<table>
<thead>
<tr>
<th>項目</th>
<th>内容</th>
</tr>
</thead>
<tbody>
<tr>
<td>タイトル</td>
<td>Hypoellipticity for Operators of Infinitely Degenerate Egorov Type (Structure of Solutions for Partial Differential Equations)</td>
</tr>
<tr>
<td>著者</td>
<td>DENCKER, NILS; MORIMOTO, YOSHINORI; MORIOKA, TATSUYA</td>
</tr>
<tr>
<td>引用</td>
<td>数理解析研究所講究録 (1998), 1036: 101-109</td>
</tr>
<tr>
<td>発行日</td>
<td>1998-04</td>
</tr>
<tr>
<td>URL</td>
<td>http://hdl.handle.net/2433/61936</td>
</tr>
<tr>
<td>タイプ</td>
<td>Departmental Bulletin Paper</td>
</tr>
<tr>
<td>テキストバージョン</td>
<td>publisher</td>
</tr>
</tbody>
</table>
Hypoellipticity for Operators of Infinitely Degenerate Egorov Type

NILS DENCKER (University of Lund)
YOSHINORI MORIMOTO (Kyoto University)
TATSUHI MORIOKA (Osaka University)

§1. Introduction and Result

We study the hypoellipticity for the operator

\[P = D_t + i\alpha(t)b(t, x, D_x) \]

in \(\mathbb{R}_t \times \mathbb{R}_x^n \), where \(i = \sqrt{-1} \) and \(\alpha(t) \) is a \(C^\infty \) function satisfying

\[\alpha_I := \int_I \alpha(t)dt > 0 \]

for any interval \(I \subset \mathbb{R} \). Here \(b(t, x, \xi) \in C^\infty(\mathbb{R}_t, S^1_{1,0}(\mathbb{R}_x^n)) \) is a classical symbol for any fixed \(t \). We assume the principal symbol \(b_1 \) of \(b \) is real valued. We denote the coordinates of \(T^*(\mathbb{R}_t \times \mathbb{R}_x^n) \) by \((t, x; \tau, \xi) \), \(t, \tau \in \mathbb{R} \) and \(x, \xi \in \mathbb{R}^n \). We assume the following conditions (H.1) and (H.2).

(H.1) \((\tau, b_1(t, x, \xi)) \) satisfies the so-called Hörmander’s bracket condition (C.H), that is, for any \(\rho \in \text{Char} \, P \) there exist a positive integer \(m \) and \((k(1), k(2), \ldots, k(m)) \in \{0,1\}^m \) such that

\[(H_{r_k(1)} \cdots H_{r_k(m-1)} r_{k(m)})(\rho) \neq 0 , \]

where \(r_0 = \tau \), \(r_1 = b_1 \) and \(H_q \) is the Hamilton vector field of \(q \).

(H.2) \((\partial_t b_1)(t, x, \xi) \geq 0 \) for \((t, x, \xi) \in \mathbb{R} \times \mathbb{R}^n \times \mathbb{R}^n \).

Theorem 1. If \(P \) of the form (1) satisfies (H.1) and (H.2) then \(P \) is hypoelliptic in \(\mathbb{R}_t \times \mathbb{R}_x^n \).

We can relax the assumption (H.1) by assuming the logarithmic regularity estimate as follows:

(H.3) For any \(\epsilon > 0 \) and any compact \(K \subset \mathbb{R}_t \times \mathbb{R}_x^n \) there exists a constant \(C = C(\epsilon, K) \) such that
\[(3) \quad ||(\log(D_x))u||^2 \leq c(||D_tu||^2 + ||b_1(t,x,D_x)u||^2) + C||u||^2 \quad \text{for any} \ u \in C^\infty_0(K),\]

where \(\psi = (2 + |\psi|^2)^{1/2}\) and \(|| \cdot ||\) denotes the usual norm of \(L^2(R_t \times R^n_x)\). We remark that (H.3) follows from (H.1).

Theorem 2. The operator \(P\) of the form (1) is hypoelliptic in \(R_t \times R^n_x\) if (H.2) and (H.3) are fulfilled. Furthermore, for any \(\bar{\rho}_0 = (t_0, x_0; \tau_0, \xi_0) \in T^*(R_t \times R^n_x) \setminus 0\) and any real \(s\)

\[(4) \quad v \in \mathcal{E}'(R_t \times R^n_x), \quad Pu \in H^{loc}_{t+1}(\bar{\rho}_0) \Rightarrow v \in H^{loc}_s(\bar{\rho}_0),\]

where \(v \in H^{loc}_s(\bar{\rho_0})\) means that there exists a classical symbol \(a(t, x, \tau, \xi) \in S^{1,0}_{1,0}(R^{n+1}_{t,x})\) such that \(a \neq 0\) in a conic neighborhood of \(\bar{\rho}_0\) and \(a(t, x,D_t, D_x)v \in H_s(R_t \times R^n_x)\).

We give some historical remarks concerning our result. First we recall the definition of subelliptic operators. Namely, a classical pseudodifferential operator \(P\) of order \(m\) is called subelliptic with loss of \(\delta\) derivatives if \(0 < \delta < 1\) and if

\[v \in \mathcal{E}'(R^{n+1}), \quad Pu \in H^{loc}_s(R^{n+1}) \Rightarrow v \in H^{loc}_{s+m-\delta}(R^{n+1}).\]

The characterization of subelliptic operators was laboriously studied by Egorov\[3\] and it was completely proved by Hörmander\[4\] (see also \[5\] Chapter 27) that \(P\) is subelliptic if and only if the principal symbol \(p\) of \(P\) satisfies the Nirenberg-Treves condition (\(\overline{\Psi}\)) and (C.H) condition with \(r_0 = \text{Re} \ p\) and \(r_1 = \text{Im} \ p\). After multiplication with elliptic operator and a canonical transformation, the principal symbol \(p\) has the form microlocally

\[p = \tau + iq(t, x, \xi), \quad q(t, x, \xi) \text{ real valued}\]

and for this form the condition (\(\overline{\Psi}\)) is stated as

\[(5) \quad q(t, x, \xi) > 0 \quad \text{and} \quad s > t \Rightarrow q(s, x, \xi) \geq 0.\]

It follows from (H.2) that \(P\) of the form (1) satisfies the condition (5) (and hence (\(\overline{\Psi}\))). We remark that (\(\overline{\Psi}\)) is necessary for \(P\) of the form (1) to be hypoelliptic because the adjoint operator \(P^*\) is then locally solvable (see \[5\] Theorem 27.4.7). In the theory of subelliptic operators, the operator

\[(6) \quad D_t + i t^{2k}(D_{x_1} + t^{2j+1}x_1^{2m}|D_{x_1}|) \quad \text{in} \quad R^3, \quad (k, j, m \text{ non-negative integers})\]

is an important model because, roughly speaking, any subelliptic operators can be reduced to this operator and the Mizohata one after several microlocalization arguments. So we shall call the operator of (6), Egorov type, even in the case where \(t^{2k}, t^{2j+1}x_1^{2m}\) are replaced by other (infinitely) degenerate functions. It should be noted that almost all contents of subelliptic theory are required in order to prove the subelliptic estimate for the simple model (6).
Our Theorem 1 shows that the operator

\[(7) \quad P_1 = D_t + i\alpha(t)(D_x + t^{2j+1}x_1^{2m}D_x) \quad \text{in} \quad \mathbb{R}^3\]

is hypoelliptic if \(\alpha(t) > 0\) for \(t \neq 0\). In [9],[10], the hypoellipticity for infinitely degenerate Egorov type operators was studied by the second author, but it was not shown there that the operator \(P_1\) is hypoelliptic when \(\alpha(t)\) has a zero of infinite order at \(t = 0\). The difficulty comes from the fact that \(L^2\ a\ priori\ estimate\ seems\ to\ be\ not\ satisfied\ for\ this\ \(P_1\),\ in\ general.\ Indeed,\ Lerner\ [6]\ showed\ that\ \(L^2\ a\ priori\ estimate\ does\ not\ hold\ for\ some\ version\ of\ infinitely\ degenerate\ Egorov\ type\ operators\ though\ it\ satisfies\ \((\Psi)\),\ (whose\ adjoint\ operator\ is\ a\ counter\ example\ to\ \(L^2\ local\ solvability\ of\ operators\ satisfying\ \(\Psi\)\ condition).\ Recently,\ the\ first\ author\ [1]\ showed\ that\ Lerner’s\ counter\ example\ is\ locally\ solvable\ with\ loss\ of\ at\ most\ two\ derivatives\ and\ developed\ the\ method\ in\ [2].\ We\ shall\ prove\ Theorem\ 2\ by\ using\ the\ fundamental\ estimate\ given\ in\ [2],\ instead\ of\ \(L^2\ a\ priori\ estimate.\ The\ proof\ of\ Theorem\ 2\ in\ the\ next\ section\ is\ based\ on\ a\ method\ similar\ to\ that\ of\ [11] Theorem 8.

§2. Proof of Theorem 2

We note that \(P\) is hypoelliptic in \(\Omega = \{(t, x) \in \mathbb{R}_t \times \mathbb{R}^2_x; \alpha(t) > 0\}\), more precisely, \(P\) is microhypoelliptic at any \(\bar{\rho} = (t_0, x_0; \tau_0, \xi_0) \in T^*(\Omega) \setminus 0\). In fact, it follows from (H.2) and Fefferman-Phong inequality that for any compact \(K \subset \Omega\) there exists a \(C_K > 0\) such that

\[
||Pu||^2 = ||D_t u||^2 + ||\alpha b u||^2 + 2Re (\alpha(\partial_t b) u, u) + 2Re ((\partial_t \alpha / \alpha)(\alpha b) u, u) \geq ||D_t u||^2 + \frac{1}{2}||\alpha b u||^2 - C_K ||u||^2, \quad u \in C^\infty(K),
\]

where we used Schwartz’s inequality to estimate the fourth term in the middle, in view of \(\alpha \geq \exists c_K > 0\) on \(K\). Together with (H.3), the above estimate shows that for any \(\varepsilon > 0\) and any compact \(K \subset \Omega\) there exists another \(C(\varepsilon, K) > 0\) such that

\[
||\left(\log \sqrt{D_t^2 + |D_x|^2 + 2}\right) u||^2 \leq \varepsilon ||Pu||^2 + C(\varepsilon, K)||u||^2, \quad u \in C^\infty(K).
\]

By means of Theorem 1 of [7] and its proof, we see the micro-hypoellipticity of \(P\) at any \(\bar{\rho} = (t_0, x_0; \tau_0, \xi_0) \in T^*(\Omega) \setminus 0\), namely,

\[(2.1) \quad v \in \mathcal{E}'(\mathbb{R}^{n+1}_{t,x}), \quad Pu \in H^{locc}_{\ell}\quad(\bar{\rho}_0) \Rightarrow \quad v \in H^{locc}_{s}(\bar{\rho}_0)\]

It suffices to show (4) of Theorem 2 in the case where \(\bar{\rho} = (t_0, x_0; 0, \xi_0)\) with \(\alpha(t_0) = 0\), because

\[(2.2) \quad P\ is\ microlocally\ elliptic\ in\ \{(t, x; \tau, \xi); \tau \neq 0\}.\]
For the brevity we assume \((t_0, x_0) = (0, 0)\) and \(|\xi_0| = 1\). Take \(\Phi(\tau, \xi) \in S_{1,0}^0(\mathbb{R}_t \times \mathbb{R}_x^n)\) such that \(\Phi = 1\) in \(|\tau| \leq \delta|\xi|\) and \(\Phi = 0\) in \(|\tau| \geq 2\delta|\xi|\) for a small \(\delta > 0\), which will be chosen later on. In order to cut the space \(\mathbb{R}_x^n\) we choose an \(h(x) \in C_{0}^\infty(\mathbb{R}^n)\) function such that \(0 \leq h \leq 1\), \(h(x) = 1\) for \(|x| \leq 1/5\) and \(h(x) = 0\) for \(|x| \geq 7/24\), and set \(h_\delta(x) = h(x/\delta)\).

For the conical cutting in \(\mathbb{R}_\xi^n\), we define the following:

Definition. For \(\delta > 0\) and \(\xi_0 \in \mathbb{R}^n\) \((|\xi_0| = 1)\) we say that a function \(\psi(\xi) \in C^\infty(\mathbb{R}^n)\) belongs to \(\Psi_{\delta, \xi_0}\) if \(0 \leq \psi \leq 1\) satisfies

\[
\begin{align*}
\psi(\xi) &= 1 & \text{for } |\xi/|\xi| - \xi_0| \leq \delta/12 \text{ and } |\xi| \geq 2/3, \\
\psi(\xi) &= 0 & \text{for } |\xi/|\xi| - \xi_0| \geq \delta/10 \text{ or } |\xi| \leq 1/2, \\
\psi(\xi) &= \psi(\xi/\lambda) & \text{for } 0 < \lambda \leq 1 \text{ and } |\xi| \geq 1.
\end{align*}
\]

Let \(v \in E'(\mathbb{R}^{n+1})\) and \(Pv \in H_{s+1}^{\ell_0}(\overline{\rho}_0)\). If \(\psi(\xi) \in \Psi_{70\delta, \epsilon_0}\) and \(\delta > 0\) is sufficiently small, then we can find \(\chi(t) \in C^\infty(\mathbb{R})\) such that \(\chi = 1\) in a neighborhood of \(t = 0\), \(\text{supp } \chi' \subset \{t; \alpha(t) > 0\}\) and

\[
\psi(D_x)h_{10\delta}(x)\chi(t)\Phi(Dt, Dx)Pv \in H_{s+1}.
\]

Note that

\[
\psi_{h_{10\delta}}(x)P\chi \Phi v = \psi_{h_{10\delta}}(x)x \Phi Pv - \psi h_{10\delta}(x)[P, x] \Phi v - \psi h_{10\delta}(x)x [P, \Phi] v,
\]

and that the second and third terms in the right hand side belong to \(H_{s+1}\) and \(H_{s+2}\), respectively, by means of (2.1) and (2.2). If \(w = \chi \Phi v\) then it follows from (2.3) that

\[
(D_x)^{s+1}\psi(D_x)h_{10\delta}(x)Pw \in L^2(\mathbb{R}_t \times \mathbb{R}_x^n).
\]

Since \(v \in H_{-N}\) for a large \(N > 0\),

\[
(D_x)^{-N}\Phi v \in L^2(\mathbb{R}_t \times \mathbb{R}_x^n) \text{ and hence } (D_x)^{-N}w \in L^2(\mathbb{R}_t \times \mathbb{R}_x^n).
\]

To complete the proof of (4), we shall show for a suitable \(\tilde{\psi}(\xi) \in \Psi_{\delta, \xi_0}\)

\[
(D_x)^{s+1}\psi(D_x)h_{\delta}(x)w \in L^2(\mathbb{R}_t \times \mathbb{R}_x^n).
\]

To this end, we use the Weyl calculus of pseudodifferential operator and by changing the lower order terms of \(b\), if necessary, we can write

\[P = D_t + i\alpha(t)b^w(t, x, D_x), \]

where \(b^w(t, x, D_x)\) is a pseudo-differential operator with a Weyl symbol, that is,

\[
b^w(t, x, D_x)u = (2\pi)^{-n} \int e^{i(x-y)\xi} b(t, \frac{x+y}{2}, \xi) u(y) dy d\xi, \quad u \in S(\mathbb{R}^n).
\]
Furthermore, we consider the microlocalized operator at $\rho_0 = (0, \xi_0)$ with a parameter $0 < \lambda \leq 1$ as follows:

$$ P_{\lambda}^{\omega} = D_t + i\alpha(t)b_{\lambda}^{\omega}(t, x, D_x), $$

where $b_{\lambda}^{\omega}(t, x, D_x)$ is a pseudo-differential operator with a Weyl symbol

$$ b_{\lambda}(t, x, \xi) = b(t, x, \xi)h_{100}(\lambda \xi - \xi_0). $$

We apply Theorem A.2 of Dencker [2] by setting $A(t) = \alpha(t)$ and $B(t) = b_{\lambda}^{\omega}(t, x, D_x)$. Since (A.3) of [2] follows from (H.2), we have

Lemma 1. There exists constants C_0 and $T_0 > 0$ independent of $0 < \lambda \leq 1$ such that

$$(2.7) \quad ||u||^2 \leq C_0 \left\{ \text{Im} \left(P_{\lambda}^{\omega}u, b_{\lambda}^{\omega}u\right) + ||P_{\lambda}^{\omega}u||^2 \right\}$$

for any $u(t, x) \in \mathcal{S}(\mathbb{R}_t \times \mathbb{R}^n_x)$ having support where $|t| \leq T_0$.

We may assume $\text{supp} \chi \subset \{|t| < T_0\}$ by taking a small $\delta > 0$. Let $H_\delta(x, D_x; \lambda)$ denote the usual pseudodifferential operators with symbol $H_\delta = h_\delta(x)h_\delta(\lambda \xi - \xi_0)$. By (H.3) we have

Lemma 2. Let $\delta > 0$ be a number chosen in the above and let T_0 be the same as in Lemma 1. For any $\varepsilon > 0$ there exists a constant $C_\varepsilon > 0$ independent of $0 < \lambda \leq 1$ such that

$$(2.8) \quad (\log \lambda)^2 ||\sqrt{\alpha}u||^2 \leq \varepsilon \left\{ \text{Im} \left(P_{\lambda}^{\omega}u, b_{\lambda}^{\omega}u\right) + ||P_{\lambda}^{\omega}u||^2 \right\} + C_\varepsilon \left\{ ||\sqrt{\alpha}u||^2 + \lambda^{-1} ||(1 - H_{20\delta}(x, D_x; \lambda))u||^2 \right\},$$

for any $u(t, x) \in \mathcal{S}(\mathbb{R}_t \times \mathbb{R}^n_x)$ having support where $|t| \leq T_0$.

Proof. Substitute $\sqrt{\alpha(t)}H_{40\delta}(x, D_x; \lambda)u$ into (3). Then we have

$$(\log \lambda)^2 ||h_{40\delta}(\lambda D - \xi_0)h_{40\delta}(x)\sqrt{\alpha}u||^2 \leq \varepsilon (||D_t u||^2 + ||\sqrt{\alpha}b_{\lambda}^{\omega}(t, x, D_x)u||^2 + C||u||^2) + \lambda^{-1} ||h_{40\delta}(x, D_x; \lambda)u||^2,$$

because λ^{-1} is equivalent to $|\xi|$ on $\text{supp} h_{40\delta}(\lambda \xi - \xi_0)$ and $(\sqrt{\alpha})'$ is bounded. Note that $\text{supp} H_{20\delta} \cap \text{supp} (1 - H_{40\delta}) = \emptyset$ and $||D_t u||^2 \leq 2 \left(||P_{\lambda}^{\omega}u||^2 + ||\alpha b_{\lambda}^{\omega}u||^2 \right).$
Since it follows from (H.2) that

$$(\alpha b_{\lambda}^{w}u, b_{\lambda}^{w}u) = \text{Im} (P_{\lambda}^{w}u, b_{\lambda}^{w}u) - \frac{1}{2} \text{Re} ((\partial_{t}b_{\lambda})^{w}u, u) \leq \text{Im} (P_{\lambda}^{w}u, b_{\lambda}^{w}u) + C||u||^{2}$$

we have the desired estimate (2.8) by using (2.7). Q.E.D.

Let $\varphi(x, \xi; \lambda) = 1 - H_{2\delta}(x, \xi, \lambda)$. It is clear that

$$(2.9) \begin{cases} \varphi = 0 \text{ on supp } H_{\delta}(x, \xi; \lambda), \\ \varphi = 1 \text{ outside of supp } H_{2\delta}(x, \xi; \lambda) \end{cases}$$

For an integer $\ell > 2s + 2N + 4$ we set

$$K(x, \xi; \lambda) = \lambda^{\ell\varphi(x, \xi; \lambda)} \equiv \epsilon^{\ell\varphi(x, \xi; \lambda)\log \lambda}.$$

If $K_{\beta}^\alpha(x, \xi; \lambda)$ denotes $\partial_{\xi x}^\alpha D_x^\beta K(x, \xi; \lambda)$ and if $0 < \lambda \leq 1$ then

$$|\log \lambda|^{-|\alpha|} |\beta| \lambda^{-|\alpha|} K_{\beta}^\alpha(x, \xi; \lambda) h_{10\delta}(\lambda \xi - \xi_0)$$

belongs to a bounded set of $S(1, g_0)$, where $g_0 = (\log(\xi))^2 dx^2 + (\log(\xi))^2(g_0)^2 d\xi^2$ and $g_0 = 2 + |\xi|^2$. It follows from (2.9) that

$$\lambda^{-\ell} \sigma^w([K^w(x, D, \lambda), h_{10\delta}(\lambda x - \xi_0)]) h_{10\delta}(\lambda \xi - \xi_0), \quad \lambda^{-\ell} \sigma^w([K^w(x, D, \lambda), h_{10\delta}(\lambda D - \xi_0)])$$

belong to a bounded set of $S(1, g_0)$ uniformly for $0 < \lambda \leq 1$. By the same reason we have the following formulae modulo L^2 bounded operator uniformly for $0 < \lambda \leq 1$

$$\lambda^{-\ell+1} P_{\lambda}^{w}K^{w} H_{10\delta} \equiv \lambda^{-\ell+1} H_{10\delta} P K^{w}$$

(2.10)

$$\equiv \lambda^{-\ell+1} \{ H_{10\delta} K^w P + i \alpha(t) H_{10\delta} [b^w, K^w] \}$$

$$\equiv \lambda^{-\ell+1} \{ K^w h_{10\delta}(\lambda D - \xi_0) h_{10\delta}(x) P + i \alpha(t) [b^w, K^w] H_{10\delta} \}.$$

It follows from the expansion formula of the Weyl calculus (see Theorem 18.5.4 of [5]) that

$$(2.11) \begin{cases} \lambda^{-1}(\log \lambda)^{-2} K^{w} h_{10\delta}(\lambda \xi - \xi_0) \times \\ \{ \sigma^w([b^w, K^w]) - i \ell \log \lambda \sigma^w((H_{\varphi}b)^w K^w) \} \end{cases}$$

$\in S(1, g_0)$ uniformly for $0 < \lambda \leq 1.$
Here $\sigma^w(A)$ denotes the Weyl symbol of pseudodifferential operators of A. It follows from (2.10) and (2.11) that for any $u \in S(\mathbb{R}_t \times \mathbb{R}^n_x)$

$$
\text{Im} \left(P^w H_{10\delta} u, b^w H_{10\delta} u \right) \leq \text{Im} \left(\overline{b}^w H_{10\delta} (\lambda D - \xi_0) h_{10\delta}(x) Pu, K^w H_{10\delta} u \right) - \ell(\log \lambda) \text{Im} \left((H_{\varphi} b)^w \alpha(t) K^w H_{10\delta} u, b^w H_{10\delta} u \right) + C_\ell \left\{ (\log \lambda)^2 ||\sqrt{\alpha} K^w H_{10\delta} u||^2 + \lambda^{2s+1} ||\Lambda^{-N} u||^2 \right\},
$$

where $\Lambda = \langle D_x \rangle$. Use the Schwartz inequality in the first term of the right hand side. Then for any $\mu > 0$ there exists a $C_\mu > 0$ such that

$$
\text{Im} \left(\overline{b}^w h_{10\delta} (\lambda D - \xi_0) h_{10\delta}(x) Pu, K^w H_{10\delta} u \right) \leq \mu ||K^w H_{10\delta} u||^2 + C_\mu \left\{ ||\lambda^{-1} h_{10\delta} (\lambda D - \xi_0) h_{10\delta}(x) Pu||^2 + \lambda^{2s+1} ||\Lambda^{-N} u||^2 \right\}.
$$

Since the principal symbol of $\overline{b}^w (H_{\varphi} b)^w$ is real valued, we also obtain

$$
|\ell(\log \lambda) \text{Im} \left((H_{\varphi} b)^w \alpha K^w H_{10\delta} u, b^w K^w H_{10\delta} u \right)| \leq \mu ||K^w H_{10\delta} u||^2 + C_\mu \left\{ (\log \lambda)^2 ||\sqrt{\alpha} K^w H_{10\delta} u||^2 + \lambda^{2s+1} ||\Lambda^{-N} u||^2 \right\}.
$$

Hence we see that

$$
\text{Im} \left(P^w H_{10\delta} u, b^w H_{10\delta} u \right) \leq 2\mu ||K^w H_{10\delta} u||^2 + C_\mu \left\{ ||\lambda^{-1} h_{10\delta} (\lambda D - \xi_0) h_{10\delta}(x) Pu||^2 + (\log \lambda)^2 ||\sqrt{\alpha} K^w H_{10\delta} u||^2 + \lambda^{2s+1} ||\Lambda^{-N} u||^2 \right\}.
$$

Similarly,

$$
||P^w H_{10\delta} u||^2 \leq 2||h_{10\delta} (\lambda D - \xi_0) h_{10\delta}(x) Pu||^2 + C \left\{ (\log \lambda)^2 ||\alpha K^w H_{10\delta} u||^2 + \lambda ||K^w H_{10\delta} u||^2 + \lambda^{2s+1} ||\Lambda^{-N} u||^2 \right\}.
$$

Let $u \in S(\mathbb{R}_t \times \mathbb{R}^n_x)$ satisfy

$$
\text{supp } u \subset \{ |t| \leq T_0 \}.
$$
Substitute $K^{w}H_{10\delta}u$ into (2.7) and (2.8). Choose $\mu = 1/(4C_{0})$ in (2.12). In view of (2.12) and (2.13), there exists a small $\lambda_{0} > 0$ such that
\[
||K^{w}H_{10\delta}u||^{2} \leq C(||\lambda^{-1}h_{10\delta}(\lambda D_{x} - \xi_{0})h_{10\delta}(x)Pu||^{2} + \lambda^{2s+1}||\Lambda^{-N}u||^{2})
\]
if $0 < \lambda < \lambda_{0}$

Since it follows from (2.9) that the symbol of $K^{w}H_{10\delta} = 1$ on \text{supp} H_{δ}, we have for $0 < \lambda < \lambda_{0}$
\[
||h_{\delta}(\lambda D_{x} - \xi_{0})h_{5}(x)u||^{2} \leq C(||\lambda^{-1}h_{10\delta}(\lambda D_{x} - \xi_{0})h_{10\delta}(x)Pu||^{2} + \lambda^{2s+1}||\Lambda^{-N}u||^{2})
\]

Multiplying $\lambda^{-2s}(1 + \kappa\lambda^{-1})^{-2t^{N}+s+2}$ with a parameter $\kappa > 0$ by both sides, we have
\[
||(1 + \kappa\Lambda)^{-s}\Lambda^{s}\psi_{\delta}(D_{x})h_{\delta}(x)u||^{2} \leq C(||(1 + \kappa\Lambda)^{-s}\Lambda^{s}\tilde{\psi}_{\delta}(D_{x})h_{10\delta}(x)Pu||^{2} + ||\Lambda^{-N}u||^{2})
\]

Since $w = \chi\Phi v$ satisfies (2.5), one can find a sequence $\{\tilde{u}_{j}\}$ in $\mathcal{S}(\mathbb{R}_{t} \times \mathbb{R}_{x}^{n})$ satisfying $\Lambda^{-N}\tilde{u}_{j} \rightarrow \Lambda^{-N}\Phi v$ in $L^{2}(\mathbb{R}_{t} \times \mathbb{R}_{x}^{n})$, ($j \rightarrow \infty$) and \text{supp} $\tilde{u}_{j} \subset \{\tau < |\xi|\}$. If $u_{j} = \chi(t)\tilde{u}_{j}$, then u_{j} satisfies (2.14) and
\[
\Lambda^{-N}u_{j} \rightarrow \Lambda^{-N}w \text{ and } \Lambda^{-(N+1)}Pu_{j} \rightarrow \Lambda^{-(N+1)}Pw \text{ in } L^{2}(\mathbb{R}_{t} \times \mathbb{R}_{x}^{n}), \ (j \rightarrow \infty)
\]
because $\Lambda^{-(N+1)}D_{t}u_{j} = (D_{t}\chi)\Lambda^{-(N+1)}\tilde{u}_{j} + \chi(\Lambda^{-(N+1)}D_{t}\tilde{u}_{j})$. Letting $j \rightarrow \infty$ in the above estimate with $u = u_{j}$, we get for any fixed $\kappa > 0$
\[
||(1 + \kappa\Lambda)^{-s}\Lambda^{s}\psi_{\delta}(D_{x})h_{\delta}(x)u||^{2} \leq C(||(1 + \kappa\Lambda)^{-s}\Lambda^{s}\tilde{\psi}_{\delta}(D_{x})h_{10\delta}(x)Pu||^{2} + ||\Lambda^{-N}w||^{2})
\]
because of (2.4) and (2.5). Letting $\kappa \rightarrow 0$ we get (2.6), and so (4) of Theorem 2. For an open conic ω in $T^{*}(\mathbb{R}^{n+1})$ we say $u \in H_{s}(\omega)$ if $u \in H^{loc}(\bar{\rho})$ for any $\bar{\rho} \in \omega$. It follows from (4) and the usual covering arguments that for any open conic sets ω_{0}, ω with $\bar{\omega}_{0} \subset \omega$
\[
Pu \in H_{s+1}(\omega) \Rightarrow u \in H_{s}(\omega_{0})
\]
This shows the microhypoellipticity of P. Thus the proof of Theorem 2 is completed.
References

