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INVARIANT THEORY OF THE BERGMAN KERNEL IN DIMENSION TWO

Gen Komatsu (MR %)

Osaka University (KERKFRZERBZEHTFH)

Abstract. This is an elementary exposition of a joint work with
Hirachi and Nakazawa [HKN2], concerning Fefferman’s program [F3] on
the boundary singularity of the Bergman kernel for strictly pseudoconvex
domains in C" with smooth (i.e. C*°) boundary. The main result gives,
in the case n = 2, an explicit invariant expression of the singularity of the
Bergman kernel up to terms of weight < 5. (A full invariant expression
is discussed by Hirachi [Hi], see also his article in these proceedings.) In
explaining the problem, we sometimes consider the general case n > 2,
though our concern is the case n = 2.

§1. Description of the problem. The Bergman kernel of a domain
Q in C" is a real analytic function defined by KB(z) = Y |h;(2)|? for
z € Q, where {h;}; is an arbitrary complete orthonormal system of the
space of L? holomorphic functions in Q. This is the restriction to the
diagonal w = z € Q of a sesquiholomorphic function KB(z,w) which is
also referred to as the Bergman kernel. We assume that (2 is a strictly
pseudoconvex domain with smooth boundary, and take a smooth defining
function r € C*°(Q) in the sense that Q = {r > 0} and dr # 0 on 09.
Then it is well-known that KB(z) — +o0 as r(z) — +0. Hormander
[Ho] further pointed out that

(1.1) r(z)"* KB(2) — % J[r](zp) as z — z € 09,

where J[-] stands for the Levi determinant or the complex Monge-
Ampére operator defined by

_ n u ou/0zr \ o
J[u] = (—1)" det (au/az,- Bzu/az)'?k) (J,k=1,...,n).
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Here, z = (2',2,) = (21,-..,2n) is the standard coordinate system of
C". According to Fefferman [F1] (see also Boutet de Monvel-Sjoéstrand
[BS]), the singularity of K2 at the boundary takes the form

n. B z —
(12) K%)= 2 (L P oner), PP eoo@).

In particular (1.2), combined with (1.1), yields ¢® = J[r] on 89Q.
REMARKS. (1°) A ball is biholomorphic to a simple model domain
Qo = {ro >0} with r; =2Rez, — |2']%,

and if (Q,7) = (Qo, o) then B = J[ry] = 1 and ¥® = 0 in Q. This case
is exceptional and for most of the domains ¢® # J[r] # 1 and ¢B # 0
in 2.

(2°) If r is prescribed, then the singularity of KB(z) is determined by
©® modulo O™+ and ¥»B modulo OV for any N € N, where O* stands
for a general term which is smoothly divisible by r*. The singularity of
KB(2) can be localized near a reference boundary point.

The problem in Fefferman’s program [F'3] is to express the singularity
of KB invariantly in the sense of local biholomorphic geometry:

n N ) ‘
(1.3) B =D Priyortt, ¢P=) " ¢BriLoN (NeN).

j=0 j=0

We abandon 9011-3,1/)}-3 € C*°(0Q) and assume 30]]-3,1#}3 € C*°(Q). (More
precisely, we require cp]f, z/);3 to be defined only near the boundary 0f2.)
To explain the reason, we need:

DEFINITION. A domain functional K = Kgq is said to satisfy a (bi-
holomorphic) transformation law of weight w € Z if, for biholomorphic
mappings ® : Q7 — Qg

(1.4) Ka,(2) = Kq,(®(2)) | det ®'(2)**/*D  for z € Q.

We then write wil(K) = w.
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EXAMPLES. (1°) The Bergman kernel satisfies wIl(KB) =n + 1.
(2°) Every solution of the complex Monge-Ampeére equation J[u] =1
satisfies wTl'(u) = —1. More precisely, .

Tui](2) = Jua)(®(2)) i+ wi(2) 1= ua(B(2)) | det &'(2)| 72/ (" +1),

Comparing these examples with (1.2), one might expect
wil(@P)=j (j<n), wWE7)=n+l+j (G<N)

for any N € N by requiring r to satisfy J[r] = 1 near 82. But then, the
smoothness up to the boundary of r fails, that is, r ¢ C *((}) for most of
the domains, and the program breaks down (see Section 2 below for the
detail). Instead, we confine ourselves to a smooth approximate solution
of J[r] = 1. Thus the expansion of ® in (1.3) becomes approximate
with N finite. (Hirachi [Hi] considers a complete invariant expansion of
¥B. by taking account of the ambiguity of smooth approximate solutions
of J[r] = 1, see also his article in these proceedings.)
To consider approximate invariants, we need:

DEFINITION. If a domain functional K = Kq € C°°(Q) is well-defined
modulo OF and satisfies, in place of (1.4),

Ka, = (Kq, 0 ®) - |det ®'[2*/(»+1)  OF,

we write wI¥(K) = w mod OF. This notion can be localized near a
reference point z; € 9%, where local biholomorphic mappings ® are
assumed to be smooth up to the boundary.

We also consider boundary invariants, and thus we need:
DEFINITION. If a boundary functional K = Kaq € C*°(02) satisfies
Kao, = (Kaq, 0 ®) - |det ®'?*/**)  on a0y

for biholomorphic mappings ® : ; — Qa, we write w “(K) = w on 9Q.
This notion can be again localized near a reference point 2z, € 951.

Obviously, if wTE(K) = w mod O* then w'l'(K|;q) = w on 0%Q.
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§2. The complex Monge-Ampére asymptotics. Let us begin
with smooth approximate solutions due to Fefferman [F2]. Starting from

an arbitrary smooth defining function of {2, one has another defining
function r € C*°(Q) such that

(2.1) Jlr] =1+ 0",

Let r¥ denote the totality of smooth defining functions r satisfying (2.1).
Abusing notation, we usually write r = rf. Fefferman’s construction of
r = rf in [F2] is local, explicit and computable. Properties of rf are
summarized as follows:

(lF) If ri,r, € r¥ then ry —ry = O™*2. If r € rF then r + O"*2 ¢ F.
(Consequently, the ambiguity of r¥ is exactly O"+2.)

(2F)  wTL(rF) = —1 mod O™*2.

(3F)  rF is locally defined near a boundary point.

We next state known facts on the complex Monge-Ampére boundary
value problem

(2.2) Jul=1 (v>0) in Q, ulaq = 0.

FACT 1 (unique existence, Cheng-Yau [CY]). There exists a unique
solution u = uMA € C°(Q) N C™"+3/2-¢(Q) of (2.2) for any ¢ > 0.

FACT 2 (asymptotic expansion, Lee-Melrose [LM]). For any smooth
defining function r,

(2.3) uMA ~ ’"Z nx - (r"* logr)¥, nk € C(R),
k=0 '

where each 7; is unique modulo flat functions (or as a formal power
series in r). In particular, (2.3) implies uM4 € C"+2~¢(Q) for any € > 0.
This improves the regularity in Fact 1.

FACT 3 (structure of local asymptotic s'olu’;ions, Graham [G1], [G2]).
Let us fix r = rf and a € C*(89) locally near a boundary point. Then
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there exists a unique formal series u® of the form (near the reference
boundary point)

wnr Y nf - (Hlogr)t, 5§ € C°°(‘ﬁ), |
k=0

such that J [u ] ~ 1and n§ = 1+ ar™?! 4+ O™2% Asin (1F)- (3F)
properties of u® are summarized as follows:

(16)  Each ¢ modulo O™ is independent of r = r¥ and a € C*°(99).
(2%) w™(n%)=k(n+1) mod O™*!,
(3%) Each ¢ modulo O™*! is locally defined near a boundary point.

§3. The problem in dimension two. Now we can describe the
problem and the difficulty more precisely. Let us restrict ourselves to
the case n = 2, and thus (1.2) takes the form

K°(z) = % (SOB(Z) r(z)7% + ¢B(z) log r(z)), r=rt,
Graham [G1] pointed out that ¢® =1 4+ O3 and that

FacT 4. ¥ = —37% on 09 locally.

Analysis of B (for n = 2) is thus complete, see (1.3). To explain an
implication of Fact 4, we set

¥E — ¢

r la’
Then wTl(8) — 3 mod O and wTL(P;) = 4 on 8Q. Thus we have
an approximate invariant expansion (1.3) with N = 1, where %P is an
arbitrary extension of P, from 9% to Q so that w™'(42) =4 mod O*.

The expansion (1.3) with N = 1 is completely determined in [G1] and
[HKN1]. To refine this result one step further, we need to solve:

Yo =307, Pai=

PROBLEM. Construct #2 € C*°(Q2) in such a way that

Ip?lan — P, wil(4B) =4 mod 0 locally.
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Assume for a moment that the Problem above is affirmatively solved.
Then 9B — 4§ — B r is smoothly divisible by r2. In addition, setting

= YR —yp PP
r2

b= €eC®Q), Ps=49¢

on’

we have wTk(4) = 5 mod O!, and thus wTIl(Ps) = 5 on Q. Thus we
have an approximate invariant expansion (1.3) with N = 2, where %2 is
an arbitrary extension of Ps. Due to the ambiguity (1¥) of r = rF, one
cannot expect an approximate invariant expansion (1.3) with N > 3 as
far as r = r¥ is used. Our result is roughly stated as follows:

RESULT (rough statement). (1) The Problem above is affirmatively
solved. Specifically, ¥ is realized by a Weyl invariant of weight 4.

(2) Psis a CR invariant of weight 5, and an extension %2 of Ps from
0N} to (Q is realized by a Weyl invariant of weight 5.

(3) P and 2 are given explicitly.

In the next section, we state the result more precisely in terms of Weyl
invariants. Results on CR invariants are given in Section 5.

§4. Weyl invariants in the sense of Fefferman. To define Weyl
invariants, it is necessary to consider a C* bundle over £ C C" near the
boundary 9€2. An extra variable zp € C* = C\ {0} is introduced in
addition to the standard coordinate system z = (z1,...,2,) € @ C C".
Setting

ru(z9,2) = |2o|?r(2) ~ with r= rf

we consider the Lorentz-Kahler metric with potential r:

n

g= ) (rg);zdzidz

3,k=0

Denoting by R = R][g] the curvature tensor, we consider the covariant
derivatives R0 = V' *vr-2R,
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DEFINITION. A Weyl invariant of weight w € Ny is defined to be a
linear combination of complete contractions of the form

1 8
Wy = contr(R(P1’91) R ® R(Ps:Qa)), w=g Z (pj +4¢;) —s.
- =1

Then
Wy (20,2) = |20|**W(z), -

and the linear combination of these W is also referred to as a Weyl
invariant. We denote by IV the totality of Weyl invariants W = W (z)
of weight w.

The notion of Weyl invariants as above was introduced by Fefferman
in his program [F3]. The following fact is due to Fefferman [F3| and
Bailey-Eastwood-Graham [BEG].

FACT 5. For each k = 1,...,n, there exists Wy € I} such that

90B — Z Wk T'k + On+1.
k=0

Properties of W € IV are summarized as follows:

(1W) W modulo O"~¥*! is independent of r = r¥.
2%) wIl(W)=w mod O" ¥t

We need to refine the ambiguity in (1V) and (2V) in the case n = 2.
"Our result is stated as follows.

Theorem ([HKN2]). Assuming n = 2, let W, , = ”R(J”’Q)H2 and
w = p+ q — 2, where || - ||* denotes the squared norm of a tensor with
respect to the Lorentz metric g.

(1) Fw =4 or 5, then W, , modulo O%~* is independent of r = r¥.
The boundary values of W, 4 are CR invariants of weight w.

(2) The boundary values of W, 2 and Wj 3 are linearly dependent
as CR invariants. The boundary values of W5 o and W, 3 are linearly
independent as CR invariants.
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(3) 9B =-3n7 + ¢i3 r 4+ ¥2 r?2 + O®, where
' '»L‘? = c4g Waa or cs3 Wis, %]? = c52 Wsa + ca3 Wys.

The constants csz, C33, Cs2, C43 are explicit. (csz and c43 depend on the
choice of ¥¥.) Specifically, c42 = 3/1120, c33 = 1/160, and

| 61 3
) B _ [/‘/ = — = ——
if ¢1 = c4o Wy then Cs2 141120 ° Cs53 7840’
1 1
{ B = _ ——— = =————
if 7 =c33Wss then cso 20160’ Cs53 560

§5. CR invariants. For simplicity of the notation, we only consider
the case n = 2. Let us begin with Moser’s normal form (cf. [M], [CM]).
Let M C C? be a strictly pseudoconvex real hypersurface containing the
origin as a reference point, and assume that M is real analytic. After a
holomorphic change of coordinates, M is written as

2u=|21|2+FA(z1,El,v), 29 =u+1v,

where F, is a power series of the form

= — L ik, £ _ _ )k
Fa(z1,71,v) = _;_ AgzZiv = Z Az(v) 7
: JHE+2£23 3k

satisfying A z(v) = A45(v). We then say that M is in pre-normal form.

DEFINITION. M in pre-normal form is said to be in normal form if
A z(v) = 0 for min {j, k} < 2 and A,5(v) = Ayz(v) = Azz(v) = 0. Then
21, 29 are referred to as normal coordinates. For M in normal form, we
write M = N(A) and denote by N the totality of A giving N(A).

FacT 6 ([M], [CM]) By a local biholomorphic mapping w = ®(z2),
M in pre-normal form can be always put in normal form ®(M). ® is
unique under the conditions

®(0) =0, &'(0)=identity, Im(8%w2(0)/822)=0.



19

M has a unique normal form if and only if M is equivalent to 9§, for
the model domain  in Section 1, and the non-uniqueness is measured
by the isotropy group H = {h € Aut(Q); h(0) = 0}. Then a group
action H x N 3 (h, A) — h.A € N is defined by N(h.A) = & o h(N(A))
with @ in Fact 6.

DEFINITION. A CR invariant of weight w € Ny is a polynomial P(A)
in A € NV satisfying the transformation law

P(A) = |det K'(0)|?*/® P(h.A)  (h € H).

We denote by ISR the (complexified) vector space of all CR invariants
of weight w.

Even if M is not real analytic and merely smooth, N(A) makes sense
as a formal surface defined by a formal power series, and CR invariants
are well-defined. A CR invariant P(A) determines a functional M — Py,
defined by Pu(p) := | det ®},(p)[**/* P(A), where ®, with the reference
point p € M is a formal mapping as in Fact 6 such that ®,(M)=N(A)
and ®,(p) = 0. Then Pys(p) is independent of the choice of ®,, and Py
is a smooth function on M.

A list of CR invariants of weight < 5 (n = 2) is given as follows.

FacT 7 ([G1], [HKN2]). I§® =C, IFR = ICR {0} and

I:?R = span (Agz) , IER ='span ([Agﬂz) ,
IgR = span (FscR(l, 0), FSCR(O, 1)) ,

where FC®(a,b) := F(a,b,—2a + (10/9)b, —a + b/3) with
F(a,b,¢,d) := a| Alg|” +b|Afs[* + Re { (c Afs — i d Alg) 4%},
Assuming that M = N(A) is a portion of the boundary 02, let us

consider the boundary values, at 0 € M of n and W, (p+¢—2 = 4,5).
It was shown by Graham [G2] that 7T = 4 A%, at 0. We also have:



20

Fact 8 ([HKN2]). For (1) of the Theorem in Section 4, the ambiguity
statement holds. In addition, the following equalities hold at 0:

3Wye = TWs3 =28.21 lAgilza
Wsy = —4- (5!)° FPR(1,18), Was = —4-(51)2 FCR(4/3,57/5).

These results imply the Theorem except for the determination of the
universal constants. This determination requires expansions of n¥ and
Wpe (P+q—2 = 4,5) ast — 40 along the half-line (0,¢/2) € C? in normal
coordmates A similar expansion of ¥ is also necessary. Expansions of
n{ and W,,, together with the ambiguity of W, pgs aT€ obtained via careful
analysis of the operator J[-]. To get an expansion of %, we use Boutet
de Monvel’s algorithm [B1], [B2], [B3] which is based on Kashiwara’s
microlocal characterization of the singularity of the Bergman kernel [K].
Both computations are long, see [HKN2]| for the details. (Cf. also our
earlier article [HKN1] for the method of computing %5.)
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