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THE SECOND PLURIGENUS OF SURFACE SINGULARITIES

TOMOHIRO OKUMA

FIRAEBENER RS

INTRODUCTION

Let (X,z) be a normal surface singularity over the complex number field C and
f:(M,A) — (X,z) the minimal good resolution of the singularity (X,z), i.., the
smallest resolution for which an exceptional divisor A consists of non-singular curves
intersecting transversally, with no three through one point. It is well known that there
exists a unique minimal good resolution. Let A = Uf=1 A; be the decomposition of
the exceptional set A into irreducible components. The weighted dual graph of (X, z)
is the graph such that each vertex of which represents a component of A weighted by
the self-intersection number, while each edge connecting the vertices corresponding to
Ai and Aj, ¢ # j, corresponds to the point A; () A;. Giving the weighted dual graph
is equivalent to giving the information of the genera of the A;’s and the intersection
matrix (A; - A;). The geometric genus of the singularity (X, z) is defined by

pe(X,z) = dimec HY(M, Q).

The m-th L?-plurigenus of the singularity (X,z) is the integer &m (X, z) which was
introduced in [Wt] and can be computed as

om (X, z) = dime¢ HY(M — A,0p(mK))/H(M, Opr(mK + (m — 1)A)),

where K denotes the canonical divisor on M. Note that p,(X,z) = 6,(X,z). The
plurigenera of a Gorenstein surface singularity are determined by the weighted dual
graph and p, (cf. [02]). In this paper we consider relations among the invariants
62, Pg, 1, T and the modality of certain normal surface singularities, so “a singularity”
always means a normal surface singularity over C.
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1. PRELIMINARIES

(1.1) Let (X, z) be a surface singularity and f: (M, A) — (X, z) the minimal good
resolution of the singularity (X, z). Let F be a sheaf of Op-modules and D a divisor
on M. We will use the following notation: (D) = F ®o,, Ou (D),

HYF)=H'(M,F), Hy(F)=HyM,F),
hi(F) = dime H(F), ki (F) = dime Hi(F).

We denote by K the canonical divisor on M.

(1.2) We take the following characterization of minimally elliptic singularities as its
definition.

Theorem 1.3 (Laufer [Lal, Theorem 3.10]). A singularity (X, z) is minimally elliptic
if and only if (X, z) is an elliptic Gorenstein singularity.

Theorem 1.4 (cf. [O1, O2]). Let (X,z) be a singularity. Then

62(X,z) = B4 (Om(2K + A)) = k(O (=K — A)).

If (X, z) is a Gorenstein singularity with p’g > 1, then we have

62(X,x) = —(K + L1) - L1/2 + py(X,z) = —K - L1 + x(Oa) +p4(X, z).

Corollary 1.5 (cf. [O1]). Let (X, z) be a hypersurface (resp. complete intersection)
minimally elliptic singularity. Then 62(X,z) < 4 (resp. < 5).

(1.6) Let 2},(A) be the sheaf of 1-forms with logarithmic poles along A, and S its
dual. Then there are exact sequences (cf. [Wh3]):

‘ k
(1.6.1) 0— 2} — 23,(4) — @OA.. — 0;
: =1
k .
(1.6.2) 08 —-6y— EBOA" (A;) — 05
=1

(1.6.3) 0—Oy(—A) >S5 —-64—0.
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Corollary 1.7. Let (X,z) be a singularity. Then 65(X,z) > h'(04).

Proof. For a locally free sheaf F of rank 2 on M, F & Home,,(F,OM) ®0,, /\2 F.
Thus we get isomorphisms Op(—A) = 2},(—K — A) and S = 2},(A)(—K — A). Then
the exact sequences (1.6.1) and (1.6.3) give o

=1

k
(1.7.1) h(©4) = B (@ Ou, (K — A)) .

From the following exact sequence

, k
0— OA —')®OA,- - ®OA¢0A,' _)07

=1 1<J

we have a surjective map

k
HY(O4(-K — A)) — H! (@ O4,(-K — A)) .

i=1

By Theorem 1.4 and (1.7.1), we get

6(X,5) > K (Oa(=K — A)) > h'(6,). O

(1.8) Note that h1(6,) is the tangent space of locally trivial deformation of A.

2. EQUISINGULAR DEFORMATIONS

(2.1) In this section, we discuss deformations. Let (X,z) be a singularity and
f: (M,A) — (X,z) the minimal good resolution of (X,z). Let A = Ule A; be the
decomposition into irreducible components. We denote by Dx the functor (cf. [Sc))
of deformations of a singularity (X,z). In [Wh2], Wahl introduced the equisingular
functor ESys of deformations of (M, A) to which all A; lift, and which blow down to
deformations of (X, ). A deformation of the singularity (X, z) is called an equisingular
deformation if it is obtained from an equisingular deformation of (M, A). Tt is well
known that a deformation of M blows down if and only if h'(Op) does not jump (cf.
[Wh2, (4.3)]). Hence equisingular deformations preserve the geometric genera and the
weighted dual graphs of singularities, and so the plurigenera of Gorenstein singularities
(cf. Introduction). In [La2, La3, Lad4, La5], Laufer studied deformations of M in the
analytic category. For a Gorenstein singularity (X, z), an equisingular deformation of
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(M, A) induces a topologically constant deformation of (X, z), and the converse holds,
too (see [Lab, V, VI]). A
By (1.6.2), We have the following exact sequence

k
0 — HY(S) - H(6y) — H? (EB Oa, (A,-)) — 0.

=1

There exists the versal deformation 7: M — (Q, 0) of (M, A) with tangent space TQ,0 &
H'(Ou), and a submanifold (P,0) with tangent space Tp, = H!(S) such that all of
the A; lift to above P and P is the maximal subspace of @ above which. all of the A;
lift (cf. [La5, p. 26]).

Theorem 2.2 (Wahl (Wh2]). (1) ESys has a hull (in the sense of [Sc|) and the natural
map ESys — Dx is injective. ‘

(2) If any deformation of (M, A) to which all A; lift blows down to a deformation of
(X,z), then T(ESy) = H'(S), where T(ES)s) denotes the tangent space of ESy. If
py(X,z) <1, then this condition is satisfied.

(2.3) Let B = C{z1,...,2n}. Let (X,z) be a g-h singularity defined by an ideal
I C B. Let us recall that the tangent space Ty of Dy is given by the exact sequence

Hompg(2; ® R, R) — Hompg(I/I?,R) — Tk — 0,

where R = B/I. Since Hompg(I/I?,R) is graded, so is TL: we write as T =
Dicz Tx (9)-
Theorem 2.4 (Pinkham [P2, 4.6]). T(ESuM) =@, TL(4).

Definition 2.5. A function h € C{29,21,22} = Ocs, is called a quasi-homogeneous
(g-h, for short) polynomial of degree d with weights (v, 01, 2) € N3, if

tdh(ZQ, 21, 22) = h(ta(’Zo,tal zl,t°‘2z2)

for any t € C. We assume that ap, a3 and a9 are relatively prime.

A function h € Ogs , is said to be semi-quasi-homogeneous (s-g-h, for short) of degree
d with weights (o, a1, a2) if it is of the form h = hg + h;, where hg is a g-h polynomial
of degree d with weights (ap, @1, a2) which defines an isolated singularity and all of the
‘monomials of h; have degree strictly greater than d or hy = 0 (cf. [AGV, 12.1]). A
singularity is said to be s-g-h if it is defined by a s-q-h function.
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(2.6) Assume that b € C{zp, 21,22} = Ocs,, define an isolated singularity (X, o)
at the origin. Let J; be an ideal of O¢s , generated by dh/dz,0h/0z and Oh/0z;.
Qn = Ocs o/ Jh is called Jacobian algebra. Then we have Tk 2 Ocs,o/(h, Ji). It is well
known that (b, J,) = Ji, if and only if & is q-h (after a change of coodinates) (see [Sa]).

If h is a g-h polynomial of degree d with weights o = (a0, a1, @2), then o induces
a grading on Ogs ,, and so on Qx. Let Qn = @;5, Qn(i). Recall that a morphism of
graded modules ¢ € Home, ((h)/(h?),Ox) has degree n if ¢(h) has degree d+n. Hence
we have Tk (i) & Qr(i +d) (cf. (2.3)), and T(ESn) = @;>4 Qn(é). We see that a s-g-h
singularity is a fibre in an equisingular deformation of a q-ﬂ singularity by Theorem 2.4
(cf. [AGV, Theorem 12.1]).

(2.7) We assume that the weighted dual graph of (X, z) is a star-shaped graph. Let
us introduce some results of [TW].

We set A = Ag + Ez_l S;, where Ag is the central curve, and S; the branches. The
curves of S; are denoted by A;;, 1 < j < r;, where Ag- A;1 = A; ;- Aijp1 =1
(j=1,...,7 —1). Let b;; = —A; ; - A; ;. For each branch S;, positive integers e; and
d; are defined by

: 1
difei = bi,1 —

where e; < d;, and e; and d; are relatively prime. Let D be a divisor on Ap such that
O4,(D) is the conormal sheaf of Ag. We define a Q-divisor C on Ag and a graded ring
R as follows: C =D — Zf=1 ¢; P;, where ¢q; = e;/d; and P; = Ag[) Ai;

R = H*(04,(nC))T" C C(A0)[T},
n>0

where C(Ap) is the field of rational functions of 4g, and T' an indeterminate. Then
Spec(R) is a g-h normal surface singularity, we denote by (Y,y), and the weighted dual
graph of (Y,y) is the same as that of (X, z) (cf. [P1]).

By contracting the branches Sy {J---|J Sg, we get a normal surface M " with cyclic
quotient singularities. Let ®: (M’', A’) — (X, z) be the morphism induced canonically,
where A’ is the image of Ag. We define a filtration on Ox by F™ = ®,0p(—nA") forn €
Z. Note that F™ = Ox for n < 0. Let R = @,,cz F"T™ and G = @,,5o(F™/F+1)T™
Then the natural map C[T—!] — R defines a deformation of Spec(G) with general fibre
isomorphic to (X, z), since G 2 R/T™'R and Ox = R/(T" — a)R for a € C - {0}
(cf. [TW, (5.15)]). By [TW,(6.3)], R is the normalization of G, and R = G if and
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only if po(Y,y) = py(X,z). By [Wh4, (1.12), (3.4)], (X, z) is a fibre in an equisingular
deformation of (Y, y) if py(Y,y) = po(X, z).

Proposition 2.8. Let (X,z) be a minimally elliptic singularity with a star-shaped
graph. Then there exist a q-h minimally elliptic singularity (Y,y) and an equisingular
deformation w: Y — C of (Y,y) such that X = 7w~1(a) for a € C — {0}.

Proof. We use the notation in (2.7). Since the weighted dual graph of (Y, y) is the same
as that of (X, z), we see that (Y,y) is a minimally elliptic singularity. O

(2.9) Under the same notation as above, if (X, z) is a hypefsurface minimally elliptic
singularity, then so is (Y,y) by [Lal, Theorem 3.13]. By Proposition 2.8 and (2.6), a
hypersurface minimally elliptic singularity with star-shaped graph is a s-q-h singularity.

3. HYPERSURFACE SINGULARITIES

(8.1) We use the same notation as in Section 2. Let (X, z) be a Gorenstein singularity
with contractible X. Let Z be a cycle such that Oy (K) = Oy (—2Z). If (X, z) is not a
rational double point, then Z > A. .

Let C be a sheaf on M defined by an exact sequence

0—-C—-Cy—Cyh—0.

If Z > A, then the exterior differentiation gives an exact sequence (cf. [Wh3, (1.5),

(1.6)])
(3.1.1) 05 C— Op(-2) 5 2 (A)(-2) % 22,(—Z + A) — 0.

As X is contractible, H*(C) = 0 for all i. Hence H*(Op(—Z)) = H*(dOp(—2)) for all
i. In particular, H*(dOpy(—2)) = H(Op(K)) =0 for 1 > 1.

(3.2) In the rest of this section, we always assume that (X, z) is a complete intersec-
tion singularity which is not a rational double point. Let u(X,z) and 7(X,z) denote

Milnor number and Tjurina number of (X,z), respectively. We need the following
results of Greuel [Grl, Gr2] (cf. [LS]).

Proposition 3.3. (1) p(X,z) = h}x}(dﬂ}(), and 7(X,z) = h}w}(ﬂﬁc) [Gr2, p. 168].
(2) ng}(ﬂg() =0 for p+ ¢ < 1 [Gr2, Proposition 2.3].
(3) The following sequences are exact [Grl, Satz 4.4]:

0—*CX—’OX—?d0X—’0;
0 — dOx — 2% — d2% — 0.
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(4) HY,,(d2%) = 0 [Grl, Lemma 4.5].
(3.4) From (3.1.1), we have an exact sequence
0 — Hy(dOm(~2)) — Hi(24,(A)(K)) — H3(Om(2K + A))
— H3(dOum(~2)) — HZ(23,(A)(K)).

By Theorem 1.4, we have h% (O (2K + A)) = 62(X, z). By the Serre duality, we have
BYL (23,(ANK)) = h1(S). If we set

p = dimc ker (H}(dO0x (~2)) — HA (24 (4)(K))),
then we have
(3.4.1) 62(X,z) = h*(8) + p — b (dOu (- 2)).

We note that b (dOp(—Z)) < AL(S).
LetU=M - A= X - {z}.

Lemma 3.5. h}(dOu(~2)) = hi,1(dOx) +py(X,z) — 1.
Proof. From the exact sequence

0 — H%(dOm(~Z)) — H(dOy) — H,(dOM(-2)) — 0,
and isomorphisms

H'(dOu(-2)) = H'(Ou(K)) = H(f.0u(K)),

we see that

(3.5.1) HY(d0u (~2)) & HO(dOy)/H(f,0u (K)).

Using (2) and (3) of Proposition 3.3, we obtain ng}(dO x) = 0 and hence
(3.5.2) H{,,(dOx) & H(dOy)/H"(dOx).

Let M be an ideal sheaf of O x which defines the singular point z. Note that dOx 22 dM.
Since X is contractible, we have

(3.5.3) H°(M) = HY(dM) = H°(dOx).

As (X, z) is a Gorenstein singularity with py(X,z) > 1, we have f,Oy(K) C M. It is
well known that p,(X,z) = dim¢c H*(Ox)/H(f.On(K)) for a Gorenstein singularity
(X, ). From (3.5.1), (3.5.2) and (3.5.3), we have the following

1Y (A0 (~2)) — h},y(dOx) = dime HY(dOx ) /H(f,Op (K))
~ =dim¢ H*(M)/H°(f.Ou(K)) = py(X,z) —1. O
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Lemma 3.6. p = u(X,z) — 7(X,z) + h{z}(dox).
Proof. Since HY(dOp(—Z2)) = H2(dOp(—2Z)) = 0, we have

H(dOym(-Z)) = H'(dOy) = H},,(dOx).
By the vanishing theorem of Wahl [Whi], H'(£2},(A4)(K)) = 0. Similarly, we get
(@3 (AV(K)) & HEy (2%).
Then
p = dimg ker (H{zm}(dOX) - Hfz}(()}()) .

From Proposition 3.3, H ?z} (d2%) = 0 and we have an exact sequence
10— Hi,y(dOx) — Hi;(2%) — Hi,y(d2%) — H},3(dOx) — HE,, (%),

and hence p = p(X, z) — 7(X, ) + h} {-3(d0x). O
Theorem 3.7. 83(X,z) = h'(S) + p(X,z) — 7(X, z) — po(X,z) + 1.

Proof. The theorem is immediately obtained from (3.4.1), Lemma 3.5 and Lemma
36. O

Corollary 3.8. Let m: X — T be an eqmsmgu]ar deformation of (X,z). We set
X: =7"1(t) fort € T. Then

T(Xe) > p(X,z) — 82(X, z)

for any t € T. In particular, if p,(X,z) = 1, then 7(X;) > u(X,z) — 5.

Proof. We note that X; is a complete intersection isolated singularity for any t € T
(cf. [KS]). From (3.4) and Lemma 3.5, h'(S) > p, — 1. By Theorem 3.7, we have that
62(X¢) > u(X;) —7(X:). By Theorem 1.4, §, is determined by p, and the weighted dual
graph of the singulaﬁty, and so is g by [St, (2.26)]. The property of the equisingular
deformations implies that d2(X:) = §2(X, z) and u(X:) = u(X, z). Then we get the first
formula. If p,(X,z) = 1, then é2(X,z) < 5 by Corollary 1.5. O

(3.9) For the remainder of this section, (X,0) denotes a hypersurface singularity
defined by a function h € C{zp, 21, 22} = Ogs . It is well known that

(X, 0) = dimc O¢s o/J, and 7(X, o) dime Ocs o/ (Jn, ),
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and that u(X,o0) = 7(X,0) if and only if h is g-h (after a change of coordinates).
We set u = p(X,0). Let ¢1,...,p, be functions in O¢s , which induce C-basis of
Ocs3,0/Jn- Then we define a function H(z,t) € C{z, 21, 22,t1,... ,tu} = Ocsxce,o by

i
H(z,t) =h+ ) tipi,
=1

and we set ,
Y(X,O) = {(tO) € (C”’O) |”(H(z7t0)) = ”’},

where u(H(2,to)) denotes Milnor number of the singularity defined by H(z,tp). Then
Y (X, 0) is an analytic subset of (C#,0).

Definition 3.10. The modality m(X,o0) of the singularity (X, o) is the dimension of
Y(X,0) (cf. [Ga]). If (X,0) is defined by a quasi-homogeneous polynomml h of degree
d, then the inner modality mo(X, o) of the singularity (X, o) is defined as the dimension
of the vector space @, 4 @n(%) (cf. [YW]). Note that mo(X,0) < m(X,0) if (X,0) is a
g-h singularity (see the proof of the follow).
Proposition 3.11. If p,(X,0) = 1, then §5(X, 0) < m(X, o).

If (X, 0) is a q-h singularity, then 62(X,0) = mo(X,0) < 4.

Proof. Let (C™(X:9) 0) be the versal deformation space of the singularity (X, 0) and
p: (CHX0) o) s (CT(X:0) o)
be a projection corresponding to the natural map of the ta.hgent spaces
Ocs,of/ Jh = Ocs o/ (Jn, h).

There is a submanifold P of (C7(X:9), 0) which represents ES). By the property of
the equisingular deformations, p~!(P) C Y(X,0). By Theorem 2.2, we see that the
dimension of p~!(P) is h*(S) + u(X, 0) — 7(X, 0). Hence

hl(s) +/~"(Xa0) - T(X’ O)S m(X’ 0)'

From Theorem 3.7, we get §;(X, 0) < m(X, o).

We assume that h is a g-h polynomial of degree d. Then Theorem 3.7 and 2.2, and
(2.6) implies that 82(X,0) = h*(S) = dim¢ B, ; Qn(i) = mo(X, 0). By Corollary 1.5,
62(X,0) < 4. O - |
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Remark 3.12. If the invariance of Milnor number implies the invariance of the topo-
logical type for two-dimensional hypersurface singularities (cf. [LR]), then, in the
proof above, we have p~}(P) = Y(X,0). In this case, Y(X,0) is nonsingular, and
82(X, 0) = m(X, o) holds.

Proposition 3.13. Let (X,0) be a singularity defined by a s-q-h function h € Ogcs ,
with weights (1,1,1). Then §3(X,0) > m(X, o).

Proof. We write h = hg + hy as in Definition 2.5. Let (Xo,0) be a singularity defined
by ho. Then by [GK], mo(Xo,0) = m(Xo,0). Hence we have that 63(Xo,0) > m(Xo,0)
by [YW]. On the other hand, (X, o) is a fibre in an equisingular deformation of (X, 0)
by (2.6). Thus 62(X,0) = 62(Xp,0). Since the modality is upper semi-continuous by
[Ga], we have 85(X, 0) = 62(Xo,0) > m(Xo,0) > m(X,o0). O

Proposition 3.14. Ifp,(X,0) =1, 62(X, 0) < 2 and the weighted dual graph of (X, o)
is a star-shaped graph, then 6;(X,0) = m(X, o).

Proof. We know that (X, 0) is a s-g-h singularity by (2.9). Let us use the notation in the
proof of Proposition 3.13. Then é2(X,0) = §2(Xo,0) = m(Xp,0) by Proposition 3.11,
and py(X,0) = 1 Q-h hypersurface singularities with p; = 1 and mo < 4 are listed in
[YW)]. The lists of all the singularities for which m < 2 are given in [AGV, 15.1]. Then
we can see that for a s-g-h function of which the g-h part has inner modality mo < 2,
we have m = mg. Thus m(X,0) = mo(Xo,0) = 62(Xo,0) = 62(X,0).. - O

(3.15) We can classify the weighted dual graphs of minimally elliptic singularities
with 85 < 2. In the following, the symbol “ OO ” corresponds to a component with self-
intersection number —2 and “[J; ” corresponds to a component A;. We set b; = —A;- A;.
Proposition 3.16 (cf. [WO]). Let (X,z) be a minimally elliptic singularity with
62(X, ) < 2.

(1) 62(X,x) = 1 if and only if (X, z) is a simple elliptic, cusp singularity or a singu-
larity with the weighted dual graph

Oo
Dy, b5 : D1—~E['o —{3

Where bo =1< b <by <b3and 1/b1 + 1/b2 + 1/b3 <1.
(2) 82(X, z) = 2 if and only if the weighted dual graph of (X, z) is one of the following.

Ol2

~ 7

- FEg: 0,—O0—0—0——% 2<b <by<b3,2<b3
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~ T -

E7: 0h—O0—0—0—-0-0-" 250 <b3,2< b

~

By:  O—0—0—0—0—-0-0—0h 2<h

E||2
Dy: m—g—% 2<b; <by<bg<by2<by
4 |

O, Os
w k | 2§b1$b272§b33b4,2<b4
Diyy 121): Oh—Q-----0O 4 The number of “() ” isi + 1.

(3) The list of the (b;) corresponding to a hypersurface is the following.

type (5:)

Dy, b 55 (2.3.7), (2.3.8), (2.3.9), (2.4.5), (2.4.6), (2.4.7), (2.5.5),(2.5.6)
(3.3.4), (3.3.5), (3.3.6), (3.4.4), (3.4.5), (4.4.4)

Eg. (2.2.3), (2.2.4), (2.2.5), (2.3.3), (2.3.4), (3.3.3),

E, 1 (2.3), (2.4), (2.5), (3.3), (3.4)

ES (3): (4); (5)

Dy (2.2.2.3), (2.2.2.4), (2.2.2.5), (2.2.3.3)
(2.2.3.4), (2.3.3.3)

Dits i>1) (2.2.2.3), (2.2.2.4), (2.2.2.5), (2.2.3.3)
(2.3.2.3), (2.2.3.4), (2.3.2.4), (2.3.3.3)

Corollary 3.17. Let (X,0) be a hypersurface singularity. Then 62(X,0) = 1 if and
only if m(X,0) = 1.

Remark 3.18. Minimally elliptic singularities with 63 < 2 are Kodaira singularities
(cf. [Kr]).
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