THE RUMIN COMPLEX ON CR MANIFOLDS

PETER M. GARFIELD AND JOHN M. LEE

ABSTRACT. Building on work of Rumin, Akahori, and Miyajima, we introduce a bigraded differential complex on hypersurface-type CR manifolds, whose cohomology reproduces Kohn-Rossi cohomology. Our main result is a Hodge theorem for this complex in the strictly pseudoconvex case.

1. Background

Let M be a (2n+1)-dimensional nondegenerate CR manifold of hypersurface type. The principal cohomological invariants of M are its Kohn-Rossi cohomology groups $H^{p,q}(M)$. In seeking to connect $H^{p,q}(M)$ with deRham cohomology and with CR deformation theory, T. Akahori and K. Miyajima [AM] defined a new double complex $F^{p,q}$, with differential operators $d': F^{p,q} \to F^{p+1,q}$ and $d'': F^{p,q} \to F^{p,q+1}$, and showed that the complex $(F^{p,q}, d'')$ reproduces Kohn-Rossi cohomology when p+q>n+1. In a recent unpublished preprint [A], Akahori also claimed that subellipticity does not work when q=n-1 or q=n. In fact, it is easily seen that \square'' cannot be subelliptic when q=n, because $H^{p,q}(M)$ is infinite-dimensional for all p in that case. We give a correct statement in Theorem 3 below; see [GL] for details.)

Recently M. Rumin [R] introduced a new way to compute deRham cohomology on a contact manifold. If θ is a contact form and \mathcal{I} is the ideal in Λ^*M generated by θ and $d\theta$, set

(1)
$$F^{k} = \mathfrak{I}^{\perp} \cap \Lambda^{k} M, \qquad E^{k} = \Lambda^{k} M / (\mathfrak{I} \cap \Lambda^{k} M).$$

(Here \mathfrak{I}^{\perp} represents the annihilator of \mathfrak{I} with respect to the wedge product.) Since \mathfrak{I} is a differential ideal, it is easy to check that d maps F^k into F^{k+1} , and descends to a map, which we also call d, from E^k to E^{k+1} . However, $F^k = 0$ when $k \leq n$ and $E^k = 0$ when $k \geq n+1$, so each of these complexes is nontrivial only in half of the degrees on a given manifold.

¹⁹⁹¹ Mathematics Subject Classification. Primary 32F40; Secondary 32C16, 58A14, 58G05.

Research of both authors supported in part by National Science Foundation grant DMS 94-04107.

Rumin constructed the following sequence:

$$0 \to \mathbf{R} \hookrightarrow E^0 \xrightarrow{d} E^1 \xrightarrow{d} \cdots \xrightarrow{d} E^n \xrightarrow{D} F^{n+1} \xrightarrow{d} \cdots \xrightarrow{d} F^{n+1} \to 0.$$

Here D is defined by $D[\omega] = d(\omega + \theta \wedge \beta)$ for $[\omega] \in E^n$, with β chosen so that $d(\omega + \theta \wedge \beta) \in F^{n+1}$. Rumin showed that D is well defined, and the above sequence is a complex, which we call the *Rumin complex*. He showed moreover that it is an acyclic resolution of the constant sheaf \mathbf{R} , so that its cohomology is isomorphic to deRham cohomology; and that M can be endowed with a Riemannian metric in such a way that each deRham cohomology class has a unique "harmonic" representative $\omega \in \Gamma(E^k)$ or $\Gamma(F^k)$ satisfying

$$d\omega = d^*\omega = 0 \quad \text{in } E^k, \ k < n;$$

$$D\omega = d^*\omega = 0 \quad \text{in } E^k, \ k = n;$$

$$d\omega = D^*\omega = 0 \quad \text{in } F^k, \ k = n + 1;$$

$$d\omega = d^*\omega = 0 \quad \text{in } F^k, \ k > n + 1.$$

2. A BIGRADING OF THE RUMIN COMPLEX

We wish to bring together the constructions of Rumin and of Akahori and Miyajima by introducing a bigrading of Rumin's complex. To fix our notation, let $T^{1,0} \subset \mathbf{C}TM$ denote the sub-bundle defining the CR structure, with $T^{0,1} = \overline{T^{1,0}}$, $T^{1,0} \cap T^{0,1} = \{0\}$, and $[\Gamma(T^{0,1}), \Gamma(T^{0,1})] \subset \Gamma(T^{0,1})$ (the "integrability condition"). If we set $H = \text{Re}(T^{1,0} \oplus T^{0,1}) \subset TM$, then H has real dimension 2n and carries a complex structure.

Let CE^k and CF^k denote the complexified Rumin bundles, obtained by replacing $\Lambda^k M$ in (1) by the bundle $C\Lambda^k M$ of complex-valued forms, and \mathcal{I} by its complexification. Define subspaces $E^{p,q} \subset CE^{p+q}$ and $F^{p,q} \subset CF^{p+q}$ by

$$\begin{split} E^{p,q} &= \left\{ [\omega] \in \mathbb{C} E^{p+q} : \gamma|_H \text{ is of type } (p,q) \text{ for some } \gamma \in [\omega] \right\}, \\ F^{p,q} &= \left\{ \omega \in \mathbb{C} F^{p+q} : (X \, \lrcorner \, \omega)|_H \text{ is of type } (p-1,q) \text{ for any } X \not\in H \right\}, \end{split}$$

where a complex-valued (p+q)-form on H is said to be of type (p,q) if it gives zero whenever it acts on more than p vectors from $T^{1,0}$ or more than q vectors from $T^{0,1}$.

It is straightforward to check that

$$CE^k = \bigoplus_{p+q=k} E^{p,q}; \qquad CF^k = \bigoplus_{p+q=k} F^{p,q}.$$

The integrability condition then implies that

$$d \colon E^{p,q} \to E^{p,q+1} \oplus E^{p+1,q},$$
$$d \colon F^{p,q} \to F^{p,q+1} \oplus F^{p+1,q}.$$

Write the resulting operators (d followed by projection) as d'', d'. (This coincides with Akahori and Miyajima's definition on $F^{p,q}$.) From $d^2 = (d'' + d')^2 = 0$, therefore, it follows that

$$d'd' = d''d'' = d'd'' + d''d' = 0.$$

When p+q=n, things are not quite so nice. The best we can say is $D: E^{p,q} \to F^{p,q+1} \oplus F^{p+1,q} \oplus F^{p+2,q-1}.$

Writing the three resulting operators as D'', D', and D^+ , and decomposing Dd = dD = 0 into types, we obtain

$$D''d'' = d''D'' = d'D'' + d''D' = D'd'' + D''d' = 0.$$

Theorem 1. Consider the sequence

$$0 \to \mathcal{K}^{p} \hookrightarrow E^{p,0} \xrightarrow{d''} E^{p,1} \xrightarrow{d''} \cdots \xrightarrow{d''} E^{p,n-p} \xrightarrow{D''} F^{p,n-p+1} \xrightarrow{d''} \cdots \xrightarrow{d''} F^{p,2n+1-p} \to 0$$

where $\mathcal{K}^p := \ker d'' \colon E^{p,0} \to E^{p,1}$ for p < n, $\mathcal{K}^n := \ker D'' \colon E^{n,0} \to F^{n,1}$, and $\mathcal{K}^{n+1} := \ker d'' \colon F^{n+1,0} \to F^{n+1,1}$. This is an acyclic resolution of the sheaf \mathcal{K}^p , which is isomorphic to the sheaf \mathcal{O}^p of CR-holomorphic (p,0) forms. Therefore the q^{th} cohomology group of the complex above is isomorphic to Kohn-Rossi cohomology $H^{p,q}(M)$ for all p,q.

Unfortunately, this does not fit together into a double complex because D'd' and d'D' are not zero in general. Instead, we have:

Theorem 2. The filtration of the Rumin complex R defined by $\mathfrak{T}^p R^{p+q} = R^{p,q} + R^{p+1,q-1} + \cdots + R^{n+1,p+q-n-1}$

(where R = E or F as appropriate) induces a CR-invariant spectral sequence $R_r^{p,q}$, whose r = 1 term is Kohn-Rossi cohomology and which converges to the graded group associated with the induced filtration of deRham cohomology.

The proofs of these two theorems will be given in [GL].

3. Hodge Theory

By themselves the results of the preceding section don't tell us much that is new about CR manifolds. Tanaka [T] studied a similar spectral sequence defined in terms of the deRham complex, and it can be shown that our spectral sequence is isomorphic to his for $r \geq 1$. Our hope is that the real utility of this point of view will be proved by applying Hodge theory.

As above, let $R^{p,q}$ denote $E^{p,q}$ when $p+q \leq n$, and $F^{p,q}$ when $p+q \geq n+1$. Let θ be a fixed choice of contact form on M, and T its characteristic vector field: this is the vector field uniquely determined by $T \, \lrcorner \, \theta = 1$, $T \, \lrcorner \, d\theta = 0$. The Webster metric g_{θ} is the Riemannian metric defined by using the Levi form on H and declaring T to be orthonormal to H (see [W]). Using this metric, we can identify the quotient bundles $E^{p,q}$ with honest bundles of (p+q)-forms by noting that $E^{p,q} \cong E^{p,q}_{\theta} := \{\omega \in C\Lambda^{p+q}M: \omega|_{H} \text{ is of type } (p,q) \text{ and } \omega \perp J \text{ with respect to } g_{\theta}\}$, and then we can define adjoint operators d''^* of d'' and D''^* of D''. We say a section u of $R^{p,q}$ is harmonic if $d''u = d''^*u = 0$, with d'' replaced by D'' when p+q=n, and d''^* by D''^* when p+q=n+1. Our main result is the following:

Theorem 3. (A Hodge theorem for the bigraded Rumin complex) Let M be a compact, strictly pseudoconvex CR manifold of dimension 2n+1, $n \geq 2$. For each (p,q), $H^{p,q}$ is isomorphic to the space of harmonic sections of $R^{p,q}$.

Proof. We only sketch the proof here. Complete details will appear in [GL].

Let $\square'': R^{p,q} \to R^{p,q}$ be defined as follows:

$$\Box'' = \begin{cases} d''d''^* + d''^*d'', & p+q \neq n, n+1; \\ (d''d''^*)^2 + D''^*D'', & p+q=n; \\ D''D''^* + (d''^*d'')^2, & p+q=n+1. \end{cases}$$

The main part of the proof is showing that \square'' is subelliptic on $R^{p,q}$ for 0 < q < n. Akahori [A] proved this when p + q > n + 1 and $2 \le p, q \le n - 2$ (see the remark above). Here is a somewhat simplified version of his proof, which works also in the case (p,q) = (n+1,1).

Our choice of contact form θ determines a canonical connection ∇ , the *pseudohermitian connection* [W, T], which is compatible with H and its complex structure, and with respect to which θ and $d\theta$ are parallel. For any tensor field u on M, the total covariant derivative ∇u can be decomposed as

$$\nabla u = \nabla' u + \nabla'' u + \nabla_T u \otimes \theta,$$

where $\nabla' u$ involves derivatives only with respect to (1,0) vector fields, and $\nabla'' u$ only with respect to (0,1) vector fields. Writing $\nabla_H u = \nabla' u + \nabla'' u$, the *Folland-Stein norms* $\|\cdot\|_k$ are defined by

$$\|u\|_k^2 = \sum_{j=0}^k \|\nabla_H^j u\|^2,$$

where $\|\cdot\|$ denotes the L^2 norm.

Define operators

(2)
$$\partial' u = (-1)^{p+q} \operatorname{Alt}(\nabla' u), \qquad \partial'' u = (-1)^{p+q} \operatorname{Alt}(\nabla'' u)$$

acting on complex-valued forms of any degree. A computation shows that $d' = \partial'$ and $d'' = \partial''$ on $F^{p,q}$. By commuting covariant derivatives, we obtain the following Bochner identity for sections of $F^{p,q}$:

(3)
$$\partial''^*\partial'' + \partial''\partial''^* = \frac{n-q}{n}\nabla''^*\nabla'' + \frac{q}{n}\nabla'^*\nabla' + \mathcal{O}_0,$$

where ∂''^* is the adjoint of ∂'' acting on all forms (not just sections of $F^{p,q}$), and \mathcal{O}_0 represents an operator of order zero. It follows by conjugation (noting that conjugation takes $F^{p,q}$ to $F^{q+1,p-1}$) that

$$\partial'^*\partial' + \partial'\partial'^* = \frac{n+1-p}{n}\nabla'^*\nabla' + \frac{p-1}{n}\nabla''^*\nabla'' + O_0.$$

By integration, therefore, we obtain the following L^2 identities:

$$(4) \qquad \|\partial''u\|^{2}+\|\partial''^{*}u\|^{2}=\frac{n-q}{n}\|\nabla''u\|^{2}+\frac{q}{n}\|\nabla'u\|^{2}+\mathcal{O}(\|u\|^{2}),$$

(5)
$$\|\partial' u\|^2 + \|\partial'^* u\|^2 = \frac{n+1-p}{n} \|\nabla' u\|^2 + \frac{p-1}{n} \|\nabla'' u\|^2 + \mathcal{O}(\|u\|^2).$$

(One can check that ∂'' agrees with the Kohn-Rossi operator $\overline{\partial}_b$ up to an operator of order zero, and that (4), which actually holds in much greater generality, gives an easy proof of the subellipticity of the Kohn Laplacian \Box_b on (p,q)-forms when 0 < q < n.)

The adjoint $d''^*: F^{p,q+1} \to F^{p,q}$ is given by ∂''^* followed by projection onto $F^{p,q}$. A straightforward computation yields for $u \in \Gamma(F^{p,q}), p+q > n+1$,

(6)
$$(u, \square''u) = \|d''u\|^2 + \|d''^*u\|^2$$

$$= \|\partial''u\|^2 + \|\partial''^*u\|^2 - \frac{1}{p+q-n}\|\partial'u\|^2.$$

Following Akahori, we use (4), (5), and (6) to obtain

(7)

$$(u, \square''u) \ge \|\partial''u\|^2 + \|\partial''^*u\|^2 - \frac{1}{p+q-n}(\|\partial'u\|^2 + \|\partial'^*u\|^2)$$

$$\ge \frac{n-q}{n} \|\nabla''u\|^2 + \frac{q}{n} \|\nabla'u\|^2$$

$$- \frac{1}{p+q-n} \left(\frac{n+1-p}{n} \|\nabla'u\|^2 + \frac{p-1}{n} \|\nabla''u\|^2\right) - C\|u\|^2$$

$$= \frac{(n-q)(p+q-n) - (p-1)}{n(p+q-n)} \|\nabla''u\|^2$$

$$+ \frac{q(p+q-n) - (n+1-p)}{n(p+q-n)} \|\nabla'u\|^2 - C\|u\|^2.$$

When 0 < q < n-1 and p+q > n+1, both coefficients on the right-hand side above are strictly positive, so we obtain the following Gårding-type inequality:

(8)
$$(u, \square''u) \ge c||u||_1^2 - C||u||^2.$$

The subellipticity of \square'' then follows by standard arguments.

When q = n - 1 the coefficient of $\|\nabla' u\|^2$ in (7) is positive, but that of $\|\nabla'' u\|^2$ is zero. To handle this case, we observe that (2) implies $\|\partial' u\|^2 \le K \|\nabla' u\|^2$. (The constant factor K arises because there are two different norms in use—the Hodge norm for (p+q+1)-forms, and the Hodge norm for (covector-valued) (p+q)-forms.) Thus (6) and (4) in the case q = n - 1 give

$$(9) \quad (u, \square''u) \ge \frac{1}{n} \|\nabla''u\|^2 + \frac{n-1}{n} \|\nabla'u\|^2 - \frac{K}{p-1} \|\nabla'u\|^2 - C\|u\|^2.$$

Adding ε times (9) plus $(1 - \varepsilon)$ times (7), for suitably small ε , yields (8).

For the case p + q < n, we could proceed in a similar manner. However, it is easier to note that this case is equivalent to the case p + q > n + 1, as follows.

Let * be the Hodge star operator determined by g_{θ} and the orientation $\theta \wedge (d\theta)^n$, and let $\overline{*}$ denote * followed by conjugation. These operators have the following mapping properties:

$$*: E_{\theta}^{p,q} \to F^{n+1-q,n-p};$$

$$*: F^{p,q} \to E_{\theta}^{n-q,n+1-p};$$

$$\overline{*}: E_{\theta}^{p,q} \to F^{n+1-p,n-q};$$

$$\overline{*}: F^{p,q} \to E_{\theta}^{n+1-p,n-q};$$

Moreover, the adjoint operator $d''^*: E^{p,q} \to E^{p,q-1}$ is $(-1)^{p+q} * d' * = (-1)^{p+q} * d'' *$; therefore, $* \square'' = \square'' *$. It follows immediately that subellipticity of \square'' on $F^{p,q}$ for p+q>n+1 and 0< q< n implies subellipticity on $E^{p,q}$ for p+q< n, 0< q< n. (This also gives a new proof of Serre duality for Kohn-Rossi cohomology, $H^{p,q}(M) \cong H^{n+1-p,n-q}(M)$, originally due to Tanaka [T].)

The remaining cases (p+q=n, n+1) are more difficult, since then \square'' is a fourth-order operator. Consider first the case p+q=n+1, 0 < q < n. The key observation is that the Hodge star operator $*: F^{p,q} \to E^{p-1,q}_{\theta}$ has a particularly simple expression: it is just $*u = cT \rfloor u$ for some constant c of modulus one. Using this, we can show by a laborious computation that for $u \in \Gamma(F^{p,q})$,

$$(u, \square''u) = \|D''^*u\|^2 + \|d''^*d''u\|^2$$

$$= \frac{3}{4}\|(\partial''\partial''^* - \partial'\partial'^*)u\|^2 + \frac{1}{4}\|(\partial''^*\partial'' + \partial''\partial''^*)u\|^2 + O(\|u\|_1^2).$$

Throwing away the first term and writing $\Delta'' = \partial''^* \partial'' + \partial'' \partial''^*$, we obtain

$$(u, \square''u) \ge \frac{1}{4} \|\Delta''u\|^2 - C\|u\|_1^2.$$

Combined with the fact that Δ'' is subelliptic on $F^{p,q}$ when 0 < q < n (which follows from (4)), this easily yields subellipticity of \square'' . The argument for the case p + q = n can be carried out similarly; alternatively that case can be deduced from the p + q = n + 1 case by means of the Hodge star operator.

Finally, we prove that every cohomology class has a unique harmonic representative (i.e., a representative in $\text{Ker}\square''$) when $n \geq 2$. When 0 < q < n, this follows directly from the fact that \square'' is subelliptic, hence Fredholm. When q = 0, it is true for the trivial reason that d''^* is the zero operator, so $H^{p,0}(M) = \text{Ker} d'' = \text{Ker} \square''$. (Replace d''^* by D''^* when p = n + 1, and d'' by D'' when p = n.) On the other hand, when q = n, we argue as follows. Assume first that $p \geq 2$. Any cohomology class in $H^{p,n}(M)$ is represented by a section u of $F^{p,n}$ (with d''u = 0 trivially). Since \square'' is Fredholm on $F^{p,n-1}$, we can write

$$d'''^*u = \square''v + w = d'''^*d''v + d''d''^*v + w,$$

where $\square''w = 0$. Since Im d''^* , Im d'', and Ker \square'' are all mutually orthogonal, we must have $d''^*u - d''^*d''v = d''d''^*v = w = 0$. In particular, $u - d''v \in \text{Ker } d''^* = \text{Ker } \square''$, and we are done. The p = 1 and p = 0 cases are virtually identical, with $E^{p,q}$, D'', D''^* inserted in place of $F^{p,q}$, d'', and d''^* as appropriate.

REFERENCES

- [A] T. Akahori, A mixed Hodge structure on a CR manifold, MSRI preprint 1996-026 (unpublished).
- [AM] T. Akahori and K. Miyajima, An analogy of Tian-Todorov theorem on deformations of CR-structures, Compositio Math. 85 (1993) 57-85.
- [GL] P. Garfield and J. M. Lee, The bigraded Rumin complex on CR manifolds, in preparation.
- [R] M. Rumin, Formes différentielles sur les variétés de contact, J. Differential Geom. 39 (1994) 281-330.
- [T] N. Tanaka, "A Differential Geometric Study on Strongly Pseudo-Convex Manifolds", Kinokuniya Company Ltd., Tokyo, 1975.
- [W] S. Webster, *Pseudohermitian structures on a real hypersurface*, J. Differential Geom. 13 (1978) 25-41.

DEPT. OF MATHEMATICS, BOX 354350, UNIVERSITY OF WASHINGTON, SEATTLE, WA 98195-4350

E-mail address: garfield@math.washington.edu, lee@math.washington.edu