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- COMMUTATION RELATIONS AND RELATED TOPICS

MasAaTosHI ENoMoOTO*

ABSTRACT. We shall describe some aspects of commutation relations.

1. Introduction.

H.Umegaki[12] established the foundation of the noncommutative probability
theory. The concept of covariance has not been focused in this setting. Recently
M.Fujii, T.Furuta, R.Nakamoto and S.Takahashi[3] extensively studied noncommu-
tative covariance with some applications for several inequalities. Related results
are also studied in [4,11].

J.ILFujii introduced the covariances and the variances for operators as follows.
Let H be a separable Hilbert space and 2 € H, ||| = 1. The covariance of (not
necessarily bounded) operators A and -B in a state z is defined by

Covg(A, B) = (A*Bz, z) — (A*z, x)(Bz, ),
and the variance of T in a state z is defined by
Vary(A) = [|Az|? - |(Az, 7).

The following covariance -variance inequality is established in [3]. The inequality
is a fundamental result in noncommutative probability.

Theorem 1.1(The covariance-variance inequality). The square of the abso-
lute of the covariance of operators A and B is not greater than the product of the
variance of A and B:

|Covy (A, B)|? < Vary(A) - Varg(B).
We shall point out that the covariance variance inequality is exactly the gen-
eralized Schrodinger inequality. We briefly sketch the history of the uncertainty

relation [1,5]. The Heisenberg relation
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is expressing the uncertainty principle in quantum physics. This relation was dis-
cussed by Heisenberg [6] in 1927. The derivation of the uncertainty principle from
the mathematical formalism of wave mechanics was given by Kennard [7] as follows:

ggAz-Ap.

Afterward Robertson [9] proved the general uncertainty principle, valid for an ar-
bitrary pair of the selfadjoint operators A and B. The Robertson inequality reads:

g-|»< C>|<AA-AB,
where the operator C is defined as \
C =(AB — BA)/ih,

the brackets <> denote the average values and the standard deviations are defined
by the formula
| (AAP =< (A- < A>)?>.

An improved inversion of the Robertson inequality is due to Schrédinger [10].
Schrodinger generalized Robertson’s derivation by introducing D = A+ aB+ 3B,
where o and 3 are real numbers, and deducing from 0 < (Dz, Dz) the inequality
expressing the nonpositivity of the discriminant ; by an appropriate choice of a and
B he then obtained the following Schrédinger inequality:

_ 2
(%<AB+BA>—<A><B>)2+—Z—|<C>|2§(AA)2-(AB)2.

In this paper we shall point out that the generalized Schrodinger inequality is
exactly the covariance variance inequality. We also look at the Hilbert C*-module
case. Finally we also look at the q -Fock space case and describe its relation to
g-Kantrovich inequality.

2. Schrodinger inequality.

In this section we shall point out that the absolute value of the covariance of two
selfadjoint operators is represented by the term of the Schrédinger inequality. .

Theorem 2.1. Let A and B be ( not necessarily bounded ) selfadjoint operators
on a Hilbert space H. Let D(AB) and D(BA) be the domain of AB and BA
respectively. Let x € D(AB) N D(BA) and ||z|| = 1. Let {4, B} be the Jordan
product AB + BA. Let [A, B] be the commutator AB — BA. Then

(Cova(A, B)? = {5({A, B}s,) ~ (Az,2)(Bz, =)} + {3 (14, Bla, )}
Proof. ‘v
ReCovg(A, B) = %({A, B}z, x) — (Az,z)(Bz, 1),
ImCovys(A, B) = %([A, Blz, x).
Therefore using by

|Covz (A, B)|> = |ReCovy (4, B)[? + [ImCov, (4, B)[?,
this theorem holds.
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3 The case of Hilbert C*-module.
Let X be a Hilbert C*-modules over a C*-algebra A.

La(Xa) = {T|T: X = X,3T*, T(z - a) = (Tx)a}.
The inner product (z|y) has the following properties ;
(z|ly-a) = (z|y)a for z,y€ X,ac€A,

(z - aly) = a" (z[y)-

Then we shall define the covariance Cov, (5,T) for S,T € La(Xa),z € X as
follows ;. :
Covg(S,T) = (Sz — 2(z|Sz)a|Tx — z(x|T'T) 4)

Varg(S) = Covg(S, S).
Then

Covg(S,T) = (Sz|Tz) — (Sz|z(z|Tx)s) — (X (2]|S7)A|T2) + (2(2]|ST) A|2(2|TT) A)
= (T*Sz|z) — (Sz|z)(z|T2) A — 2|S7)* (2|2)(2|TT) A |

(We assume the following condition here.
(z|z) = 1.)
= (T*Sz|z) - (Sz|z)(z|Tx) — (Sz|z)(2|TZ) + (S*|x)(x|T*)

= (T*Sz|z) — (Sz|z)(z|Tx).
Then we have

Covy(S,T) = (T* Sz|z) — (Sz|z)(2|Tx).

On the other hand, Covg(S,T) is linear for S and conjugate linear for T',where
S, T € L4(X,). Thus Cov,(S,T) is an inner product for £4(X4). Therefore

[Cove(S, I < [Vara(S)] - IVarz(T)].

Remark 3.1. The condition (z|r) =1 is different from the condition |z|| = 1.
The real part and the imaginary part of Cou,(S,T) are as follows;

ERCovz(S, T) = %((S*T + T*S)z|z) — %((T:L'Ix)(aﬂSz)),

YCov,(S,T) = %{((S*T - T*S)z|r) — (Tz|x) (a:[Sm) + (Sz|z)(z|T)}.
Remark 3.2. We have
2(S™T ~ T S)alg) — (Tolg)([S2) + (Salz) TP < IVora(S)] - [Vara(T)|

This is an uncertainty relation for Hilbert C*-module.
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4 Parametrization of variance-covariance inequality from the pointv of-
g-statistics..

There is a recent topic of g-parametrization betWeen Boson statistics and Fermion]j
statistics. In this section we shall consider the g-parametrization of variance-
covariance inequality. Then we remark a g-parametrization of Kantrovich inequality
from the point of [FFNT]. First we shall review the fact of q-parametrization be-
tween Boson statistics and Fermion statistics [cf.2]. Fix a number ¢ € [—1, 1]. Take
a separable complex Hilbert space H. Let Fi% () be the linear space of the
vector of the form f, ® -+ ® f, € H®" (n € Np) and H®° ~ CQ (Q=the vacuum
vector). We put the sesquilinear form (-,-), on Ffinite(}) defind by

< fl - 'fnagl ®-- fgn >q= 6nmzqi(w)(flagvr(1)) T (fh,gvr(h))
and put | ‘
im) = {6 D1 < i < j < nw(i) > n(45)}.
Then we shall define the g-Fock space Fy(H) by F ﬁrli'*’(H)("')q. using this g,
Definition 4.1. For A,B € B(’H), we define the q-covariance for A, B in a state
z,z € H,|z| =1 by
Covl(A, B) = (A ® 7, Bx ® z),.

Under this setting ,
Proposition 4.2. For q € [-1,1|, we have

(Az @ z, Bx @ )4 = (Az,x) + q(Az, a;) < (z, Ba:)..

Corollary 4.3(Seo). Forq= -1,

(Az @z, Br® r)_1 = (Az Az, Bx Ax) = Cov(A, B).

Corollary 4.4. Forq =1,

(Az ® z, Bxr @ )1 = (Az V z, Bz V =) = (Az, Bz) + (Az, z)(z, Bx)

5 The bound of g-variances and g-covariances.

In this section we shall consider the bound of g-variances and g-covariances. Let
zeH,|z|=1g€e[-1,]and 0<m < A< M.
Then we have

Varz(4) = (M +9(Az, 7))((Az, ) —m) - (M - A)(A-m)z, 2) +m(1+g)(Az, ).

Vard(A) < (M + q(Az, 2))((Az, z) — m) + m(1 + g)(Az, z).

We put
ft) = (M +qt)(t —m) + m(1 +q)t.
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Proposition 5.1. For M+m <g¢<1,
Varg.(A) < M%(1+9).

. . M
Proposition 5.2. For —ﬁ <-1<g< —Mim
M 2
Vard(4) < —% — Mm

Using this ,we shall show the bound of q-_cova.riéncw.
For 0 <m; < A< My, 0<my < B< M,, we have the following.

Proposition 5.3. For 0< q <1,
|Covi(4, B)| £ MiM2(1+q).

iti Mi+m, _ _ Ma+
Proposition 5.4. Let -1<¢<0 and — 21M71n1 — ;MTZ'

(1) For M1+m1 <gq, |Covi(A,B)| < MiMy(1+ q).

(2) For ¢< M%L_flnx,

|Covi(A, B)| < \/{_M _Mlml}{_w — Myms).

4q 4q
Proposition i 5. Let ;41 <g¢g<0 and —le]\?lnl G _M;;—l;nz.
(Dlet — Agima < -,

() For— M1+_m1 <q,
|Covi(4, B)| < M1M2(1 +9).

(B) For —¥zga <q< -t

M )2
|Covl(A, B)| < \/{—%— — M1m1}M22(1+q).

(7) For ¢ < —Maima

2My 0
M;+m My 4+ my)?2
|Covi(A, B)| < \/{ g Mlml}{—#— — Momso}.
(2) For MZ}J]L,I"“ < - Mﬂ}?,
(a) For MZJ‘\Z"'Z < q,

ICovi (A, B)| < MiMa(1+ q).
(ﬂ) For M1+m1 <g<— Ma+ms

2M, ?
(Covi(4, B)| < \/M%<1+q>{—9‘4%1’"@3 ~ Myma).
(v) For q<-¥5mm,
(Covi(4, B)| < \/{—W—lg’“—y - (- PRI ppng),
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Remark( g-Kantrovich inequality).
(1) For ¢=0, 1<X
(2) For 0<g<l1,

M+ Mqg—m

-1 <
(Az,2)(A" 'z, 7) < =

(8) For—1<g¢<0, and -TtM g,

(Az,z)(A z,2) < M+ Mg - m
For -1<g<0and ¢<-TtM
_ 1 (M + m)? (x+a4)? 1
g )< — |1 T MmM{--m M
(Az,2) (A7, 7) < — | 144 [1-p mp{—=m M )
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