Geometry of Banach spaces and norms of ±1 matrices

Yasuji TAKAHASHI (高橋泰嗣) and Mikio KATO (加藤幹雄)
Okayama Prefectural University
Kyushu Institute of Technology

Some geometrical properties of a Banach space X are described by the behavior of norms of certain ± 1 matrices between $\binom{n}{r}(X)$ -spaces.

1. Definitions and notations

X, Y; Banach spaces, $1 \le r$, $s \le \infty$, 1/r + 1/r' = 1/s + 1/s' = 1, A = (a_{ij}) ; mXn matrix, $a_{ij} = \pm 1$ (mXn ± 1 matrix)

$$|A|_{r, s; X} = |A : |_{r}^{n}(X) \rightarrow |_{s}^{m}(X)|, |_{r}^{n}(X) ; X-valued |_{r}^{n}-space$$

Banach-Matur distance: For two isomorphic Banach spaces E and F $d(E, F) = \inf\{|T| \cdot |T^{-1}| : T \text{ is isomorphism from E onto } F\}.$

Finite-representability: Y is finitely representable (f. r.) in X if for each (some) $\lambda \to 1$ and for each finite-dimensional subspace F of Y there is a finite-dimensional subspace E of X with dim E = dim F such that $d(E,F) < \lambda$.

<u>Super-reflexivity</u>: X is super-reflexive if any Banach space f.r. in X is reflexive.

Remark. Consider (P), a property of Banach spaces. (P) is said to be a super-property if X has (P) and Y is f.r. in X, then Y has (P).

B-convexity and J-convexity are super-properties, but reflexivity and

Radon-Nikodym property (RNP) are not super-properties.

A finite sequence of signs ϵ_1 , ϵ_2 ,...., ϵ_n is admissible if all + signs are before all - sings (so there are n different sequences).

(1) X;
$$(n, \epsilon)$$
-convex, $\epsilon \rightarrow 0 \Leftrightarrow \forall x_1, \ldots, x_n \text{ with } |x_j| = 1$

$$\min_{\substack{\epsilon, =\pm 1 \\ j}} |\sum_{j=1}^{n} \epsilon_{j} x_{j}| \leq n(1 - \epsilon).$$

- (2) X; B_n -convex \Leftrightarrow X; (n, ϵ)-convex for some $\epsilon \to 0$.
- (3) X; B-convex \Leftrightarrow X; B_n-convex for some n.
- (4) X; J_n -convex $\Leftrightarrow \exists \delta > 0, \forall x_1, x_2, ..., x_n \text{ with } |x_j| = 1,$ $\exists \epsilon_1, \epsilon_2, ..., \epsilon_n \text{ ; admissible signs}$

$$|\sum_{j=1}^{n} \epsilon_{j} x_{j}| \leq n(1 - \delta).$$

- (5) X ; J-convex \Leftrightarrow X ; J-convex for some n.
- (6) X; uniformly non-square \Leftrightarrow X; B₂-convex (\Leftrightarrow J₂-convex).

Remark. It is known that X is B-convex if and only if 1 is not f.r. in X; and X is J-convex if and only if it is super-reflexive. It is also known that

uniformly convex \Rightarrow uniformly non-square \Rightarrow super-reflexive and conversely, any super-reflexive Banach space admits an equivalent uniformly convex norm (see [1] and [2]).

2. Main results

Theorem 1 Let X be a Banach space, $1 < r \le \infty$ and $1 \le s < \infty$.

Then for any $mXn \pm 1$ matrix $A = (a_{ij})$, the following are equivalent.

(1)
$$\exists \delta > 0, \forall x_1, \dots, x_n \text{ with } |x_i| = 1$$

$$\min_{1 \le i \le m} |\sum_{j=1}^n a_{ij} x_j| \le n(1 - \delta).$$

(2)
$$|A|_{r, s; X} = |A : |\frac{n}{r}(X) \rightarrow |\frac{m}{s}(X)| < m^{1/s} n^{1/r'}$$
.

Remark. For any Banach space X and for any $mXn \pm 1$ matrix $A = (a_{ij})$, we can prove the following:

(1)
$$|A|_{r, s:X} \le m^{1/s} n^{1/r'}$$

(2) If 1 is f. r. in X, then
$$|A|_{r, s; X} = m^{1/s} n^{1/r'}$$
.

Corollary 2 (1) X is B_n -convex if and only if $|A|_{r, s; X} < m^{1/s} n^{1/r'}$ for some mXn ±1 matrix $A = (a_{ij})$.

(2) Let R_n be a $2^n Xn$ Rademacher matrix and 1 \infty. Then X is B_n -convex if and only if $|R_n|_{p,p;X} < 2^{n/p} n^{1/p!}$.

Remark. Rademacher matrices R_n is defined by

$$R_1 = \begin{pmatrix} 1 \\ -1 \end{pmatrix}, \quad R_{n+1} = \begin{pmatrix} \frac{1}{1} & R_n \\ -\frac{1}{1} & R_n \\ -\frac{1}{1} & R_n \end{pmatrix}$$
 (n=1, 2,).

For the details of Rademacher matrices, see Kato, Miyazaki and Takahashi [5].

Corollary 3 (Smith and Turett [9]) Let $1 . Then X is <math>B_n$ -convex if and only if $L_p(X)$ is. In particular, X is uniformly non-square if and only if $L_p(X)$ is, and X is B-convex if and only if $L_p(X)$ is.

Let A_2 be a 2X2 Littlewood matrix, that is, $A_2 = \begin{pmatrix} 1 & 1 \\ 1 & -1 \end{pmatrix}$. Then nXn admissible matrices A_n $(n \ge 2)$ is defined by

$$A_{n+1} = \begin{pmatrix} 1 \\ 1 \\ \vdots \\ 1 -1 & -1 \end{pmatrix}$$
 $(n=1, 2,)$

Corollary 4 X is J_n -convex if and only if $|A_n|_{p, p; X}$ n for each (some) p with 1 \infty. In particular, X is super-reflexive if and only if $|A_n|_{p, p; X}$ n for some n and each (some) p with 1 \infty.

Corollary 5 (Pisier [8]; see also Beauzamy [1]) Let $1 . Then X is <math>J_n$ -convex if and only if $L_p(X)$ is. In particular, X is superreflexive if and only if $L_p(X)$ is.

Theorem 6 Let X be a Banach space and 1 < r \leq p \leq s < ∞ . Then for any Bochner space $L_p(X)$ and for any $mXn \pm 1$ matrix $A = (a_{ij})$, it holds $|A: \binom{n}{r}(L_p(X)) \rightarrow \binom{m}{s}(L_p(X))| \leq |A: \binom{n}{r}(X) \rightarrow \binom{m}{s}(X)|$.

Remark. (1) Corollaries 3 and 5 also follow from Theorem 6.

(2) From Theorem 5, it follows that if (p, p')-Clarkson inequality holds in X, then it also holds in $L_r(X)$, where $1 \le p \le 2$ and $p \le r \le p'$ (see Takahashi and Kato [10]).

References

- [1] B. Beazamy, Introduction to Banach spaces and their geometry, 2nd Ed., North Holland, 1985.
- [2] P. Enflo, Banach spaces which can be given an equivalent uniformly convex norm, Israel J. Math. 13 (1972), 281-288.
- [3] R. C. James, Uniformly non-square Banach spaces, Ann. of Math. 80 (1964), 542-550.
- [4] R. C. James, Super-reflexive Banach spaces, Canad. J. Math. 24 (1972), 896-904.
- [5] M. Kato, K. Miyazaki and Y. Takahashi, Type, Cotype Constants for L_p(L_q), Norms of the Rademacher Matrices and Interpolation, P_q (1995), 81-95.
- [6] M. Kato and Y. Takahashi, On the von Neumann-Jordan constant for Banach spaces, Proc. Amer. Math. Soc. 125 (1997), 1055-1062.
- [7] M. Kato and Y. Takahashi, Von Neumann-Jordan constant for Lebesgue-Bochner spaces, to appear in J. Inequalities and Appl.
- [8] G. Pisier, Martingales with values in uniformly convex spaces,
 Israel J. Math. 20 (1975), 326-350.
- [9] M. A. Smith and B. Turett, Rotundity in Lebesgue-Bochner function spaces, Trans. Amer. Math. Soc. 257 (1980), 105-118.
- [10] Y. Takahashi and M. Kato, Clarkson and random Clarkson inequalities for $L_r(X)$, to appear in Math. Nachr.