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~ (On the Stability of Newmark’s 3 method)
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Abstract
For the second order evolution equation in time, we con51der Newmark’s 8 method without
imposing the assnmption of the Rayleigh damping for the dissipation term. We derive the trinomial
recurrence relation of Newmark’s method which is due to Chaix-Leleux, and give a proof of stability
of the scheme for the homogeneous equation by an energy method.

1. The second order evolution equation and Newmark’s method

In a finite dimensional real Hilbert space H, we consider the following second order differential equation

in time ¢: d
L)+ Cpu) ¥ Kut) = 1), ut) €, (1)
where C and K are non-negative linear operators o H and f is a given function: f:[0,00) = H.

Let 7 be a time step, U(¢) be a difference approximation of u(t), V(t) be a difference approximation
of & 4 u(t), A(t) be a difference approximation of t,u(i), and B and v be fixed real numbers. Then we
can write Newmark’s method[2] as follows:

AR+ CV(@E)+ KU(@) = f(¥)
UE+n)=U@+7V(@)+ 372A@) + Br2(At +7) - A®) 2)
Vit+7)=V({E)+ 7AR) +vy7(At + 7) — A(R)).

The case vy = % is the standard Newmark’s B method.

2. The iteration s_cheme of Newmark’s method

The iteration scheme of Newmark’s methoa (2) for the equation (1) is written as follows:
e 1. Compute A(t) from initial data U(t) and V() by using (1):
AR)=ft)—(CV(E)+ K U(®)).
o II. Compute A(t +7) from f(t + 1), U(t), V(t) and A(2):

Alt+7) = (I+97C+pr2K)™
x{-KU(t) - (C+TK)V(t)
+(—7C +77C — 372K + Br2K)A(t) + f(t + 7)},

where I is the identity operator.
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e III. Compute V(¢ + 7) from V(2), A(t) and A(¢ + 7):
V(t+ 1) = V(t) + TAR) +ym(At + 1) - A®))-
o IV. Comput;e‘U(t + 7) from U(t), V1), A(t) and A(t + 7): o
U(t+) = U)+ 7V () + 37°AG) + B (A +7) = QD).

e V. Replace ¢ by ¢ + 7, and return to IL

3. The trinomial recurrence relation of Newmark’s method

We derive a trinomial recurrence relation for U(t — 7), U(t) and U(i +7) from the following system of

equations:

A@)+CV (@) + KU®) = f(t)

AR+ 1)+ CV(E+7)+ KUGE+7)=fE+T) _
Ut+7) = U®E) + 7V () + Lr2A(1) + Br2(A(t + 7) — A(2))
V(t+7)=V(QE)+ TA{E) + (AR + 1) — A(2)).

®)

3.1 Derivation of the trinomial recurrence relation of Newmark’s method

We eliminate A(t), A(t + 7) and V(¢ + 7) from (3) and get an equation for U(t), U(t + 7) and V(2).
Next we eliminate A(t), A(t + 7) and V(¢) from (3) and substitute ¢ — 7 for ¢, and get another equation
for U(t — 7), U(t) and V(). Lastly we obtain the following equation eliminating V/(¢) from these two

equations:
(I+7C + Br2K)U@t + 1)+ {=2I + 7(1 — 27)C + %#(1 — 48+ 29)K}U (1)
+{I+7(-14+7)C+ —;—r"(l +28— 2K}t — 1)
= Prfit+7)+ %#(1 — 48+ 27)f(t) + -;-72(1 +28 —27)f(t - 7). ' (4)

In this calculation, we must take care of the non-commutativity between C and K. In the case v = %,

we get a recurrence relation for the standard Newmark’s § method:

(I+$rC + PRt + 1) + {21 + (1~ )KY() + (I - 17C + Fr2K)U(t — 1)

= Brf+ )+ 121 — 28)f(t) + prif— 7). ®)

3.2 Representation by difference operators

We define difference operators with time step 7 as follows:

D.UW = (U+r)~UW) ~ Sult+7/2),

DG = (U -Ut-1)~ Sult—1/2),

1

D.:U(1) ﬁ(U(t +71)-2U)+U@E—71)) ~ g;;u(t),

1 1 d
5(Dr + D)U() 5 (UE+n)-UE-7) ~ O
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Using these definitions, we obtain the trinomial recurrence relation for U(t — 7), U(t) and U(t +7) as

follows:

(I+ Br’K)DyrU(t) +7CD U () + {(1 = 7)C + 7(v — 3) K}D:U(t) + KU (2)

= {I+7(r=Dr+5r7Dur}f0). ©
Especially, in the case 7y = 1, we have (see [1],[3] for the case C' = 0):
(I + Br*K)D-rU (1) + %C(DT +Dr)U () + KU(t) = (I + B7° Drr) £ (2). (M

4. Stability analysis by energy method

We consider Newmark’s 8 method for the homogenebus equation: f () = 0in (1), and derive a stability
estimate for the approximate solution of (7) by means of an ‘energy method’.
We take an inner-product between (7) and (D- + D7)U(2):

(I +BK)D1U(D), 5(D; + DA)U() + (50(Dx + D)U(E), 5(Dr+ Dr)U(®)
HEU@, 2D+ DYU@)=0.  (8)

Since C > 0, the second term in the left-hand side of (8) is non-negative. Moving this term to the
right-hand side, we have

((+ BK)D,sU(0), 3(Ds + DU®) + (KU(), 5(Ds + DrYU()
= ~(3C(Ds + D)U(), +(D; + DU() <0
Hence, we get the inequality: |
((+BrK)DesU (D), £(Dr + D)) + (KUQ), 3(Ds + DIV()) < 0. (9)
Multiplying both sides of (9) by 23, we have

(T+BRK)UE+7)-2U@)+ Ut —7)), Ut +7)-U(t— 1))
+(r2KU(t), Uit+71)—-U@E-71)<0.
Inserting U(¢) — U(f) = 0 in the inner-product of the first term in the left-haﬁd side, we get
(T+B2K)UE+7)=U@), Ult+1) - U(t)
HI+ B K)UE+7) - U@), U®) - Ut~ 1)
~((I+A°K)U@) - Ut =), Ult+7) - U(t))
—((I+Br*E)U®) - Ut - 7)), UW) - Ut - ))
+H(PKU@®), Ut+7)-U(E-7) < 0.

Arranging this formula, we obtain the following inequality:

(I+B?E)UR+T)=U®), Ult+7) = U®)+ (FKU(t+ ), Ut))
S(T+BPE)UR) - UE-7)), UR) = Ut =)+ (F"KU(), Ut~ 7)).
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Dividing both sides of this inequality by 72, we have

((I+Br*K)D,U@), D,U®) +(KU(t+7), U®)
< ((I+Br*K)D,U(t—7), D,U(t—1))+(KU(2), Ut —1))
< ((I+Br*K)D.U(0), D,U(0))+ (KU(7), U(0)).
Using this inequality and the fact that .

(KUt + 1), Ut)) = (KU(), U®)) + (KD, U(t), U(¥))
and K > 0, we get
1D, U@ + B2 KD, U@ + K2V @)|? + (K /2D,U(t), KY?U(t)) < Co, (10)

where

Co = ((I+87°K)D,U(0), D;U(0))+ (KU(7), U(0))
(I + Br2K)D,U(0), D,U(0)) + (KU(0), U(0)) + (K D, U(0), U(0))
DU (0)I? + Br2||K /2D, U (O)|I* + || KU (O)||* + (K /2D, U(0), K/2U(0)).

If a is a positive real number, from Schwarz’s inequality, we get

|7(KY2D,U(t), KU (t)) 2D, U@)IK 2 U @)
aIITK”zD U@l x ZIKV2U Q@) (11)

3a’7||K*/2D, U(t)||”+ KU @)

IAN I IA

Moving the forth term in the left-hand side of (10) to the right-hand side and using (11), we have

ID-U@)|I? + Br2||K /2D, U )||* i&2U (2|2
Co — 7(KY?D,U(t), KY2U(t))
Co + |r(K*?D,U (), K'2U(1))]

Co + 3a272||[KY2D, U )|]? + 25| K V2U ()2

(12)

ININ IN +

Finally moving the second and the third terms in the last formula of (12) to the left-hand side, we obtain
an energy inequality:

| a? 1
ID, U@ + 728 - SIEDUWI + (1 - o)K@ < Go. (13)
Using this inequality, we have the following results.

Theorem 1 In the case § > %, we have the stability estimate, with positive constants Cy and C,,
W@l < C1 +Cat,

and in the case 0 < B < %, if we choose T such that

T \/ d muKl/ﬂuz’

then we have, with positive constants C3 and Cy,

NU@Il < Cs + Cat,
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From now on, we show the proof of this theorem. First, we consider the case § > %. If we put @ = /28

in (13), then we have, for g > i—, that
1
ID-U@I? +(1 - @)HKWUU)HZ < Co

and

DU, K20 < Cs = (1 - ;1% ~1¢y < oo,

where Cj is a constant independent of {. Hence, we get
p>7 = IDUQI, KU < Gp.
And we also obtain that
27 = IDU@I< VG
Then recalling the definition: -
DU(t) = ~(U(t+7)-U(),
we get
[UE+7)=U@®)|| < VCor,
- and

WU+ DI < NI+ VCor <+ < U Q)]+ VColt + 7).

Putting C; = ||U(0)|| and C2 = +/Cy, where C} is constant independent of 7, we can conclude that

1
p2 ;= IU@I<C+Cot.
Next, we consider the case 0 < 8 < 41. Put a2 = % in (13). Then we have
1
ID U@+ 7*(8 - DIE 2D U@ < Co

and
1
ID-U@? < Co + TZ(Z - BIIK 2D U@

(14)

(15)

Let y € H and ||K/2|| be the operator norm of K'/2, then we have ||[K/2y|| < I1K/2|||y|l. Applying

this inequality to (15), we get
1
ID U@ < Co+72(; - AIK|P|D.U @)

and ‘ )
(1=7(z = BIKID UG < Co.
Noticing the fact that, for 7 > 0,

_ 21__ 1l/2 2‘ 1
0<1. 7(4 ANK?||* <=1 < m_(%—ﬂ)llKl/zllz’

we obtain

1 : Co
T<\/ G-pireE — 1PU0I< \/ =7~ AR

VI < Cs+ Cat,

and we obtain:

where

Co
1= (= K

Ca = ||U0)||, Cs = \/
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