ニューマークのベータ法の安定性について (On the Stability of Newmark's β method)

Abstract

For the second order evolution equation in time, we consider Newmark's β method without imposing the assumption of the Rayleigh damping for the dissipation term. We derive the trinomial recurrence relation of Newmark's method which is due to Chaix-Leleux, and give a proof of stability of the scheme for the homogeneous equation by an energy method.

1. The second order evolution equation and Newmark's method

In a finite dimensional real Hilbert space \mathcal{H} , we consider the following second order differential equation in time t:

$$\frac{d^2}{dt^2}u(t) + C\frac{d}{dt}u(t) + Ku(t) = f(t), \quad u(t) \in \mathcal{H}, \tag{1}$$

where C and K are non-negative linear operators on \mathcal{H} and f is a given function: $f:[0,\infty)\to\mathcal{H}$.

Let τ be a time step, U(t) be a difference approximation of u(t), V(t) be a difference approximation of $\frac{d}{dt}u(t)$, A(t) be a difference approximation of $\frac{d^2}{dt^2}u(t)$, and β and γ be fixed real numbers. Then we can write Newmark's method[2] as follows:

$$\begin{cases} A(t) + CV(t) + KU(t) = f(t) \\ U(t+\tau) = U(t) + \tau V(t) + \frac{1}{2}\tau^2 A(t) + \beta \tau^2 (A(t+\tau) - A(t)) \\ V(t+\tau) = V(t) + \tau A(t) + \gamma \tau (A(t+\tau) - A(t)). \end{cases}$$
 (2)

The case $\gamma = \frac{1}{2}$ is the standard Newmark's β method.

2. The iteration scheme of Newmark's method

The iteration scheme of Newmark's method (2) for the equation (1) is written as follows:

• I. Compute A(t) from initial data U(t) and V(t) by using (1):

$$A(t) = f(t) - (C V(t) + K U(t)).$$

• II. Compute $A(t+\tau)$ from $f(t+\tau)$, U(t), V(t) and A(t):

$$\begin{array}{lcl} A(t+\tau) & = & (I+\gamma\tau C+\beta\tau^2 K)^{-1} \\ & \times \{-KU(t)-(C+\tau K)V(t) \\ & + (-\tau C+\gamma\tau C-\frac{1}{2}\tau^2 K+\beta\tau^2 K)A(t)+f(t+\tau)\}, \end{array}$$

where I is the identity operator.

^{*}Doctor Course Student, Dep. Computer Science and Information Mathematics, The University of Electro-Communications, chiba@im.uec.ac.jp

[†]Dep. Computer Science and Information Mathematics, The University of Electro-Communications, kako@im.uec.ac.jp

• III. Compute $V(t+\tau)$ from V(t), A(t) and $A(t+\tau)$:

$$V(t+\tau) = V(t) + \tau A(t) + \gamma \tau (A(t+\tau) - A(t)).$$

• IV. Compute $U(t+\tau)$ from U(t), V(t), A(t) and $A(t+\tau)$:

$$U(t+\tau) = U(t) + \tau V(t) + \frac{1}{2}\tau^2 A(t) + \beta \tau^2 (A(t+\tau) - A(t)).$$

• V. Replace t by $t + \tau$, and return to II.

3. The trinomial recurrence relation of Newmark's method

We derive a trinomial recurrence relation for $U(t-\tau)$, U(t) and $U(t+\tau)$ from the following system of equations:

$$\begin{cases}
A(t) + CV(t) + KU(t) = f(t) \\
A(t+\tau) + CV(t+\tau) + KU(t+\tau) = f(t+\tau) \\
U(t+\tau) = U(t) + \tau V(t) + \frac{1}{2}\tau^2 A(t) + \beta \tau^2 (A(t+\tau) - A(t)) \\
V(t+\tau) = V(t) + \tau A(t) + \gamma \tau (A(t+\tau) - A(t)).
\end{cases}$$
(3)

3.1 Derivation of the trinomial recurrence relation of Newmark's method

We eliminate A(t), $A(t+\tau)$ and $V(t+\tau)$ from (3) and get an equation for U(t), $U(t+\tau)$ and V(t). Next we eliminate A(t), $A(t+\tau)$ and V(t) from (3) and substitute $t-\tau$ for t, and get another equation for $U(t-\tau)$, U(t) and V(t). Lastly we obtain the following equation eliminating V(t) from these two equations:

$$(I + \gamma \tau C + \beta \tau^{2} K)U(t + \tau) + \{-2I + \tau(1 - 2\gamma)C + \frac{1}{2}\tau^{2}(1 - 4\beta + 2\gamma)K\}U(t)$$

$$+ \{I + \tau(-1 + \gamma)C + \frac{1}{2}\tau^{2}(1 + 2\beta - 2\gamma)K\}U(t - \tau)$$

$$= \beta \tau^{2} f(t + \tau) + \frac{1}{2}\tau^{2}(1 - 4\beta + 2\gamma)f(t) + \frac{1}{2}\tau^{2}(1 + 2\beta - 2\gamma)f(t - \tau).$$
(4)

In this calculation, we must take care of the non-commutativity between C and K. In the case $\gamma = \frac{1}{2}$, we get a recurrence relation for the standard Newmark's β method:

$$(I + \frac{1}{2}\tau C + \beta\tau^{2}K)U(t+\tau) + \{-2I + \tau^{2}(1-2\beta)K\}U(t) + (I - \frac{1}{2}\tau C + \beta\tau^{2}K)U(t-\tau)$$

$$= \beta\tau^{2}f(t+\tau) + \tau^{2}(1-2\beta)f(t) + \beta\tau^{2}f(t-\tau).$$
(5)

3.2 Representation by difference operators

We define difference operators with time step τ as follows:

$$D_{\tau}U(t) \equiv \frac{1}{\tau}(U(t+\tau) - U(t)) \sim \frac{d}{dt}u(t+\tau/2),$$

$$D_{\bar{\tau}}U(t) \equiv \frac{1}{\tau}(U(t) - U(t-\tau)) \sim \frac{d}{dt}u(t-\tau/2),$$

$$D_{\tau\bar{\tau}}U(t) \equiv \frac{1}{\tau^2}(U(t+\tau) - 2U(t) + U(t-\tau)) \sim \frac{d^2}{dt^2}u(t),$$

$$\frac{1}{2}(D_{\tau} + D_{\bar{\tau}})U(t) \equiv \frac{1}{2\tau}(U(t+\tau) - U(t-\tau)) \sim \frac{d}{dt}u(t).$$

Using these definitions, we obtain the trinomial recurrence relation for $U(t-\tau)$, U(t) and $U(t+\tau)$ as follows:

$$(I + \beta \tau^{2} K) D_{\tau \bar{\tau}} U(t) + \gamma C D_{\tau} U(t) + \{ (1 - \gamma)C + \tau (\gamma - \frac{1}{2})K \} D_{\bar{\tau}} U(t) + K U(t)$$

$$= \{ I + \tau (\gamma - \frac{1}{2})D_{\bar{\tau}} + \beta \tau^{2} D_{\tau \bar{\tau}} \} f(t).$$
(6)

Especially, in the case $\gamma = \frac{1}{2}$, we have (see [1],[3] for the case $C \equiv 0$):

$$(I + \beta \tau^2 K) D_{\tau\bar{\tau}} U(t) + \frac{1}{2} C(D_{\tau} + D_{\bar{\tau}}) U(t) + K U(t) = (I + \beta \tau^2 D_{\tau\bar{\tau}}) f(t). \tag{7}$$

4. Stability analysis by energy method

We consider Newmark's β method for the homogeneous equation: $f(t) \equiv 0$ in (1), and derive a stability estimate for the approximate solution of (7) by means of an 'energy method'.

We take an inner-product between (7) and $\frac{1}{2}(D_{\tau}+D_{\bar{\tau}})U(t)$:

$$((I + \beta \tau^{2} K) D_{\tau \bar{\tau}} U(t), \frac{1}{2} (D_{\tau} + D_{\bar{\tau}}) U(t)) + (\frac{1}{2} C(D_{\tau} + D_{\bar{\tau}}) U(t), \frac{1}{2} (D_{\tau} + D_{\bar{\tau}}) U(t)) + (KU(t), \frac{1}{2} (D_{\tau} + D_{\bar{\tau}}) U(t)) = 0.$$
(8)

Since $C \geq 0$, the second term in the left-hand side of (8) is non-negative. Moving this term to the right-hand side, we have

$$((I + \beta \tau^2 K)D_{\tau\bar{\tau}}U(t), \frac{1}{2}(D_{\tau} + D_{\bar{\tau}})U(t)) + (KU(t), \frac{1}{2}(D_{\tau} + D_{\bar{\tau}})U(t))$$

$$= -(\frac{1}{2}C(D_{\tau} + D_{\bar{\tau}})U(t), \frac{1}{2}(D_{\tau} + D_{\bar{\tau}})U(t)) \le 0.$$

Hence, we get the inequality:

$$((I + \beta \tau^2 K) D_{\tau \bar{\tau}} U(t), \ \frac{1}{2} (D_{\tau} + D_{\bar{\tau}}) U(t)) + (K U(t), \ \frac{1}{2} (D_{\tau} + D_{\bar{\tau}}) U(t)) \le 0.$$
(9)

Multiplying both sides of (9) by $2\tau^3$, we have

$$((I + \beta \tau^2 K)(U(t+\tau) - 2U(t) + U(t-\tau)), \ U(t+\tau) - U(t-\tau)) + (\tau^2 K U(t), \ U(t+\tau) - U(t-\tau)) \le 0.$$

Inserting U(t) - U(t) = 0 in the inner-product of the first term in the left-hand side, we get

$$((I + \beta \tau^{2} K)(U(t + \tau) - U(t)), U(t + \tau) - U(t))$$

$$+((I + \beta \tau^{2} K)(U(t + \tau) - U(t)), U(t) - U(t - \tau))$$

$$-((I + \beta \tau^{2} K)(U(t) - U(t - \tau)), U(t + \tau) - U(t))$$

$$-((I + \beta \tau^{2} K)(U(t) - U(t - \tau)), U(t) - U(t - \tau))$$

$$+(\tau^{2} K U(t), U(t + \tau) - U(t - \tau)) \leq 0.$$

Arranging this formula, we obtain the following inequality:

$$((I + \beta \tau^2 K)(U(t+\tau) - U(t)), \ U(t+\tau) - U(t)) + (\tau^2 K U(t+\tau), \ U(t))$$

$$\leq ((I + \beta \tau^2 K)(U(t) - U(t-\tau)), \ U(t) - U(t-\tau)) + (\tau^2 K U(t), \ U(t-\tau)).$$

Dividing both sides of this inequality by τ^2 , we have

$$((I + \beta \tau^{2} K) D_{\tau} U(t), D_{\tau} U(t)) + (K U(t + \tau), U(t))$$

$$\leq ((I + \beta \tau^{2} K) D_{\tau} U(t - \tau), D_{\tau} U(t - \tau)) + (K U(t), U(t - \tau))$$

$$\leq ((I + \beta \tau^{2} K) D_{\tau} U(0), D_{\tau} U(0)) + (K U(\tau), U(0)).$$

Using this inequality and the fact that

$$(KU(t+\tau), U(t)) = (KU(t), U(t)) + \tau(KD_{\tau}U(t), U(t))$$

and $K \geq 0$, we get

$$||D_{\tau}U(t)||^{2} + \beta \tau^{2}||K^{1/2}D_{\tau}U(t)||^{2} + ||K^{1/2}U(t)||^{2} + \tau(K^{1/2}D_{\tau}U(t), K^{1/2}U(t)) \le C_{0}, \tag{10}$$

where

$$C_{0} = ((I + \beta \tau^{2}K)D_{\tau}U(0), D_{\tau}U(0)) + (KU(\tau), U(0))$$

$$= ((I + \beta \tau^{2}K)D_{\tau}U(0), D_{\tau}U(0)) + (KU(0), U(0)) + \tau(KD_{\tau}U(0), U(0))$$

$$= ||D_{\tau}U(0)||^{2} + \beta \tau^{2}||K^{1/2}D_{\tau}U(0)||^{2} + ||K^{1/2}U(0)||^{2} + \tau(K^{1/2}D_{\tau}U(0), K^{1/2}U(0)).$$

If α is a positive real number, from Schwarz's inequality, we get

$$|\tau(K^{1/2}D_{\tau}U(t), K^{1/2}U(t))| \leq ||\tau K^{1/2}D_{\tau}U(t)|||K^{1/2}U(t)||$$

$$= \alpha||\tau K^{1/2}D_{\tau}U(t)|| \times \frac{1}{\alpha}||K^{1/2}U(t)||$$

$$\leq \frac{1}{2}\alpha^{2}\tau^{2}||K^{1/2}D_{\tau}U(t)||^{2} + \frac{1}{2\alpha^{2}}||K^{1/2}U(t)||^{2}.$$
(11)

Moving the forth term in the left-hand side of (10) to the right-hand side and using (11), we have

$$||D_{\tau}U(t)||^{2} + \beta \tau^{2}||K^{1/2}D_{\tau}U(t)||^{2} + ||K^{1/2}U(t)||^{2}$$

$$\leq C_{0} - \tau(K^{1/2}D_{\tau}U(t), K^{1/2}U(t))$$

$$\leq C_{0} + |\tau(K^{1/2}D_{\tau}U(t), K^{1/2}U(t))|$$

$$\leq C_{0} + \frac{1}{2}\alpha^{2}\tau^{2}||K^{1/2}D_{\tau}U(t)||^{2} + \frac{1}{2\alpha^{2}}||K^{1/2}U(t)||^{2}.$$

$$(12)$$

Finally moving the second and the third terms in the last formula of (12) to the left-hand side, we obtain an energy inequality:

$$||D_{\tau}U(t)||^{2} + \tau^{2}(\beta - \frac{\alpha^{2}}{2})||K^{1/2}D_{\tau}U(t)||^{2} + (1 - \frac{1}{2\alpha^{2}})||K^{1/2}U(t)||^{2} \le C_{0}.$$
 (13)

Using this inequality, we have the following results.

Theorem 1 In the case $\beta \geq \frac{1}{4}$, we have the stability estimate, with positive constants C_1 and C_2 ,

$$||U(t)|| \leq C_1 + C_2 t,$$

and in the case $0 \le \beta < \frac{1}{4}$, if we choose τ such that

$$\tau < \sqrt{\frac{1}{(\frac{1}{4} - \beta)||K^{1/2}||^2}},$$

then we have, with positive constants C_3 and C_4 ,

$$||U(t)|| \leq C_3 + C_4t$$

From now on, we show the proof of this theorem. First, we consider the case $\beta \geq \frac{1}{4}$. If we put $\alpha = \sqrt{2\beta}$ in (13), then we have, for $\beta > \frac{1}{4}$, that

$$||D_{\tau}U(t)||^2 + (1 - \frac{1}{4\beta})||K^{1/2}U(t)||^2 \le C_0$$

and

$$||D_{\tau}U(t)||, ||K^{1/2}U(t)|| \le C_{\beta} = (1 - \frac{1}{4\beta})^{-1}C_0 < \infty,$$

where C_{β} is a constant independent of t. Hence, we get

$$\beta > \frac{1}{4} \implies ||D_{\tau}U(t)||, ||K^{1/2}U(t)|| \le C_{\beta}.$$

And we also obtain that

$$\beta \geq \frac{1}{4} \implies ||D_{\tau}U(t)|| \leq \sqrt{C_0}.$$

Then recalling the definition:

$$D_{\tau}U(t) = \frac{1}{\tau}(U(t+\tau) - U(t)),$$

we get

$$||U(t+\tau)-U(t)|| \leq \sqrt{C_0}\tau,$$

and

$$||U(t+\tau)|| \le ||U(t)|| + \sqrt{C_0}\tau \le \cdots \le ||U(0)|| + \sqrt{C_0}(t+\tau).$$

Putting $C_1 = ||U(0)||$ and $C_2 = \sqrt{C_0}$, where C_1 is constant independent of τ , we can conclude that

$$\beta \ge \frac{1}{4} \Longrightarrow ||U(t)|| \le C_1 + C_2 t. \tag{14}$$

Next, we consider the case $0 \le \beta < \frac{1}{4}$. Put $\alpha^2 = \frac{1}{2}$ in (13). Then we have

$$||D_{\tau}U(t)||^{2} + \tau^{2}(\beta - \frac{1}{4})||K^{1/2}D_{\tau}U(t)||^{2} \le C_{0}$$

and

$$||D_{\tau}U(t)||^{2} \leq C_{0} + \tau^{2}(\frac{1}{4} - \beta)||K^{1/2}D_{\tau}U(t)||^{2}.$$
(15)

Let $y \in \mathcal{H}$ and $||K^{1/2}||$ be the operator norm of $K^{1/2}$, then we have $||K^{1/2}y|| \le ||K^{1/2}|| ||y||$. Applying this inequality to (15), we get

$$||D_{\tau}U(t)||^{2} \leq C_{0} + \tau^{2}(\frac{1}{4} - \beta)||K^{1/2}||^{2}||D_{\tau}U(t)||^{2}$$

and

$$(1 - \tau^2(\frac{1}{4} - \beta)||K^{1/2}||^2)||D_{\tau}U(t)||^2 \le C_0.$$

Noticing the fact that, for $\tau > 0$,

$$0 < 1 - \tau^2 (\frac{1}{4} - \beta) ||K^{1/2}||^2 \Longleftrightarrow \tau < \sqrt{\frac{1}{(\frac{1}{4} - \beta) ||K^{1/2}||^2}},$$

we obtain

$$\tau < \sqrt{\frac{1}{(\frac{1}{4} - \beta)||K^{1/2}||^2}} \implies ||D_{\tau}U(t)|| \le \sqrt{\frac{C_0}{1 - \tau^2(\frac{1}{4} - \beta)||K^{1/2}||^2}},$$

and we obtain:

$$||U(t)|| \le C_3 + C_4 t,$$

where

$$C_3 = ||U(0)||, C_4 = \sqrt{\frac{C_0}{1 - \tau^2(\frac{1}{4} - \beta)||K^{1/2}||^2}}.$$

References

- [1] Matsuki, M. and Ushijima, T., "Error estimation of Newmark method for conservative second order linear evolution", *Proc. Japan Acad.*, Vol. 69, Ser A, pp. 219-223, 1993.
- [2] Newmark, N. M., "A method of computation for structual dynamics", Proceedings of the American Society of Civil Engineers, Journal of the Egineering Mechanics Division, Vol.85, No. EM 3, pp. 67-94, July, 1959.
- [3] Raviart, P. A. and Thomas, J. M., Introduction à l'Analyse Numérique des Equations aux Dérivées Partielles, Masson, Paris, 1983.
- [4] Wood, W. L., "A further look at Newmark, Houbolt, etc., time-stepping formulate", International Journal for Numerical Methods in Engineering, Vol. 20, pp. 1009-1017, 1984.