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Abstract

In this paper, we define some topologies determined by u-measurable seminorms.
If the cylindrical measure p is canonical p-stable, then the aforesaid topology be-
comes a Sazonov topology of an LP-space (1 < p < 2), which is different from the

well-known one.

1 Introduction

We are going to construct a Sazonov topology which is different from the well-known type.
The main tool to do it is the measurable norm due to Dudley-Feldman-Le Cam([1]). First
we introduce a new notion ” the quasi- Sazonov topology ” and investigate the relation
between the Sazonov topology and the quasi-Sazonov topology. Consequently, the quasi-
Sazonov topology’is the Sazonov topology if the space is of stable type 1. This result
leads the interesting fact that there exists another.Sazonov topology of an LP-space if

1 < p < 2. It is the analogy with that Hilbert spaces have two Sazonov topologies which
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have been shown by Sazonov , Gross and Kuo ([10], [2,3], [4]).

2 Prelimin}ary‘and Notation

Let E be a real separabie Banach épace with topological dual E’ ,‘ C(FE) be the class of
all cylindrical measures on E and P(E) be the class of all Radon probability measures on
E. Clearly, P(E) C C(E).

By ®(E’) we denote the set of all complex valued functions ¢ satisfying the following
three conditions: (1) ¢(0) =1, (2) ¢ is positive definite and (3) for each finite diménsional
subspace G C E' the restriction of ¢ to G is continuous. Here G is endowed with the

unique norm-topology.

If we denote by /i the characteristic function of 4 € C(F), then we have

S(E)={ D ;ne C(BY).

Now we explain the order of Radon probability measures, and the type and the cotype
of cylindrical measures. For u € P(E), we define || u |,= (f5 || = ||P du(z))?, if
—00<p<oo, p#0, || p]lc=ess.sup || x || ( with respect to u) and

I & lo= exp fislog Il x | du(x). For p <0, || [ is always fmite.
Definition. The Radon probability measure p is of order p, if || p ||,< oo.

Clearly if ¢ < p and p is of order p , then p is of order g, since || 4 ||, is an increasing
function of p.

Let p be a cylindrical measure on E and ¢ € E'. Then ¢ is a continuous linear map -
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from E into R, then we can define the image measure {(u) = pe on R.

Definition.  For p € C(E) , we define || p |[;= supyg<s Il #e llp and || p |I3=

linfyey>1 Il pe llp] ™" We say p s of typep, if || 1 |l5< 0o and p is of cotypep, if || u [|3< oo.

Here we introduce stable cylindrical measures. Let (€2, P) be a probability measure
space, and 1 < p < 2 and p’ be the conjugate index to p(ie 1/p+1/p=1). On
L¥ (12, P) there exists the cylindrical measure 7, such that ¥, = e lI° for £ € L?. We say
that -, is the canonical p-stable symmetric cylindrical measure. For p = 2, v, is equal to
7, i.e. the canonical Gauss cylindrical measure.

The following result is well known ( [12] ). It is convenient to introduce the notation

p=pifp<2,oroifp=2.
Proposition 1. The cylindrical measure 7y, is of type q and of cotype q for all ¢ < .

Next we consider the case of general Banach spaces. For 1 < p < 2, let T be an
operator from E’ into some L”. Then the function ¢(€) = exp(— || T¢ ||?) for £ € E' is
the characteristic function of a symmetric cylindrical measure ¢ on E. We say that p is

a p-stable symmetric cylindrical measure on E.
Remark. Note that for instance 7, is a p-stable symmetric cylindrical measure on L*'.

Let u be a p-stable symmetric cylindrical measure with an operator T. We denote by
Ap(E’, LP) the set of operators T for which y is a Radon probability measure. In this case
T is called to be a A,-operator. -

In this section we will close with the relation between operators and cylindrical mea-
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‘sures. Althought the results about this matter are not very deep they are crucial for our
subsequent investigations. They allow us to translate properties of cylinderical measures
into the la.ﬁgange of operators a,nd vice versa.

Let A be a linear mapping from E’ into L°(Q, P). Then it is easy to verify that the
family {dist(A(&),---,A(&:))} is consistent. Hence, it defines a cylindrical measure p#

on E with
Mg, = dist(A(&1), -+, A(6n)
for all {&,---,&.} C E'. Note that

dist(A(fl)’ e ’A(gn))(B) = P({(A(gl)’ e ’A(é-n)) € B})

for B € B(R™). Thus every linear mapping A from E’ into L°((2, P) generates a cylindrical

measure on E. The converse is true as well ([5]):

Proposition 2. Let y be an arbitrary cylindrical measure on E. Then there exists a

linear mapping A from E' into an appropriate space L°(S2, P) such that p = p.

An operator A from E' into LP(Q2, P), 0 < p < 00, is decomposed if there exists an

FE-valued random variable ¢ with

Af(w) = (p(w),€), P—a.e,

for all é € F'.

Proposition 3. A cylindrical measure u* admits a Radon extension iff A is decomposed

by an E-valued random variable ¢. Moreover, the Radon extension coincides with

dist( ¢ ) .
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Remark. The operator A is said to be a linear random function associated with p.

3 The Quasi-Sazonov Topology

First we introduce the notion ” Sazonov topology ”.

Definition.  Let 7 be a vector topology deﬁned on E'.

(1) If the following statement [ i € $(E') is T-continuous => pu € P(E) ] is satisfied,
then 7 is called a sufficient Sazonov topology ( in shorter, SS-topology ) .

(2) If the statement [ p € P(E) = i is T-continuous | 1is satisfied, then T is called
a necessary Sazonév topology ( in shorter, NS-topology ).

(3) Let 7 be an SS-topology and an NS-topology, then T is called to be a Sazonov

topology ( in shorter, S-topology ). If there exists an S-topology on E', then E is said to

be an S-space.

Here we present a few examples of S-spaces.

Ezamples

1. The finite dimensional vector space R is an S-space. Usual Euclidean topology is
an S-topology ( Bochner’s theorem).

2. Every real separable Hilbert space is an S-space. We have two S-topologies de-
noted by 7ys and 7,,. Tgg is the weakest topology satisfying that every Hilbert-Schmidt
operator defined on the afofesaid Hilbert space is continuous. 7, is the weakest topol-

ogy satisfying that every - measurable seminorm is continuous, where ~ is the canonical
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Gauss cylindrical measure. Here the notion ” y-measurable ” was introduced by Gross
(not Dudley-Feldman-Le Cam, however these coincide with each other ).

3. Banach spaces do not have always S-topologies. It follows from results of Mouchtari
([8]) that a real separable Banach space E is an S-space if E is embeded in L° and has a
metric approximatiqn property ( m.a.p.). In this case the S-topology is 75. Conversely, if E
is an S-space, then F is embeded in L® and is of cotype 2. In particular, an LP{1 < p < 2)
space is the S-space and the S-topblogy isT(0<g<p) .([5,9]). Topologies 7,(0 < ¢ < 2)

will be explained in succeeding sections.

Remark. Every real separable Banach space has an SS-topology ([6]) and an NS-

topology.
Our main result is to generalize the above example 2 to the case of LP(1 < p < 2)spaces.

Now we start to explain a new notion ” Quasi-Sazonov topology”.
Let u be a cylindrical measure on E and T be an associated linear operator with u,
i.e. u = pT. Note that y is of type 1 iff T is a continuous linear operator from E’ into

L'(2, P). We denote by C;(E) the set of all type 1 cylindrical measures and by T(E")

the set of all continuous linear operators of E into an appropriate space L'(2, P).

Definition.  Let 7 be d vector topology defined on E'. (1) If the following statement
[ T € T(E') is T-continuous from E' into L' =>p € P(E) | is satisfied, then 7 is called
a quasi-sufficient Sazonév topology ( in shorter, QSS-topology )

(2) If the statement | p € Ci(E)NP(E) =T zs T-continuous from E' into L' ] is

satisfied, then T is called a quasi-necessary Sazonov topology ( in shorter, :



87

QNS-topology ).
(3) Let T be a QSS-topology and a QNS-topology, then T is called to be the quasi-

Sazonov topology ( in shorter , QS-topology ).

Before we show the relation between the Sazonov topology and the quasi- Sazonov

topology, we state a theorem due to Nikishin([7]).

Theorem 1. Let0 < ¢ <p <2 and X be a quasi-Banach space of stable type p. Every

continuous linear operator T from X into LY can be factorized in the following way;
T:X— L' ~ T=Tyo0S, S: XL, T,:L7P— L7
S is continuous and T, a multiplication by g in L™, 1/qg=1/p+1/r .

Remark. If0 < p < 2, then we say that the Banach space E has stable type p provided

that
=z 77 <0 ({z:} C E)
i=1
implies the almost everywhere existence of 3%, 0Pz, where {01(” )} is a sequence if inde-
pendent real-valued random variables with
N
0P () =™ teR, 0<p<?
and

S .
02 (t) =2, teR.

Now we start to explain one of main theorems.

Theorem 2. Let 7 be a vector topology defined on E'.
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(1) If T is an SS-topology, then T is a QSS-topology.
(2) Suppose that E' is of stable type 1 , then a QSS-topology coincides with an SS-
topology.

(3) If T is a QNS-topology, then T is an NS-topology.

Proof. (1) Suppose that 7 is an SS-topology. Let i be a type 1 cylindrical measure on
E, and T be an associated linear operator with . If T is 7-continuous from E’ into L!,
then T is 7-continuous from E’ into L°. This means that it is T-continuous from E’ into
the complex plane C. Therefore u € P(E).

(2) Let T be a linear random function associated with 4 € C(E) and 7 be a QSS-
topology. Suppose that T is 7-continuous from E’ into L .

Using Nikishin’s Theorem, T is factorized in the following way :
T=T,0S ; S:E—L' T,:[' —1I°

S is 7-continuous from E’ into L' and T, a multiplication by g in L% Let v be the
cylindrical measure associated with S. v is of type 1. Since 7 is a QSS-topology, we
have v € P(E). This means S is a decomposed operator. Then there exists an E-valued
random variable ¢ such that S¢ = (¢(-),&) for every £ € E'. g¢¢ is also the E-valued
random variable, then T is a decomposéd operator and p € P(FE).

(3) Assume that 7 is a QNS-topology. Let u be a cylindrical measure and T be
an associated linear random function with p. If u is extensible to a Radon probability
measure, then T is a decomposed operator from E' into L°. We have T¢ = (¢(-),€) for

some E-valued random variable ¢(-). Then we define a random variable

V(W) = ow)/ | ¢w) || (set p(w) =0if $(w) = 0)
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and an operator S € L(E', L) by S¢ = (¢(-),&),€ € E'. 1t follows that T = XS where
X € L(L', L% is defined by X f =|| ¢(-) || f. We denote by » the associated cylindrical
ﬁleasure with S, then v is of type 1. Since S is decomposed operator, v is a Radon
probability and so S is f—coﬁtinuous from E' into L!. This implies that T is T-: continuous
from E' into L°. Toen T is an NS-topology.

This completes the proof. O

For 1 < p < oo, the space L? isv of stable type 1. Therefore we get the following

corollary.

Corollary. Every QS-topology on LP for 1 < p < oo is an S-topology.

4 Topology M,

We will define the new topology which is constructed by the canonical p-stable symmetric

cylindrical measure 7, .

Let 1 < p <2 and p’ be the conjugate index to p.

Definition. Let N be the family of all continuous seminorms defined on L” that are
Yp-measurable ([ 1]). We denote by M, the weakest topology such that every seminorm

belonging to N becomes to be continuous.
Remark. M, is equal to 7,,, ( which is defined by Gross and Kuo).

. Here we have the main theorem as follows.
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Theorem 3. Let1 <p <2 andp be the conjugate indez to p. The topology M, is an

S-topology of L*.

Proof.  First we show that M, is a QSS-topology of LP. Let X be a type 1 cylindrical
measure on L? and T be the associated linear random function from L? into L. Suppose
that T is M, - continuous. There exists a seminorm s(-) belonging to N. For any € > 0,

there exists a § > 0 such that s(z') < § implies
/ IT(+') () — T(0)(w)|dP < .
" Therefore T is decomposed as follows :
T=doi i: ¥ — LY, sﬁ:Lﬁ;,)%L‘,

where L‘:;_) means the associated Banach space with s(-) and ¢ is the canonical injection
of L* into L’;;.). Let ¢ be the dual operator of i. ¢ is 1-summing opefé,tor. Because 'y,,v -
measurability of s(-) implies that the image measure i(7,) is able to extensible to a Radon
measure and also 7, is of ‘cotype 1. By Theorem of Schwar(tz' ([11]), ¢’ is 1-summing. Also
L? is reflexive and so ¢ is 1-Radonifying operator.

Let I be the identity map of L' and v be the associated cylindrical measure with I.
Since ¢/ (v) is the associated cylindrical measure with ¢, which is of type 1. Hence i'(¢'(v))
is extensible to a Radon measure. Since i'(¢/(v)) = A, the desired result is gotten.

Therefore M, is an SS-topology.

On the other hand L? has an NS—topology 70 and M, is stronger than 75. This means.

M, is an NS-topology. The proof is completed. O
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5 M,and 7,

Throught this section, 1 <p<2and 1/p+1/p' =1.

First we expiain some notions. Recall that a measure 4 € P(E) is p-stable symmetric
iff there exist a probability space ({2, P) and an operator T € L(E’, LP(£2, P)) such that
fi(§) = exp(— || T¢ |?),€ € E’, and T is a Ap-operator and denote by A,(E’, L?) the set
of all A -operators.

Let II,(E,G) be the set of all p—surﬁming opéra’cors from ‘E into G , where G ‘is a
- Banach space.

Moreover, A%“*(L¥', E) denotes the set of operators from L” into E for which the
.dua,l operatof belongs to A,(E’, L?). Equivalently, S € A%(L”, E) iff S(v,) extends to
a Radon measure on E.

Next we introduce some topologies generated by stable measures. For any ¢ € (0,2]

we define a vector topology 7, on E’ by the following neighbourhood basis of zero :
{{¢ € E'|| SE 1< 1}; S € A((E', L9)}.

For ¢ =0, 7y is generated by all decomposed operators S from E' into some L%(n,P) .

For later reference we will state some propositions ([5], [13] ).

Proposition 4.  For any 0 < ¢ < p we have

(L7, 17) = 4,(I7, I?)
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Proposition 5. If0<g<pandl <p<2, then

II,(L”,E) C A% (L” E).

Proposition 6. If2<g<oo andl<p<2, then A% (L¥, L9) is not included in

II,(L”, L9).

Proposition 7. | If0 S r < q < 2, then 7, is stronger th‘an‘ Tq-

Remark. We denote by 7, > 7, the above case.

Propositiop 8. If E has stable type g, 0< qrg 2, then it follows that T, = 79 on E' .
Here we recall the following theorem.

Theorem 4.  Every real separable Hilbert space has two S-topologies that are Tys and

Tm Satisfying that Tgs < T, and THg # Tm.
Remark. Note that 745 = 79 and 7, = Mo.

It follows from Propbsitions 5, 8 that M, > 7 = %q if ¢ < p. Proposition 6 implies
that M, # 7.

Therefore we have the next theorem.

Theorem 5. For 1l < p < 2, the LP- space has two S-topologies that are 19 and M,

satisfying that 1o < M,, and 79 # M,.
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