) = bi(t, k) + b3 (¢, k)

in agreement with (1). It remains to be checked that Boson independence of the fields
before the limit becomes free independence of the master field after the limit, i.e. bjbg =
babT = 0. A

The proof is done by computing the correlation functions using the commutation rela- -
tions listed above and comparing the result with (3.9). For example, using the calculations
made in section (4) for the 2—point correlators for b and the relation (1), we have

(be (R)bF (k') = (ba(t, kb7 (t, k')> + (b3 (¢, k)ba(t, k') = (ba(t, k)OT (7, k"))

Therefore 5k — k)
(b (t: k)b (7, k2)) = 2m6(t = ) (w (k) + bap) 75

Similarly using
(b (k2)be(k1)) = (ba(7, k2)b3 (¢, k1))
we get

d(k2 — k1)

(by (8, k1 )bT (7, ko)) = 218(t — 7)6(w (k1) + k1 (p — k1)) gty 1

Moreover it is easy to see that the pairings b(tm; , km; )OF (s kmy, ) and bF (tm,, , km,, )o(tmy s km, )I

give rise to the factor

1 — (—1)&n
8, = e 278t = )8 () + iy = =502 )
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and the last relation gives the term Y _(—1)**X(m,,m’.)(mn) in the phase shift. -

Remark. We conjecture that, in analogy with the result of Skeide [Ske97] for the Fock
case, also in this case the structure of interacting Hilbert module defined by Lemma (1)
above can be reduced to the single structure of Hilbert module by a proper choice of the
left and right multiplication. This would be the finite temperature analogue of the QED
Hilbert module.
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