POLYNOMIAL HULLS WITH NO ANALYTIC STRUCTURE

Norman Levenberg

0. Introduction. Let X be a compact set in \mathbb{C}^N and \hat{X} its polynomial hull:

$$\hat{X} := \{(z_1, ..., z_N) \in \mathbb{C}^N : |p(z_1, ..., z_N)| \leq |p|_X \text{ for all polynomials } p\},$$

where $|p|_X$ denotes the supremum norm of p on X. If X contains the boundary of an H^∞ disk, i.e., if there exists a bounded, nonconstant holomorphic map $g = (g_1, ..., g_N)$ from the unit disk Δ in \mathbb{C} into \mathbb{C}^N with radial limit values $g^*(e^{i\theta})$ belonging to X for a.e. θ, then, by the maximum modulus principle, \hat{X} contains the analytic disk $g(\Delta)$. In general, we say a set S has analytic structure if it contains an analytic disk $g(\Delta)$. In this note, we discuss well-known examples of Stolzenberg [S] and Wermer [W] and recent modifications which show that a compact set can have non-trivial hull (i.e., $\hat{X} \neq X$) with X (or at least $\hat{X} \setminus X$) containing no analytic structure. We remark that in both examples, the set \hat{X} is constructed as a limit (in the Hausdorff metric) of compact subsets of analytic varieties in \mathbb{C}^2.

1. The Stolzenberg Example. Stolzenberg's set X is a subset of the topological boundary of the bidisk $\Delta \times \Delta$ in \mathbb{C}^2 such that the origin $(0,0)$ lies in \hat{X}. However, the projection of the hull in each coordinate plane contains no nonempty open set; hence \hat{X} contains no analytic structure. The rough idea of the Stolzenberg construction is, first of all, to take a countable dense set of points $\{a_j\}$ in the punctured disk $\{ t \in \mathbb{C} : 0 < |t| < 1 \}$ and form the algebraic varieties $C_j := \{(z, w) \in \mathbb{C}^2 : (z - a_j)(w - a_j) = 0\}$. These varieties avoid $(0,0)$ and have the property that each of the coordinate projections π_z and π_w of the union $U_j\cap(\Delta \times \Delta) = \{a_j\}$. Then a decreasing sequence of compact subsets X_i of the topological boundary of the bidisk is constructed inductively so that $(0,0)$ lies in X_i for each i and $X_i \cap \Delta_i = \emptyset$ i.e., the hulls \hat{X}_i avoid more and more of the algebraic varieties C_j. The intersection $X := \cap X_i$ is the desired set.

Remarks. Although the coordinate projections of \hat{X} are nowhere dense, they have positive Lebesgue measure (as subsets of \mathbb{R}^2). This can be seen as follows: first of all, despite the lack of analytic structure in \hat{X}, (holomorphic) polynomials are not dense in the continuous (complex-valued) functions on \hat{X}, or, in the standard notation of uniform algebras, $P(\hat{X}) \neq C(\hat{X})$. Indeed, for any $p \in P(\hat{X})$, $|p|_X = |p|_X$; thus if $f \in C(\hat{X})$ satisfies $|f(0,0)| > |f|_X$ (such f clearly exist), $f \notin P(\hat{X})$. Now if the coordinate projections of \hat{X} have positive Lebesgue measure, by the Hartogs-Rosenthal theorem, the functions $\bar{\tau}$ and \bar{w} are in $P(\hat{X})$; then, using the Stone-Weierstrass theorem, we get that $P(\hat{X}) = C(\hat{X})$, a contradiction.

Further Examples. By choosing $\{a_j\}$ a bit more carefully (in particular, to avoid an entire interval $[a,b]$ instead of just the origin), and by slightly modifying the construction of the sets X_i, Fornaess and the author proved the following.

Theorem 1 ([FL]). Let D be a bounded domain in \mathbb{C}^2 with $\overline{D} = D$ and such that both coordinate projections of D yield the unit disk. Let $0 < a < b < 1$. Then there exists a compact set $X \subset \partial D$ such that \hat{X} contains no analytic structure but with $[a,b] \times [a,b] \subset X \setminus X$.

We remark that $[a,b] \times [a,b]$ is non-pluripolar in \mathbb{C}^2; i.e., if a plurisubharmonic function u is equal to $-\infty$ on $[a,b] \times [a,b]$, then $u \equiv -\infty$.

Abstracting the concrete ideas in [FL], Duval and the author generalized Theorem 1.

Theorem 2 ([DL]). Let D be a bounded domain in \mathbb{C}^N with $\overline{D} = D$. Given $K \subset D$ with $K = \hat{K}$ (or $K \subset \overline{D}$ with $K = \overline{K} = K \cap \partial D$), there exists $X \subset \partial D$ compact with $K \subset \hat{X} \setminus X$ such that $\hat{X} \setminus X$ contains no analytic structure. In particular, if K contains no analytic structure, then \hat{X} contains no analytic structure.

As a corollary, by taking $K = \Gamma \times \ldots \times \Gamma$ (N times) where Γ is a Jordan arc in \mathbb{C} with positive Lebesgue measure in \mathbb{R}^2, we get a compact set X in ∂D whose hull \hat{X} contains no analytic structure but such that $\hat{X} \setminus X$ has positive Lebesgue measure in \mathbb{R}^{2N}.

Remarks. Intuitively, one might expect that if $\hat{X} \setminus X$ is nonempty but contains no analytic structure, then $\hat{X} \setminus X$ should still be "small" in some sense. The previous two theorems show that $\hat{X} \setminus X$ can still be quite
"large" in certain cases. The next result, due independently to Alexander and Sibony, shows that $\hat{X} \setminus X$ is always "large" when $\hat{X} \setminus X$ is nonempty but contains no analytic structure. Below, $h_2(S)$ denotes the Hausdorff 2−measure of a set S.

Theorem 3 (Alexander [A1], Sibony [S1]). Let $X \subset \mathbb{C}^N$ be compact and let $q \in \hat{X} \setminus X$. If there exists a neighborhood U of q in \mathbb{C}^N with $h_2(\hat{X} \cap U) < +\infty$, then $\hat{X} \cap U$ is a one-dimensional analytic subvariety of U.

As a corollary, if $\hat{X} \setminus X \neq \emptyset$ and $\hat{X} \setminus X$ contains no analytic structure, then $h_2(\hat{X} \setminus X) = +\infty$.

2. **The Wermer Example.** In 1982, Wermer [W] constructed a compact set X in $\partial \Delta \times \mathbb{C} \subset \mathbb{C}^2$; i.e., $\pi_z(X) = \partial \Delta$ (recall π_z denotes the projection onto the first coordinate), with $\pi_z(X) = \overline{\Delta}$ and such that $\hat{X} \setminus X \subset \Delta \times \mathbb{C}$ does not contain any topological disk; i.e., there is no continuous nonconstant $g : \Delta \rightarrow \mathbb{C}^2$ with $g(\Delta) \subset \hat{X} \setminus X$. Clearly since $\pi_z(\hat{X} \setminus X) = \Delta$, the reason $\hat{X} \setminus X$ contains no analytic structure is not because of "small" coordinate projections as in the Stolzenberg example. Here, \hat{X} is constructed as a limit (in the Hausdorff metric) of Riemann surfaces Σ_n over $\overline{\Delta}$ which branch over more and more points. Starting with a countable dense set of points $\{a_j\}$ in Δ, one chooses a sequence $\{c_j\}$ of positive numbers decreasing rapidly to 0 so that the graphs of the 2^n−valued functions

$$g_n(z) := c_1 \sqrt{z - a_1} + c_2 (z - a_1) \sqrt{z - a_2} + \ldots + c_n (z - a_1) \cdots (z - a_{n-1}) \sqrt{z - a_n}$$

over $\overline{\Delta}$ form the desired Riemann surfaces Σ_n. To be precise, the actual construction done in [W] takes place over the disk of radius one-half centered at the origin in the z−plane; this yields the estimate $|a - b| < 1$ for $|a|, |b| < 1/2$.

Remarks. Although $\hat{X} \setminus X$ contains no analytic structure, remains some semblance of analyticity in this set. A result of Goldmann [G] shows that functions in the uniform algebra $P(X)$ behave like analytic functions in the sense that if $f \in P(X)$ vanishes on an open set U (relative to \hat{X}), then f vanishes identically. Such a uniform algebra is called an analytic algebra.

Further Examples. One can choose the parameters in the Wermer construction so that the intersection of $\hat{X} \setminus X$ with any analytic disk is "small".

Theorem 4 ([L]). There exist X compact in $\partial \Delta \times \mathbb{C}$ with $\pi_z(\hat{X}) = \overline{\Delta}$ and such that $g(\Delta) \cap (\hat{X} \setminus X)$ is polar in $g(\Delta)$ for all H^∞ disks g.

Note that in the Wermer example, we have no analytic structure in $\hat{X} \setminus X$; however, the set X itself can contain lots of analytic disks. Indeed, we have the following "fattening lemma" of Alexander.

Theorem 5 (Alexander [A2]). There exists a Wermer-type set X (compact in $\partial \Delta \times \mathbb{C}$ with $\pi_z(\hat{X}) = \overline{\Delta}$ and such that $\hat{X} \setminus X \subset \Delta \times \mathbb{C}$ contains no analytic structure) such that for all proper, closed subsets α of $\partial \Delta$ and all $M > 0$, setting

$$Z := X \cup \{(z, w) : z \in \alpha, |w| \leq M\},$$

we have $\hat{Z} \setminus Z = \hat{X} \setminus X$.

Remarks. One can also construct the Wermer set \hat{X} as a decreasing intersection of the generalizedlemniscates

$$X_n := \{(z, w) : |z| \leq 1/2, |p_n(z, w)| \leq \epsilon_n\}$$

where $\{p_n\}$ are polynomials in (z, w) which satisfy

1. $\Sigma_n = \{(z, w) : |z| \leq 1/2, p_n(z, w) = 0\}$;
2. $p_n(z, w) = c_n z^{m_n} + R_n(z, w)$ where $\deg R_n < m_n := \deg p_n$;
3. $\{\epsilon_n\}, \{\epsilon_n\}$ tend to 0 rapidly enough so that $X_{n+1} \subset X_n$ for all n and $\hat{X} = \cap_n X_n$ (cf., [W]). Thus, from results in [LT], if

$$\lim_{n \to \infty} \left(\frac{\epsilon_n}{\epsilon_{n+1}}\right)^{1/m_n} = 0,$$

the set $\hat{X} \setminus X$ is pluripolar in \mathbb{C}^2 (see [L]).
In general, if \(X \) is compact in \(\partial \Delta \times \mathbb{C} \) with \(\pi_{z}(\hat{X}) = \overline{\Delta} \), then \(\hat{X} \setminus X \subset \Delta \times \mathbb{C} \) is pseudococoncave in the sense of Oka; i.e., \((\Delta \times \mathbb{C}) \setminus (\hat{X} \setminus X)\) is pseudococonvex. In the terminology of set-valued functions, \(\hat{X} \setminus X \) is the graph of an analytic multifunction over \(\Delta \) (cf. [SI]). Yamaguchi [Y] has shown in this setting that the function \(z \to \log C(\hat{X}_{z}) \), where \(\hat{X}_{z} := \{ w : (z, w) \in \hat{X} \} \) is the fiber of \(\hat{X} \) over \(z \) and \(C(S) \) denotes the logarithmic capacity of the compact set \(S \), is subharmonic on \(\Delta \). Thus, if there exists one \(z \in \Delta \) such that the fiber \(\hat{X}_{z} \) is non-polar in \(\mathbb{C} \), then \(\hat{X} \setminus X \) is non-pluripolar as a subset of \(\mathbb{C}^{2} \).

3. Final comments and open questions. Theorem 1 gives a concrete example of a compact set \(X \) with \(\hat{X} \setminus X \) being non-pluripolar without containing any analytic structure. It is unknown if the Wermer example can be modified in this manner.

1. **Does there exist \(X \) compact in \(\partial \Delta \times \mathbb{C} \) with \(\pi_{z}(\hat{X}) = \overline{\Delta} \) such that \(\hat{X} \setminus X \) contains no analytic structure but is non-pluripolar?**

 From the discussion in section 3, once \(\hat{X}_{z} \) is non-polar in \(\mathbb{C} \) for one \(z \in \Delta \), then \(\hat{X} \setminus X \) is non-pluripolar in \(\mathbb{C}^{2} \).

 Suppose \(S \subset \Delta \times \mathbb{C} \) is pseudococoncave. Sadullaev has shown [Sa] that \(S \) is pluripolar in \(\mathbb{C}^{2} \) if and only if each fiber \(S_{z} \) is polar ("only if" follows from Yamaguchi's result).

 2. **Let \(S \subset \Delta \times \mathbb{C} \) be pseudococoncave with each fiber \(S_{z} \) being polar. Is it true that for each \(r < 1 \), \(S' := S \setminus \{ |z| < r \} \) is complete pluripolar; i.e., there exists a plurisubharmonic in \(\{ |z| < r \} \times \mathbb{C} \) such that**

\[
S' = \{(z, w) : u(z, w) = -\infty\}?
\]

Is it true that \(S \setminus \{ |z| \leq r \} \) is polynomially convex for each \(r < 1 \)?

Recall that for the Stolzenberg example, \(P(\hat{X}) \neq C(\hat{X}) \). Recently, Izzo [I] has constructed an example of a compact set \(X \) in the unit sphere \(\partial B \) in \(\mathbb{C}^{3} \) which is polynomially convex \((\hat{X} = X) \) but with \(P(X) \neq C(X) \). Note that a subset of the unit sphere \(\partial B \) in \(\mathbb{C}^{N} \) contains no analytic disk; thus there is no analytic obstruction to \(P(X) \) being dense in \(C(X) \). However, it is unknown if such an example can be constructed in \(\mathbb{C}^{2} \).

3. **Suppose \(X \subset \partial B \subset \mathbb{C}^{2} \) is compact and polynomially convex. Is \(P(X) = C(X) \)?**

We end this note by remarking that Alexander [A3] has recently constructed a compact set \(X \) in the unit torus \(\partial \Delta \times \partial \Delta \) in \(\mathbb{C}^{2} \) such that the origin \((0,0)\) lies in \(\hat{X} \) but such that \(\hat{X} \) contains no analytic structure.

References

Department of Mathematics
University of Auckland
Private Bag 92019
Auckland, NEW ZEALAND