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Abstract

We consider an inverse scattering problem, by using a time-
dependent method, for the Dirac equation with a time-dependent
electromagnetic field. The Fourier transform of the field is recon-
structed from the scattering operator on a Lorentz invariant set

(0.1) $D.=\{(\tau, \xi)\in R\cross R^{3}, |\tau|<c|\xi|\}$ .

in the dual space of the space-time. As corollaries of this result,
we can reconstruct the electromagnetic field completely if it is a
finite sum of fields each of which is a time-independent one by a
suitable Lorentz transform, and we can also determine the field
uniquely if the fields satisfies some exponential decay condition.
Our assumptions and results are independent of a choice of inertial
frames.

1 Introduction

To determine an unknown electromagnetic field we hit an particle,
with the initial state $\psi_{i}$ , into the field and observe the final state
$\psi_{f}$ . It is usually impossible to track the particle all the time. We
know only the initial state and the final state.
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Preparing various initial states, we obtain the map: $\psi_{i}\mapsto\psi_{f}$ .
Roughly speaking, the map is called the scattering operator, whose
precise definition will be given below. In this study the particle is
supposed to obey a Dirac equation, which describes the motion of
a relativistic particle with spin 1/2, for example, an electron or a
positron.

The following is our problem.

Can we determine the field from the scattering operator ?

If the field is a time-independent one satisfying some short range
condition, then it can be completely reconstructed from the scat-
tering operator (see [Is], [Itl], [J]). This means that the field can
be determined by scattering experiments in the inertial frames in
which the field is time-independent. On the other hand, taking
account of the relativistic invariance of the Dirac equation, we ex-
pect that the field can be also determined by scattering experiments
in the other inertial frames, in which the field may not be time-
independent. Thus, it is important to treat the the Dirac equation
with a time-dependent electromagnetic field if one investigates in-
verse scattering problems for Dirac equations.

We proceed our argument by fixing an inertial frame, in which $t$

denotes the time-variable and $x$ the space-variable. But, note that
our assumptions and results are independent of a choice of inertial
frames, which is proved in Section 3.

We begin with some explanation for our notatios. We denote by
$\langle a, b\rangle_{R^{d}}$ the usual inner product of $a$ and $b$ in $R^{d}$ and may write
$a\cdot b$ or $\langle a, b\rangle$ for simplicity. Moreover, the usual norm of $R^{d}$ is
denoted by the same symbol $|\cdot|$ for any $d$ if no confusion occures.
We also use the symbol $\langle T, u\rangle$ in place of $T(u)$ for a distribution
$T$ and a test function $u$ .

The Dirac equation with an electromagnetic potential

$A=(A^{0}, A^{1}, A2, A^{3})$ : $R_{t}\cross R_{x}^{3}arrow R^{4}$
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is given by

(1.1) $i \frac{d}{dt}\Psi(t)=H_{A}(t)\Psi(t)$ , $\Psi(t)\in \mathcal{H}.=L^{2}(R_{x}^{3}, c^{4})$ ,

$H_{A}(t)=c \sum_{j=1}\alpha_{j}(3D_{j}-A^{j}(t, X))+\alpha_{4}mc^{2}-A^{0}(t, X)I_{4}$ ,

where $c>0$ is the velocity of light, $m\underline{>}0$ the rest mass of the
particle, $D_{j}=-i\partial/\partial x_{j}$ , and $\alpha_{j}’ \mathrm{s}$ are 4 $\cross 4$ Hermitian matrices
with the following properties:

$\alpha_{jj}\alpha_{k}+\alpha_{k}\alpha=2\delta_{jk}I4$ , $1\underline{<}j,$ $k\leq 4$ ,
where $\delta_{jk}$ is the Kronecker symbol and $I_{n}$ is the $n\cross n$ identity
matrix.

Let $L\neq\{0\}$ be a subspace of $R^{4}$ Then we denote by $X_{L}$ the
orthogonal projection of $X=(t, x)\in R^{4}$ onto $L$ and define a
class of potentials:

$S(L).= \{A\in B^{1}(R^{4}, R^{4}))\int_{0}^{\infty}g_{A}^{L}(r)dr<\infty\}$ ,

where $g_{A}^{L}(r).=$ $\sup|A(X)|$ and $B^{1}(R^{4}, R^{4})$ is the space of
$|X_{L}|\geq r$

$C^{1}(R^{4}, R^{4})$-functions with bounded derivatives. If $A\in B^{1}(R^{44}, R)$

satisfies the short range condition with respect to $X_{L}$-variable:
$|A(X)|\underline{<}K(1+|X_{L}|)^{-\rho}$ on $R^{4}$

for some $K>0$ and some $\rho>1$ , then $A$ belongs to $S(L)$ .
We also say that $A$ belongs to $S$ if and only if $A$ is decomposed

as
$A= \sum_{j=1}^{N}A_{j}$ , $A_{j}\in S(L_{j})$ ,

for some $N$ and for some subspaces $L_{j}$ ,
If $A$ belongs to $S$ , the Dirac equation

$(1.1)\mathrm{h}\mathrm{a}\mathrm{s}^{\frac{<}{\mathrm{a}}}1\underline{<}j\mathrm{u}\mathrm{n}\mathrm{i}N\mathrm{q}\mathrm{u}\mathrm{e}$

unitary
propagator $U_{A}(t, s),$ $S,$ $t\in R\cdot$.

$i \frac{d}{dt}U_{A}(t, s)=H_{A}(t)U_{A}(t, S)$ , $U_{A}(S, S)=I$ .

Moreover, we have the following.
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Proposition 1.1 Let $A\in S$ . Then the wave operators
$W_{A}^{\pm}(s).=s- \lim_{tarrow\pm\infty}U_{A}(S, t)e-i(t-\mathit{8})H0$

exist for each $s\in R$ , where $H_{0}$ is the free Dirac operator:

$H_{0=c} \sum_{j=1}\alpha jD3j+\alpha 4mc^{2}$ .

Remark. The free Dirac operator $H_{0}$ is a self-adjoint operator
with domain
$D(H_{0})=H^{1}(R^{3}, C^{4})$ , the Sobolev space of order 1, and $U_{0}(t, S)=$

$e^{-i(ts)0}-H$ .

The scattering operator is defined by
$S_{A}(_{S)}:=W_{A}^{+}(_{S})*W_{A^{-()}}s$ ,

for each $s\in R$ . If some strong condition is imposed on the po-
tential, the scattering operator is unitary in $\mathcal{H}$ . But, it is not
necessarily unitary under our weak assumption, $A\in S$ .

The following useful relation follows immediately from defini-
tion:
(1.2) $S_{A}(s)=e^{-i_{S}H_{0}}s_{A}(0)e^{i}sH_{0}$ , $s\in R$ .
Thanks to this relation, we can know $S_{A}(s)$ for all $s\in R$ if $S_{A}(s\mathrm{o})$

is given for some $s_{0}$ . The electromagnetic field strength $F_{A}$ , deter-

mined by $A$ , is defined by

$F_{A}=(F_{A}^{j})_{0\leq jk\leq 3}k<=( \frac{\partial A^{k}}{\partial x_{j}}-\frac{\partial A^{j}}{\partial x_{k}})0\leq j<k\leq 3$ : $R^{4}arrow R^{6}$ ,

where $x_{0}=t$ .
It should be recalled that the potential is not uniquely deter-

mined by the field and that it is not the potential but the field
that can be an observable quantity. The following theorem shows
that the scattering operator is also determined by the field not by
the potential.

49



Theorem 1.2 Let $A_{(1)}$ and $A_{(2)}$ be in $S$ and suppose that

$A.=A_{(2)}-A_{(1})= \sum_{j=1}^{N}A_{j}$ , $A_{j}\in S(L_{j})$

with $dimL_{j}\underline{>}2,1\underline{<}j\underline{<}N$ and that $F_{A_{(1)}}=F_{A_{(2)}}$ .
Then $S_{A_{(1)}}(s)=S_{A_{(2)}}(s)$ for all $s\in R$ .

We next consider the inverse problem.
For a subspace $L\neq\{0\}$ of $R^{4}$ a class $\overline{S}(L)$ of electromagnetic

fields is defined in the same way as $S(L)$ .

$\overline{S}(L).=\{F\in B^{0}(R^{4}, R^{6}))\int_{0}^{\infty}g_{F}^{L}(r)dr<\infty\}$ ,

where $g_{F}^{L}(r).=$ $\sup|F(X)|$ and $B^{0}(R^{4}, R6)$ is the space of
$|X_{L}|\geq r$

bounded continuous functions from $R^{4}$ to $R^{6}$

We denote $\mathrm{b}\mathrm{y}_{\cup}^{-}-=(\tau, \xi)\in R\cross R^{3}$ the dual variable of $X=$
$(t, x)$ and define an open set $D$ in $R^{4}$ by
(1.3) $D.=\{(\tau, \xi)\in R^{4})|\tau|<c|\xi|\}$ .
We denote by $S’(\underline{R}4, c6)$ the space of $C^{6}$-valued tempered dis-
tributions and by $F\in S’(R4, c6)$ the Fourier transform of $F\in$

$S’(R^{4},\cdot c^{6}).\cdot$

$\overline{F}(\tau, \xi)=(2\pi)^{-2}\iint e^{-it\tau-ix\cdot\xi}F(t, x)dtdx$ .
We also denote by $\overline{F}|_{\Omega}$ the restriction of $\overline{F}$ on an open set $\Omega$ , which
is regarded as a distribution on $\Omega$ , i.e., $\overline{F}|_{\Omega}\in D’(\Omega)$ .

Theorem 1.3 Suppose the following: (i) $A= \sum_{j=1}^{N}A_{j}$ with

$A_{j}\in S(L_{j})$ . $(ii)F_{A}= \sum_{k=1}FN/k$ with $F_{k}\in\overline{S}(L_{k}’)$ .

Then $\overline{F_{A}}|_{D\backslash \Sigma}$ can be reconstructed from $S_{A}(0)$ , where

(1.4) $\Sigma.\cdot=(_{\mathrm{d}\mathrm{i}}\mathrm{l}\leq j\bigcup_{j^{=}\mathrm{m}L1}\leq NL_{j})\cup(_{1\leq k^{\neg}\leq}\dim L’=1)\bigcup_{/N}Lk/k$ .
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Remark. The decompositions in (i) and (ii) are not unique for
a potential $A$ and the field $F_{A}$ , and the set $\Sigma$ depends on the
decompositions. Let $A$ be the set of all decompositions of $A$ and
$F_{A}$ such as (i) and (ii), and denote by $\Sigma_{a}$ the $\Sigma$ in (1.4) associated
with a decomposition $a\in A$ . Then $\Sigma$ in Theorem 1.3 can be
replaced by

$\overline{\Sigma}\cdot.=\bigcap_{a\in A}\Sigma_{a}$ .

This theorem tells us nothing about $\overline{F}_{A}$ on $D^{c}$ , the complement
of $D$ . If $\overline{F}_{A}$ on $D^{c}$ does not contributes to the scattering operator,
this result is satisfactory one. But, this expectation is false.

Proposition 1.4 Let $c=m=1$ for simplicity and define a
subset $D_{1}\subset D^{c}$ by

$D_{1}.\cdot=\{(\tau, \xi)\in R\cross R^{3}\cdot \mathcal{T}>)\sqrt{|\xi|^{2}+4}\}$

and fix $\phi\in S(R_{t}\cross R_{x)}^{3}R)$ such that supp $\overline{\phi}\cap D_{1}\neq\emptyset$ . Let
$S_{\lambda A}(0)$ be the scattering operator associated with the potential
$\lambda A=(\lambda\phi, \mathrm{o})$ for $\lambda\in R$ .

Then $S_{\lambda A}(0)\neq I$ for any small $\lambda\neq 0$ .

Remark. We should notice that the proposition does not assert
that the above potential can be reconstructed from the scatter-
ing operator. The contribution to the scattering operator will not
necessarily imply the possibility of the reconstruction of the field.
The author does not know whether the field $F_{A}$ can be recon-
structed completely from the scattering operator if the support
of $\overline{F_{A}}$ has an intersection with $D^{c}$ as in the case of Schr\"odiger
equations [Wel]. The velocity of a relativistic particle cannot
exceed that of light, though a nonrelativistic particle can have
any speed. This is one of the most difference between a particle
obeying a Dirac equation and one obeying a Schr\"odinger equa-
tion. The following intuitive argument shows that the field $F$ with
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$\mathrm{s}\mathrm{u}\mathrm{p}\mathrm{p}\overline{F}\subset D’.=\{(\tau, \xi))|\tau|>c|\xi|\}$ may be peculiar one from
the point of view of the relativity. We write formaly

$F(t, x)=(2\pi)^{-2}./D$ , $F_{\tau,\xi}(t, x)d\mathcal{T}d\xi$ ,

where $F_{\tau,\xi}(t, x).=e^{it_{\mathcal{T}+}ix\cdot\xi}\overline{F}(\mathcal{T}, \xi)$ satisfies the wave equation

$\frac{1}{\tau^{2}|\xi|^{-2}}\frac{\partial^{2}}{\partial t^{2}}F_{\tau,\xi}(t, X)=\triangle xF\mathcal{T},\xi(t, X)$ .

This implies that each component $F_{\tau,\xi}$ of the field $F$ propagates
with velocity $|\tau||\xi|^{-1}>c$ , which contradicts the relativity.

But we can determine the field completely, if we impose some
conditions on the field, as corollaries of Theorem 1.3.

Theorem 1.5 Suppose (i) and (ii) in Theorem 1.3. More-
over, we assume $\Sigma\cap D=\emptyset$ and

(1.5) $Supp\overline{F_{A}}\backslash \{0\}\mathrm{n}D^{C}=\emptyset$.

Then $F_{A}$ can be completely reconstructed from $S_{A}(0)$ .

Using this theorem we can treat time-independent potentials.

Corollary 1.6 Suppose (i) and (ii) in Theorem 1.3 with
$\Sigma\cap D=\emptyset$ . Moreover, suppose that for each $k=1,$ $\cdots$ , $N’$

there exists $V_{k}\in T.=\{X=(t, x)\in R^{4})c|t|>|x|\}$ such that

(1.6) $F_{k}(sV_{k}+X)=F_{k}(X)$ , $s\in R$ , $X\in R^{4}$ .

Then $F_{A}$ can be reconstructed completely from $S_{A}(0)$ .

Remark 1. In Section 3 we will show that each $F_{k}$ satisfying
(1.6) is time-independent on a suitable inertial frame determined
by $Vk$ .

Remark 2. If $A\in S$ is independent of $t$ and satisfies

(1.7) $|A(x)|+|F_{A}(x)|\leq K(1+|x|)^{-\rho}$ on $R^{3}$ ,
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for some constants $K>0$ and $\rho>1$ . Then the above corol-
lary shows that the elecromagnetic field $F_{A}(x)$ can be completely
reconstructed from the scattering operator $S_{A}(0)$ . This has been
already obtained under different conditions in [Itl], [J] and [Is].
Roughly speaking, the decay rate of the potential is supposed to
be $\rho>3$ in [Itl], $\rho>3/2$ in [J] and $\rho>2$ in [Is]. However, the
decay condition on the field is not imposed in [J], and the magnetic
field is not treated in [Is].

The next theorem shows that the field is uniquely determined by
the scattering operator under some exponential decay condition.

Theorem 1.7 Let $A\in S$ .
(1) Suppose there exists $V\in S^{3},$ $S^{3}$ being the unit sphere in

$R^{4}$ , such that

(1.8) $|F_{A}(X)|\underline{<}Ke^{-\delta|}\langle V,X\rangle_{R}4|$ on $R^{4}$ ,

for some constants $K>0$ and $\delta>0$ .
Then $\overline{F_{A}}|_{R^{4}\backslash L}$ is determined by $S_{A}(0)$ , where $L$ is the one-
dimensional subspace spanned by $V$ .
(2) Suppose , in addition to the assumption of (1), that there
exist $V’\in S^{3}$ linearly indepndent of $V$ and a bounded function
$g$ satisfying $g(t)(1+t)^{-1}\in L^{1}((0, \infty))$ such that

(1.9) $|F_{A}(X)|\underline{<}g(|\langle V’, X\rangle R^{4}|)e-\delta|\langle V,X\rangle_{R}4|$ on $R^{4}$ ,

Then $F_{A}$ is uniquely determined by $S_{A}(0)$ .

Remark. Roughly speaking, (2) implies that if $F_{A}$ satisfies

$|F_{A}(X)|\underline{<}K(1+|\langle V_{1}, X\rangle_{R^{4}}|)-\rho e^{-}\delta|\langle V_{2},X\rangle_{R}4|$ on $R^{4}$

for some linearly independent $V_{1},$ $V_{2}\in R^{4}\cap S^{3}$ and for some
$K>0,$ $\rho>0$ and $\delta>0$ , then $F_{A}$ is completely determined by
the scattering operator.
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It is an important problem in physics as well as in mathemat-
ics whether the external field can be determined from the scat-
tering operator. In the case of Schr\"odinger operators with time-
independent potentials, it is known, since Faddeev [F], that the po-
tential can be reconstructed from the high-energy behavior of the
scattering matrices (see, for example, [Is-K], [Ne], [Sa], [Wa], [Ni]).
The proofs are based on a stationary representation of the scat-
tering matrices and some resolvent estimates at the high-energy
range. Using a similar stationary method, the author [Itl] has
proved that the electromagnetic fileld can be reconstructed from
the high-energy behavior of the scattering matrices of the Dirac
operator with a time-independent potential. In [Is] Isozaki has ob-
tained a similar result as well as a uniqueness result for the fixed
energy problem by a different method.

On the other hand, Enss and Weder [E-We] have found a new
method, a time-dependent method (a geometric method), to re-
construct the potential from the high-energy asymptotics of the
scattering operator in the case of Schr\"odinger operators without
magnetic fields. Since their method is simple, it can be applicable
to many cases. Recently, Arians [A1] has applied their method
to reconstruct the electromagnetic field for the Schr\"odinger oper-
ator with a time-independent electromagnetic potential. See also
[A2, We2, We3]. On the other hand, Weder [Wel] has shown that
the potential can be completely reconstructed from the scattering
operator for the Schr\"odinger equations with a time-dependendent
potential. For Dirac operators with a time-independent potential
Jung [J] has reconstructed the electromagnetic field by using the
geometric method. Some of his proofs are applicable to the case of
time-dependent potentials (Proposition 2.2).

Furthermore, our results seem to be related with [St] and [R-
$\mathrm{S}]$ , in which inverse scattering problems for wave equations with
time-dependent potentials are treated.
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2 Sketch of the Proof of Theorem 1.3

To explain how we reconstruct the electromagnetic field from the
scattering operator, we give a sketch of the proof of Theorem 1.3.
For further details of the proof, see [it2].

To do so, we have to prepare some notations.
For a subspace $L$ we define a set $C(L)\subset S^{2}$ by

$C(L).\cdot=\{\omega\in S2).\overline{\omega}\in L^{\perp}\}$ ,

where $\overline{\omega}.=(1, c\omega)\in R^{4}$ We sometimes write $C(V)=C(L)$ if
$L$ is the one-dimensional subspace spanned by $V\neq 0\in R^{4}$ If
$V=(v_{0}, v)\in R^{\chi}R^{3}$ ,

$C(V)=\{\omega\in s^{2}). \langle v, \omega\rangle_{R^{3}}=-v_{0}/c\}$ .

Hence, $C(V)$ is a circle on $S^{2}$ if $V\in D$ one point $\{-v_{0}v/c|v|^{2}\}$

on $S^{2}$ if $V\in\overline{D}\backslash D$ and empty if $V\not\in’\overline{D}$ . Moreover, it is easy to
see that if $V_{1},$ $V_{2}\in\overline{D}$ , then

(2.1) $C(V_{1})=C(V_{2})$ $=$ $V_{1}//V_{2}$ .

On the other hand,
$C(L)= \bigcap_{=j1}C(V_{j})N$

if $\{V_{1}, \cdots , V_{N}\}$ is a basis of $L$ . Therefore, the number of elemellts
of $C(L)$ is at most two if $\dim L=2$ . Moreover, it is at most one alld
zero if $\dim L=3$ and $\dim L=4$ , respectively, since $\mathrm{d}\mathrm{i}\mathrm{n}1L^{\perp}=1$ and
$\dim L^{\perp}=0,\mathrm{r}\mathrm{e}\mathrm{s}\mathrm{p}\mathrm{e}\mathrm{C}\mathrm{t}\mathrm{i}\mathrm{V}\mathrm{e}\mathrm{l}\mathrm{y}N^{\cdot}$

For $A= \sum_{j=1}A_{j}\in S$ with $A_{j}\in S(L_{j})$ we define

$C_{A}. \cdot=\bigcup_{j=1}C(Lj)N$ .

Then line integrals

(2.2) $I_{\acute{1}_{A}}^{\prime\omega}( \eta).=\int_{-\infty}^{\infty}\langle\overline{\omega}, A(t\overline{\omega}+\eta)\rangle_{R^{4}}dt$, $\eta\in R_{t}\cross R_{x}^{3}$ ,
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is well-defined if $\omega\in S^{2}\backslash C_{A}$ . The matrix $\alpha\cdot\omega.=\sum_{j=1}^{3}\alpha_{j}\omega_{j}$ for

$\omega=(\omega_{1}, \omega_{2}, \omega_{3})\in S^{2}$ has eigenvalues 1 and $-1$ with multiplicity

two, respectively. Thus, $P_{\pm}( \omega).=\frac{1}{2}(1\pm\alpha\cdot\omega)$ is the eigenprojection
associated with the $\mathrm{e}\mathrm{i}\mathrm{g}\mathrm{e}\mathrm{n}\mathrm{v}\mathrm{a}\mathrm{l}\mathrm{u}\mathrm{e}\pm 1$ of $\alpha\cdot\omega$ .

The proof of Theorem 1.3 is based on the following proposition.

Proposition 2.1 Let $A\in S$ and $s\in R$ . Then

(2.3) $w- \lim_{Earrow+\infty}e$
$-iE\omega\cdot xP_{\pm^{S_{A}}}(s)P_{\pm}e^{iE}=eA\omega\cdot xiK^{\pm\omega}(s,x)P_{\pm}(\omega)$

$if\pm\omega\in S^{2}\backslash C_{A}$ . Here, $e^{\pm iE\omega\cdot x}$ and $e^{iK_{A}^{\pm\omega}}(s,x)$ are multiplication
operators.

Remarkl. We can also show that

(2.4) $w- \lim_{Earrow+\infty}e-iE\omega\cdot xP\pm SA(s)P_{\mp}e^{iEx}=0\omega$

.

for each $s\in R$ if $\omega,$
$-\omega\in S^{2}\backslash C_{A}$ .

Remark2. If the potential $A$ is a time-independent and short-
range potential, the result has been already proved by Jung [J],
and his proof is applicable to our case with a slight modification.

Lemma 2.2 Let $f\in \mathcal{H}$ .
(i) Suppose $\omega\in S^{2}\backslash C_{A}$ . Then there exists $E_{0}>0$ such that

(2.5) $\lim_{tarrow\pm\infty}||(W_{A}\pm(0)-U_{A}(0, t)e-itH0)P+eiE\omega\cdot xf||=0$

uniformly in $E\geq E_{0}$ .
(ii) $Suppose-\omega\in S^{2}\backslash C_{A}$ . Then there exists $E_{0}>0$ such that

(2.6) $\lim_{tarrow\pm\infty}||(W_{A}^{\pm}(0)-U_{A}(\mathrm{o}, t)e-itH0)P_{-}efiE\omega\cdot x||=0$

uniformly in $E\underline{>}E_{0}$ .

The following lemma follows from this immediately.
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Lemma 2.3 Let $f,$ $g\in \mathcal{H}$ and $let\pm\omega\in S^{2}\backslash C_{A}$ . Then

$\lim_{tarrow+\infty}(e^{-iE\omega\cdot x}P\pm e^{it}U_{A}H0(t, -t)e^{i}P_{\pm}ef,$$g)tH0iE\omega\cdot x$

$=(e^{-iE\omega\cdot x}P\pm s_{A(}\mathrm{o})P\pm eiE\omega\cdot xf,$ $g)$

uniformly in $E\underline{>}E_{0}$ .

We define

$Q(t, x).=H_{A}(t)-H_{0}=-c \sum_{j=1}\alpha_{j}A^{j}3(t, x)-A0(t, X)I_{4}$ ,

$W_{\omega}(t, x).=\langle\overline{\omega}, A(t, x+Ct\omega)\rangle R{}_{4}P_{+}(\omega)+\langle(--\omega), A(t, X-ct\omega)\rangle R4P-(\omega)$ .

Lemma 2.4 For each $t>0$ and each $\omega\in S^{2}$ , one has

(2.7) $s$ – $\lim e^{-iE\omega\cdot xitH0}eU_{A}(t, -t)e^{iHiE\omega}et0x$

$Earrow+\infty$

$=e^{i\int_{-t^{W}}^{t}(s}\omega’ x)ds$ .

In the momentum space it can be easily seen that

(2.8) $s- \lim_{Earrow+\infty}e^{-}P_{\pm^{e^{i}\frac{1}{2}}}iE\omega\cdot xE\omega\cdot x(=I\pm\alpha\cdot\omega)=P_{\pm}(\omega)$ .

From this together with Lemma 2.4 it follows that

(2.9) $\lim_{Earrow+\infty}e-iE\omega\cdot x_{P_{\pm}U_{A}}e^{it}H0(t, -t)ePitH0e^{iE\omega}\pm\cdot x$

$=e^{i\int_{-t}^{t}\langle}(\overline{\pm\omega}),A(s,x\pm Cs\omega)\rangle_{R}4ds_{P_{\pm}()}\omega$.

Combinating this with Lemma 2.3, we can obtain Proposition 2.1
for $s=0$ . The other cases can be treated by using (1.2).

Here we give the idea of the proof of Theorem 1.3 for a simple
case, $A=(\phi, 0),$ $\phi\in S$ . In this case, the right hand side of (2.3)
determines

$K_{A}^{\omega}( \eta).\cdot=.\int_{-\infty^{\phi}}\infty t(\overline{\omega}+\eta)dt$ ,
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since $K_{A}^{\omega}(\eta)arrow 0$ as $|\eta|arrow\infty$ with $\langle\eta,\overline{\omega}\rangle=0$ . Thus the Fourier
transform and the inverse Fourier transform yield

$\overline{\phi}(_{\cup}^{-}-)=(2\pi)-2_{\sqrt{1+c^{2}},\rangle}\int_{\Pi_{\overline{\omega}}}e-i\langle\eta_{-}--K^{\omega}A(\eta)d\eta$, for $–\in-\Pi_{\overline{\omega}}$ ,

$K_{A}^{\omega}( \eta)=(2\pi\sqrt{1+c^{2}})^{-1}\int_{\Pi_{\overline{\omega}}}e^{i\langle\eta,-}--\rangle\overline{\phi}(-\cup)-d---$, for $\eta\in\Pi_{\overline{\omega}}$ ,

where $\Pi_{\theta}.=\{\eta\in R^{4}, \langle\theta, \eta\rangle_{R^{4}}=0\}$ . On the other hand, we
can easily verify that

$\bigcup_{\omega\in S^{2}}\Pi_{\tilde{\omega}}=\overline{D}$
, the closure of $D$ .

Therefore it follows that the only $\overline{\phi}|_{\overline{D}}$ is reconstructed from the
right hand side of (2.3). In the case of Schr\"odinger equations,
similar line integrals $\int_{-\infty^{\phi(}}^{\infty}\eta 0,$ $t\omega+\eta’$ ) $dt,$ $\eta=(\eta_{0}, \eta)/\in R\cross R^{3}$

are appeared [We], which are also obtained from $cK_{A}^{\omega}(\eta)$ by $carrow$

$+\infty$ . By the same argument as above, we can see that these
line integrals determine the whole $\overline{\phi}$. Therefore the potential $\phi$ is
completely reconstructed in the case of Schr\"odinger equations.

Now we define

$\overline{c_{A}}.\cdot=c_{A^{\cup}}(\bigcup_{k=1}^{N’}c(L_{k}’)1$

Lemma 2.5 Let $\omega\in S^{2}\backslash \overline{C_{A}}$ and $\theta\in S^{3}$ with $\langle\overline{\omega}, \theta\rangle_{R^{4}}=0$,
and let $\eta\in R^{4}$ . Then one has

$(2.10) \frac{d}{ds}K_{A(\eta}^{\omega}s\theta+)|_{S=}0=-\int_{-\infty}^{+\infty}\langle\overline{\omega}\wedge\theta, F_{A}(t\overline{\omega}+\eta)\rangle_{R}6dt$ ,

where $X\wedge \mathrm{Y}=(X_{j}\mathrm{Y}_{k^{-}}xk\mathrm{Y}_{j})_{0}\leq j<\kappa\leq 3\in R^{6}$ for $X=(X_{0)}\cdots , X_{3})$

and $\mathrm{Y}=$ ( $\mathrm{Y}_{0},$ $\cdots$ , Y3).

Remark. Since $\overline{\omega}\in S^{2}\backslash \overline{C_{A}},$ $F_{A}(t\overline{\omega}+\eta)$ is integrable with respect
to $t\in R$ .
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Proof. By Stokes) theorem we have
$K_{A}^{\omega}( \eta)-K\omega(A\eta+s0\theta)=\int_{0}^{s0_{d}}s\int_{-\infty}^{\infty}\langle\overline{\omega}\wedge\theta, FA(t\overline{\omega}+s\theta+\eta)\rangle R6dt$ ,
from which the lemma follows immediately. $\square$

Since
$\frac{d}{ds}\exp(-iK\omega(AS\theta+\eta))=-i\frac{d}{ds}K^{\omega}(As\theta+\eta)\cdot\exp(-iK_{A}^{\omega}(s\theta+\eta))$

and ww A $\overline{\omega}=0$ , we can conclude from Proposition 2.1 and Lemma
2.5 that for each $\eta\in R^{4},$ $\omega\in S^{2}\backslash \overline{C_{A}}$ and $\theta\in S^{3}$ the integral

(2.11) $\int_{-\infty}^{+\infty}\langle\overline{\omega}\wedge\theta, F_{A}(t\overline{\omega}+\eta)\rangle_{R^{6}}dt$

can be constructed from the scattering operator $S_{A}(0)$ (see (1.2)).

Proof of Theorem 1.3. For a while we $\mathrm{f}\mathrm{i}\mathrm{x}_{\cup}^{-_{0}}-=(\tau_{0}, \xi 0)\in D\backslash \Sigma$.
Since $C(\Xi_{0})\cap\overline{C_{A}}$ is a finite or empty set due to (2.1), we can take
$\{\omega_{j}^{0}\}_{j=1}^{3}\subset C(_{\cup}^{-_{0}}-)\backslash \overline{C_{A}}$ with $\omega_{j}^{0}\neq\omega_{k}^{0}$ if $j\neq k$ . Then $\{\overline{\omega}_{j}^{0}\}_{j=1}^{3}$ are
linearly independent in $R^{4}$ , where $\overline{\omega}_{j}^{0}=(1, c\omega_{j})0$ . We also take $\overline{\omega}_{0}^{0}$

from $R^{4}$ so that $\{\overline{\omega}_{j}^{0}\}_{j=0}^{3}$ is a basis of $R^{4}$ (Here we has abused
the notation $\overline{\omega}_{0}^{0}$ , which need not be expressed as $(1, c\omega_{0})0$ for some
$\omega_{0}^{0}\in S^{2}$ , to simplify notations below.) It should be notice that
$\{\overline{\omega}_{j}^{0}\wedge\overline{\omega}_{k}^{0}\}_{0\leq k<}j\leq 3$ is also a basis of $R^{6}$

We first assume $F_{A}\in L^{1}(R_{t}\cross R_{x}^{3})$ . Noting that $\langle_{\cup 0}^{-0}-,\overline{\omega}_{j}\rangle R^{4}=0$

for $j=1,2,3$ , we have, for each $0\underline{<}k<j\leq 3$ ,
$\langle\overline{\omega}_{jk’ A}^{0_{\wedge\overline{\omega}\overline{F}}}0(_{\cup}^{-}-_{0})\rangle R^{6}$

$=(2 \pi)^{-2}\sqrt{1+c^{2}}\int_{\Pi}0\eta\overline{\omega}jR^{6}e^{-i}\langle\eta,---0\rangle d\int-\infty\langle\infty\eta\overline{\omega}_{jk}^{0_{\wedge}0}\overline{\omega},$
$F_{A}(t\overline{\omega}^{0}+)j\rangle dt$ .

Since $\{\overline{\omega}_{j^{\wedge}k}^{0}\overline{\omega}^{0}\}0\leq k<j\leq 3$ is a basis of $R^{6}$ and since the integral with
respect to $t$ in the right hand side is determined by the scattering
operator, $\overline{F_{A}}(_{\cup}^{-_{0}}-)$ is determined by the scattering operator for each
$–0-\in D\backslash \Sigma$ .

If $F_{A}$ does not belong to $L^{1}(\underline{R_{t}}\cross R_{x}^{3}))$ more complicated argu-
ments are needed as [St], since $F_{A}$ should be regarded as a distri-
bution. $\square$
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3 Relativistic invariance

A Lorentz transformation A : $R^{4}arrow R^{4}$ is a linear map preserv-
ing the Lorentz metric,

$\langle X, X’\rangle_{LM}.=c^{2}x_{0}x-/\sum_{1}^{3}0x_{j}j=x_{j}’$ ,

where $X=$ $(x_{0}, \cdots , x_{3}))$ etc. This condition is equivalent to

(3.1) ${}^{t}\Lambda G\Lambda=G$ , where $G.=$
A Poincar\’e $\mathrm{t}\mathrm{r}\mathrm{a}\mathrm{n}\mathrm{S}\mathrm{f}\mathrm{o}\Gamma \mathrm{m}\mathrm{a}\mathrm{t}\mathrm{i}_{0}\mathrm{n}\Pi(\Lambda, a)$ ,

(3.2) $R^{4}\ni X\mapsto X’=\Lambda X+a$ ,

is the combination of a Lorentz transformation A and a space-time
translation by $a\in R^{4}$ and is associated with changing an inertial
frame with coordinate $X={}^{t}(t, x)$ into another inertial frame with
coordinate $X’={}^{t}(t’, x’, )$ defined by (3.2).

Let $\Lambda=(\Lambda_{jk})_{0\leq j,\leq 3}k$ . Then it is seen from (3.1) that $\Lambda_{00}\underline{>}1$

or $\Lambda_{00}\underline{<}-1$ . The latter case contain the time-reversal, and the
argument is more complicated. So we assume the former case.
Before proceeding our argument, we give typical examples. It is
known that any Lorentz transformation A with $\det\Lambda=1$ and
$\Lambda_{00}\geq 1$ can be written as a product of these.

Example 1. Rotation in the space.

$\Lambda=$ , $R\in SO(3)$ .

Example 2. Lorentz boost
Let $I$ be a inertial frame with coordinates $(t, x)$ , and let $I’$ be the
inertial frame with $(t’, X’)$ moving with relative velocity $(v, 0,0)$ ,
$|v|<c$ , to $I$ . Then

$=\Lambda$ ,
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where

$t’= \frac{t-(v/c^{2})X_{1}}{\sqrt{1-v^{2}/c^{2}}},$ $x_{1}’= \frac{x_{1}-vt}{\sqrt{1-v^{2}/c^{2}}}$ ,

$X_{2}’=x_{2}$ , $x_{3}’--x\mathrm{s}$ .

By a Poincar\’e transformation $\Pi(\Lambda, a)$ the Dirac equation

$i \frac{\partial}{\partial t}\Psi(t, X)$

$=[c \sum_{j=1}\alpha j(\frac{1}{i}3\frac{\partial}{\partial x_{j}}-C^{-}1Aj(t, x))+\alpha_{4}mc^{2}+A^{0}(t, X)I_{4}]\Psi(t, X)$

in the old inertial frame is converted into the Dirac equation

$i \frac{\partial}{\partial t’}\Psi’(t^{\prime/}, x)$

$=[c \sum_{j=1}\alpha j(\frac{1}{i}\frac{\partial}{\partial x_{j}’}-3c-1A^{j}*(t/, X’))+\alpha_{4}mc+A^{*}20(t/, x)/I4]\Psi/(t’, X’)$

in the new inertial frame, where $\Psi’(t^{\prime/}, x)=L(\Lambda)\Psi(t, X)$ for some
invertible $4\cross 4$ matrix $L(\Lambda)$ determined by only $\Lambda$ , and $A^{*}(t’, X’)=$

$\Lambda A(t, x).(\mathrm{H}\mathrm{e}\mathrm{r}\mathrm{e}$ remark that the constants in front of $A^{j}$ , etc., are
different from those before for our convenience.) Therefore each
component of the potential $A^{*}(X’)$ in the new frame is written as
a linear combination of those of $A(\Lambda^{-1}(X/-a))$ (see, e.g., [Tha]).
Let $V_{1},$ $\cdots$ , $V_{n}$ be a basis of a subspace $L$ . Then there exists a $-$

constant $K>0$ such that

$K^{-1}|X_{L}| \underline{<}\sum_{j=1}|n\langle Vj, X\rangle|\leq K|x_{L}|$ .

Hence we can see that $A^{*}\in S(^{t}\Lambda^{-1}L)$ if $A\in S(L)$ . Each
component $F_{A^{*}}^{*lm}(X’)$ of the electromagnetic field $F_{A^{*}}^{*}(x’)$ in the
new frame is also written as a linear combination of components
$F_{A}^{jk}(\Lambda-1(x/-a)))0\underline{<}j<k\underline{<}3$ , of $F_{A}(\Lambda^{-1}(X’-a))$ . Thus,
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carrying out the Fourier transform, we have

$F_{A^{*}}^{\overline{*l}m}(_{\cup}^{-)F}-= \sum_{\mathrm{s}\mathrm{o}\leq j<k\leq}cjke-i\langle_{-}-_{a}-,\rangle A(\overline{j}kt\Lambda--)-,$
$\cup--\in R^{4}$ ,

where $c_{jk}\mathrm{s}$

) are constants determined by A. Hence, $F_{A^{*}}^{*}\in\overline{S}(^{t}\Lambda^{-1}L)$

if $F_{A}\in\overline{S}(L)$ . On the other hand, by virtue of (3.1) we see that
$\Lambda^{-1}c^{-1t}\Lambda-1=c^{-1}$ Then it follows that

$\langle^{t}\Lambda^{-1_{-}}\cup-,{}^{t}\Lambda-1--\cup’\rangle LM^{*}=\langle^{-}--)\Xi/\rangle_{L}M^{*}$ ,

where
$\langle_{\cup}^{--/}-,--\rangle_{LM^{*}}.\cdot=\xi 0\xi’0-c^{2/}\sum_{=1}^{3}\xi j\xi_{j}j$

$\mathrm{f}\mathrm{o}\mathrm{r}_{\cup}^{-}-=$ $(\xi_{0}, \cdots , \xi_{3})$ , etc. Thus, we can see that
${}^{t}\Lambda^{-1}D=D$ .

Namely, the set $D$ in the dual space of the space-time is invariant
under Poincar\’e $\mathrm{t}\mathrm{r}\mathrm{a}\mathrm{n}\mathrm{S}\mathrm{f}\mathrm{o}\mathrm{r}\mathrm{m}\mathrm{a}\mathrm{t}\mathrm{i}_{\mathrm{o}\mathrm{n}\mathrm{S}}$ in the space-time. We also see that
$D_{1}$ in Proposition 1.4 is invariant.

After all we can conclude that the statements of Theorems 1.2,
1.3, 1.5, 1.7 and Corollary 1.6 does not depend on the choice of the
inertial frame.

In the last of this section we show that each field $F_{k}$ in Corollary
1.6 is regarded as a time-independent one on a suitable inertial
frame. Let $V=V_{k}$ is timelike,

$V\in T.\cdot=\{(t, x)\in R^{4}\cdot C|)t|>|x|\}$

with $\langle V, V\rangle_{LM}=c^{2}$ Then it is known that there exists a Lorentz
transform $\Lambda$ . $R_{t}\cross R_{x}^{3}arrow R_{t}/\cross R_{x}^{3}$, such that $\Lambda V={}^{t}(1,0,0,0)$ .
Therefore $F_{k}(\Lambda^{-1}\cdot)$ is $t’$-independent.
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