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THE RUMIN COMPLEX ON CR MANIFOLDS
PETER M. GARFIELD AND JOHN M. LEE

ABSTRACT. Building on work of Rumin, Akahori, and Miyajima,
we introduce a bigraded differential complex on hypersurface-type
CR manifolds, whose cohomology reproduces Kohn-Rossi cohomol-
ogy. Our main result is a Hodge theorem for this complex in the
strictly pseudoconvex case.

1. BACKGROUND

Let M be a (2n + 1)-dimensional nondegenerate CR manifold of
hypersurface type. The principal cohomological invariants of M are
its Kohn—Rossi cohomology groups HP?(M). In seeking to connect
H?9(M) with deRham cohomology and with CR deformation theory,
T. Akahori and K. Miyajima [AM] defined a new double complex EFP#4,
with differential operators d': FP9 — FP+14 and d": FP9 — FPatl
and showed. that the complex (FP9,d") reproduces Kohn-Rossi coho-
mology when p+ g > n+ 1. In a recent unpublished preprint [A],
Akahori also claimed that subellipticity does not work when ¢ =n —1
or g = n. In fact, it is easily seen that [0 cannot be subelliptic when
q = n, because HP¥(M) is infinite-dimensional for all p in that case.
We give a correct statement in Theorem 3 below; see [GL] for details.)

Recently M. Rumin [R] introduced a new way to compute deRham
cohomology on a contact manifold. If 6 is a contact form and J is the
ideal in A*M generated by 6 and df, set

(1) FFE=J-nA*M,  E*=A*M/@nAM).

(Here J* represents the annihilator of J with respect to the wedge
product.) Since J is a differential ideal, it is easy to check that d maps
F* into F*¥+1, and descends to a map, which we also call d, from E*
to E¥+1. However, F¥ = 0 when k < n and E¥ = 0 when k > n + 1,
so each of these complexes is nontrivial only in half of the degrees on
a given manifold.
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Rumin constructed the following sequence:
0-R—=ES4E Y. . &pnDprird 4 pni1_,

Here D is defined by D[w] = d(w + 8 A B) for [w] € E*, with 3 chosen
so that d(w+0AB) € F**!. Rumin showed that D is well defined, and
the above sequence is a complex, which we call the Rumin complez. He
showed moreover that it is an acyclic resolution of the constant sheaf
R, so that its cohomology is isomorphic to deRham cohomology; and
that M can be endowed with a Riemannian metric in such a way that
each deRham cohomology class has a unique “harmonic” representative
w € I'(E*) or I'(F*) satisfying

dv=d'w=0 in E* k<n;

Dv=d'w=0 1inEF k=mn;

do=D'w=0 inF¥ k=n+1;

dv=d'w=0 inF*k>n+1.

2. A BIGRADING OF THE RUMIN COMPLEX

We wish to bring together the constructions of Rumin and of Akahori
and Miyajima by introducing a bigrading of Rumin’s complex. To fix
our notation, let 7%® C CTM denote the sub-bundle defining the CR
structure, with 70! = T10, T4 N 79! = {0}, and [[(T%?), [(T%?)] C
['(T%') (the “integrability condition”). If we set H = Re(T0@T%1) C
TM, then H has real dimension 2n and carries a complex structure.

Let CE* and CF* denote the complexified Rumin bundles, obtained
by replacing A¥* M in (1) by the bundle CA* M of complex-valued forms,
and J by its complexification. Define subspaces EP4 C CEP*? and
FP? C CFP*1 by

EP? = {[w] € CEP*? : 4|y is of type (p,q) for some v € [w]},

FPe = {yy € CFP9: (X Jw)|y is of type (p —1,q) for any X ¢ H},
where a complex-valued (p + g)-form on H is said to be of type (p, q)
if it gives zero whenever it acts on more than p vectors from 7 or

more than g vectors from 79
It is straightforward to check that

CE*= @ E*; CF'= (p Fre.
- pg=k . ptg=k
The integrability condition then implies that
d: EP9 — EPItl g Eﬁl,q,
d: Fr;,q — FPatl oy prtlg



Write the resulting operators (d followed by projection) as d”, d'. (This
coincides with Akahori and Miyajima’s definition on F?9.) From d? =
(d" + d')? = 0, therefore, it follows that

dI dl dll dl/ df dII + d” d/ = 0.
When p+ g = n, things are not quite so nice. The best we can say is
D: EP9 , FPatl gy pp+la gy pp+2,9-1

Writing the three resulting operators as D", D', and D*, and decom-
posing Dd = dD = 0 into types, we obtain

DII d” — dll DII dl DII + d” DI DI dll + DII dl — 0
Theorem 1. Consider the sequence
0 — KP — EPO LN EP1 4.8 EPm—P D, Fpin—ptl L4

. ﬂ'_') Fp,2n+1—p -0

where KP := kerd": EP? — EP! for p < n, X® := kerD": E™® —
F™1 and X**1 := kerd”: F**10 — Fn+Ll This is an acyclic res-
olution of the sheaf XP, which is isomorphic to the sheaf OP of CR-
holomorphic (p,0) forms. Therefore the ¢ cohomology. group of the
complex above is isomorphic to Kohn-Rossi cohomology HPI(M) for
all p,q.

Unfortunately, this does not fit together into a double complex be-
cause D'd’ and d’'D’ are not zero in general. Instead, we have:

Theorem 2. The filtration of the Rumin complex R defined by
FPRPYI — RPI RPH19-1 4. Rn+1,p+q—n—1

(where R = E or F as appropriate) induces a CR-invariant spectral
sequence RP%, whose r = 1 term is Kohn-Rosst cohomology and which
converges to the graded group associated with the induced filtration of
deRham cohomology.

The proofs of these two theorems will be given in [GL].

3. HODGE THEORY

By themselves the results of the preceding section don’t tell us much
that is new about CR manifolds. Tanaka [T] studied a similar spectral
sequence defined in terms of the deRham complex, and it can be shown
that our spectral sequence is isomorphic to his for > 1. Our hope
is that the real utility of this point of view will be proved by applying
Hodge theory.
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As above, let RP? denote EP? when p+q < n, and FP9 when p4-q >
n+1. Let 8 be a fixed choice of contact form on M, and T its char-
acteristic vector field: this is the vector field uniquely determined by
Ti160=1,T1df=0. The Webster metric gy is the Riemannian metric
defined by using the Levi form on H and declaring T to be orthonormal
to H (see [W]). Using this metric, we can identify the quotient bundles
EP4 with honest bundles of (p+ g)-forms by noting that EP? & EF? .=
{w € CAP*MM : w|y is of type (p,q) and w L J with respect to gg},
and then we can define adjoint operators d’* of d” and D"* of D".
We say a section u of RP? is harmonic if d"u = d"*u = 0, with d"
replaced by D” when p+ ¢ = n, and d”* by D"* when p+qg=n+ 1.
Our main result is the following:

Theorem 3. {A Hodge theorem for the bigraded Rumin com-
plex) Let M be a compact, strictly pseudoconver CR manifold of di-
mension 2n+1, n > 2. For each (p,q), HP? is isomorphic to the space
of harmonic sections of RP1.

Proof. We only sketch the proof here. Complete details will appear in
[GL).
Let O0": RP9 — RPY be defined as follows:
d’/dll* + dll*dll’ p+ q # n,n + 1;
DII — (dlldll*)2 + DII*DII, p+ q — n,
D'D"™ 4+ (d"d")?, p+qg=n+1.

The main part of the proof is showing that [0” is subelliptic on RP?
for 0 < ¢ < n. Akahori [A] proved this when p+ ¢ > n + 1 and
2 < p,q < n—2 (see the remark above). Here is a somewhat simplified
version of his proof, which works also in the case (p,q) = (n + 1,1).

Our choice of contact form 8 determines a canonical connection V,
the pseudohermitian connection [W, T], which is compatible with H
and its complex structure, and with respect to which # and df are
parallel. For any tensor field u on M, the total covariant derivative Vu
can be decomposed as

Vu=Vu+V'u+Vou®b,

where V'u involves derivatives only with respect to (1,0) vector fields,
and V"u only with respect to (0,1) vector fields. Writing Vyu =
V'u + V"u, the Folland-Stein norms || - ||, are defined by

k
lullf = V3l
=0

where || - || denotes the L? norm.
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Define operators
(2) Ou = (—1)P Alt(V'u), 0"u = (=1)P* Alt(V"u)

acting on complex-valued forms of any degree. A computation shows
that ' = ¢’ and d" = 8" on FP4. By commuting covariant derivatives,
we obtain the following Bochner identity for sections of FP4:

3) "9+ 0" = ——Av" V' + 1v"v' 4 0,

where 0" is the adjoint of 8" acting on all forms (not just sections
of FP9), and Oy represents an operator of order zero. It follows by
conjugation (noting that conjugation takes F'P9 to F9t1P~1) that

1-— . —1_,.
n+n pvl Vl+pn vll vll_*_oo.

0+ 99" =
By integration, therefore, we obtain the following L? identities:

@ Nl + 19"l = 229" + L7l + o),

2_n+

* 1- / —1 "
(6) Nl + 10" ul* = =2 V"l + E= (V" u|[* + O(|lulf?).

(One can check that 8" agrees with the Kohn-Rossi operator 8, up to
an operator of order zero, and that (4), which actually holds in much
greater generality, gives an easy proof of the subellipticity of the Kohn
Laplacian [J, on (p, q)-forms when 0 < ¢ < n.)

The adjoint d"*: FP9+! — FP4 is given by 8" followed by projection
onto FP4. A straightforward computation yields for u € I'(FP9), p+q >
n+ 1,

(u,0") = [|d"u]|* + ||ld"" ul|®

! 1% ]‘
= [|0"ul|® + [|0" ul|® - mllgull2-

(6)



34

Following Akahori, we use (4), (5), and (6) to obtain
(7 |

1
) > 1,112 o2 _ 2 * 112
(0, ©) 2 0"l + 10wl = o (Ol + 1"ul)
> 228 o2 + L)jory)?
n n
_ 1 n+1-— Tl + mon2\ _ 2
(MR B9 — Ol
_(n=qp+g-n)—P—=1), on 42
= ot 19"
+qg—n)—(n+1-—
+ Lot a0 B g - Ol

When 0 < g < n—1and p+ q > n+ 1, both coefficients on the
right-hand side above are strictly positive, so we obtain the following
Garding-type inequality:

(8) (v,0") 2 cllull] - Cllull®.

The subellipticity of (1" then follows by standard arguments.

When q = n — 1 the coefficient of ||V'u||? in (7) is positive, but that
of ||V"u||? is zero. To handle this case, we observe that (2) implies
10u|?> < K||V'u||®>. (The constant factor K arises because there are
two different norms in use—the Hodge norm for (p+ g+ 1)-forms, and
the Hodge norm for (covector-valued) (p+ g)-forms.) Thus (6} and (4)
in the case g=n — 1 give

K
9 (@0%) 2 IIV” 2+ 2= v - p_lllv’Ullz—CIIUIlz-

Adding € times (9) plus (1 — E) times (7), for suitably small €, yields
(8). |

For the case p + ¢ < n, we could proceed in a similar manner.
However, it is easier to note that this case is equivalent to the case
R+ q>n+1, as follows.

Let x be the Hodge star operator determined by g and the orien-
tation 6 A (df)", and let * denote * followed by conjugation. These
operators have the following mapping properties:

. P4 n+l-q,n—p.
x: Bt — F P,
. I'P\q n—q,n+1-p,
*: FPl— F7° ;

*: Eg,q — Fn+l—p,n—q.

?

*: Fp:q — E;H‘I“P»n—q.



Moreover, the adjoint operator d"*: EP9 — EPI7! is (—=1)P* 1 x d'x =
(—=1)P*9% d"*; therefore, ¥[1” = [O0"*. It follows immediately that
subellipticity of (0" on FP? for p+ ¢ > n+ 1 and 0 < ¢ < n implies
subellipticity on EP? for p+q < n, 0 < ¢ < n. (This also gives
a new proof of Serre duality for Kohn-Rossi cohomology, HP(M) =
H™+1-Pn=4( M), originally due to Tanaka [T].)

The remaining cases (p+ ¢ = n, n+ 1) are more difficult, since then
0" is a fourth-order operator. Consider first the case p+ g = n + 1,
0 < g < n. The key observation is that the Hodge star operator
x: P9 — E{,’_l"’ has a particularly simple expression: it is just *u =
cT Ju for some constant ¢ of modulus one. Using this, we can show by
a laborious computation that for u € I'(FP9),

(v, 0"%) = [|D"ul® + ||d" d"ul*

= 2N(0"8" — 9O Yulf + 710" 8" + 89" yul + O(lulR).

Throwing away the first term and writing A” = 0"*0" + 0"9"*, we
obtain

1
(,0") 2 218" = Cllul,

Combined with the fact that A” is subelliptic on F7? when 0 < g<n
(which follows from (4)), this easily yields subellipticity of 0”. The
argument for the case p + ¢ = n can be carried out similarly; alterna-
tively that case can be deduced from the p + ¢ = n 4 1 case by means
of the Hodge star operator.

Finally, we prove that every cohomology class has a unique harmonic
representative (i.e., a representative in Ker(3”) when n > 2. When
0 < g < n, this follows directly from the fact that 0" is subelliptic,
hence Fredholm. When g = 0, it is true for the trivial reason that d"” is
the zero operator, so HP0(M) = Ker d’ = KerI". (Replace d"* by D"
when p = n+1, and d” by D” when p = n.) On the other hand, when
g = n, we argue as follows. Assume first that p > 2. Any cohomology
class in HP™(M) is represented by a section u of FP™ (with d"u = 0
trivially). Since (0" is Fredholm on FP"~! ‘we can write

d*u=0"v+w=d"d"v+d"d"v+w,

where [0"w = 0. Since Imd"*, Imd”, and Ker " are all mutually or-
thogonal, we must have d”*u—d"* d"v = d"d"*v = w = 0. In particular,
u—d"v € Kerd" = Ker[1”, and we are done. Thep=1and p =0
cases are virtually identical, with EP9, D, D"* inserted in place of
FP4 d" and d’* as appropriate. O
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