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Abstract. In this paper, we give a brief study on an ordering constraint for a top-down
transformation system of general E-unification. It is well known that the complete-
ness of top-down E-unification transformation can be achieved only if we sacrifice an
ordinary ordering constraint for a top-down system. More precisely, any local order-
ing constraint can not be imposed on each equality inference step. In this paper, we
show that a weaker, i.e., global ordering restriction can be imposed for a top-down
transformation system for general E-unification, without losing the completeness.

1 Introduction

Equality reasoning is indeed one of central problems in the research field of automated the-
orem proving. General E-unification problem [11] is one of the most important subproblems
of equality reasoning. So far, several sophisticated methods, such as ordered paramodula-
tion [9], superposition [3], basic paramodulation [4] and completion [2] etc., were proposed
mainly in a saturation framework, i.e., in the framework of bottom-up computation
Compared with these bottom-up methods, top-down (or goal-oriented, in other words)
proving methods usually have a great advantage, i.e., their goal-oriented behavior, for
general first-order theorem proving. Moreover almost all top-down provers [10, 7, 12, 14]
can be favored by PTTP (Prolog Technology Theorem Prover) technology {17, 18], which

supplies a brute-force, but extremely fast inference engine to tableau-based top-down
theorem provers.

However, unfortunately, top-down proving methods is slightly weak to equality reason-
ing problems. It is well known that the complete top-down computation can be achieved
only if it sacrifices ordinary ordering constraints for the computations. Furthermore if
paramodulation into \‘rariableskis forbidden, we must introduce a sort of lazy application
mechanism of equations (see [16]).

A remarkable top-down transformation system for general E-unification problem was
proposed by Gallier and Snyder [8]. Dougherty and Johann [6] introduced the top-unify
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mechanism and succeeded in reducing non-determinism involved in Gallier and Synder’s
system. Moser [15] independently reconstructed Gallier and Synder’s one with simple two
inference rules, i.e., ordinary unification and lazy paramodulation, and moreover integrated
“basic” restriction [3, 4]. Furthermore Moser gave the independence of the selection rule
of equational subgoals at each inference stage. However Moser’s system Tgp still does not
have any ordering constraint at all.

In this paper, we give a short study on a weak form of ordering constraint for Moser’s
Tsp. Ordinary ordering constraints in the literature can be recognized as a local condi-
tions. Every inference rule such as paramodulation or superposition must satisfy some
ordering conditions whenever it is invoked. This paper is concerned with a weaker form
of ordering, i.e., a global constraint. This global ordering constrain is imposed on entire
(sub-)transformation sequences of 7gp, but not on each inference step. This refined top-
down system denoted as Topp, temporally allows some equational goals to be rewritten
into larger ones in a given order, at some points of a transformation. Eventually these in-
appropriate rewritten goals are forced to be modified into smaller ones in some succeeding
steps. '

This paper is organized as follows: Section 2 is preliminaries. Section 3 shows a globally
ordered transformation system for general E-unification.

2 Preliminaries

Following [11, 15], we shall provide a brief sketch of basic concepts and definitions used in
this paper. See [4, 8, 11, 15] for a more detailed description. '

A position p in a term ¢ is presented by a sequence of positive integers. Pos(t) denotes
the set of all positions in a term ¢. FPos(t) is the set of all non-variable positions. A
represents the top position in a term. t|, expresses the subterm of ¢ at the position p and
t[s]p the result of replacing the subterm in ¢ at the position p by the term s. For a term t,
H(t) denotes the function symbol heading it.

An equation is a pair of terms s and ¢t and written in the form s ~ ¢. Given a set E
of equations called equational axioms, we write s ler t or simply s g t if slp = 16
and t = s[rf|, for some substitution 6 and equation I ~ r (or r ~[) in E. The equational
theory of E is the transitive closure of the above relation and is denoted =g. Note that
=g is a congruence relation. Throughout this paper, we assume that F is consistent, that
is, there is no pair (s,t) in =g such that s is a variable and does not occur in a term t.
For substitutions € and o, we write § <g o if there is a substitution é such that for every
variable z, (26)6 =g (z0).

Given an equational axiom set £ and two terms s and ¢, a substitution 4 is an E-unifier
of s and t if s6 =g t6. The problem of finding E-unifiers between s and ¢ is called the
E-unification problem, and denoted as s :33 t. This paper adopts a refutational setting as
in [15], so —(s =~ t) (or for convenience s # t) is called an E-unification goal. A complete
set of E-unifiers CSUE(s,t) for terms s and ¢ is a set of E-unifiers of s and ¢ such that,
for any E-unifier 6 of s and t, there is a ¢ € CSUE(s,t) and ¢ <g 6.
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A closure e-oisa pair consisting of a skeleton e and a subst1tut10n o. The skeleton
can be an arbitrary structure, e.g., an equation or multiset of equations. Closures will be
used to distinguish terms occuring in the original expression from terms introduced by
substitutions. With closures, we shall forbid any applications of an equation to a subterm
introduced by a substitution. This restriction is called the basic condition.

An transformation system T is a procedure which takes an equational theory E and
a goal s % t and generates a set of E-unifiers. A system 7 is complete if T generates a
complete set CSUE(s,t) for any theories E and any pairs of terms s and t.

An order = over a set of first-order terms is called a simplification ordering if it posses
the following three properties:

1. if s >= ¢, then s = t6 for any substitutions 6.
2. if s > ¢, then C[s] = C|[t] for any contexts C]].
3. if ¢ is a proper subterm of s, then s > 1.

A simplification ordering = over terms is called strong if >~ is a total ordering over the set
of ground terms.

3 Globally Ordered Transformation System

In this section, we present a new ordered transformation system Zopp for E-unification
problems. Topp is a refinement of Moser’s Tgp [15] by integrating a global ordering con-
straint with Tgp.

At first, we show 7gp, which consists of two inference rules: unification and lazy-

paramodulation..

1. Unification (l,Lunify)

2 (1 i)

2. Lazy Basic Paramodulation (|} lazy-param)

(RU{s#t}) 0 <p€.7-'7303(s),> >
H()

l~r)€EE,
(RU{slp 1, slrlp £t} -0 i(fl ¢ Lae,r then H(s|,) =

A Tpp-sequence is a sequence of multiset closures where each member of the sequence
can be obtained by applying an inference rule of 7gp to a preceding member. A 7gp-
sequence for s = E t starts with {s %t} - €, where ¢, is the empty substitution. It is called
terminating if the empty closure {} - o is derived. Then o is the E-unifier resulting from
the Tgp—sequence. :

Tgp is a complete transformation system [15]. However 7pp does not adopt any ordering
constraints at all. We shall introduce, without losing the completeness, a sort of global
ordering constraint into Tgp. '
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We use an annotated equation for defining a global ordering condition. The annotation
serves to show of the initial form of each equational goal, i.e., the form at the birth of the
goal. More formally, an expression (s : s') ~ (t : ') is an annotated equation of terms s
and t, where s and ¢ are respectively annotated with terms s’ and ¢'.

A globally ordered transformation system Togp has two inference rules: (globally) or-
dered unification and annotated lazy-paramodulation. '

1. Ordered Unification ({o-unify)

(RU{(s:5) # (t:8)) 0 /0= mgu(so, to)
R-06 ~ \ s00 ¥ s'08 and tof ¥ t'ch

2. Annotated Lazy Basic Paramodulation ({}a-lazy-param)

.o S p € FPos(s),
. U<{<|s : s|>>¢¢<t<z' -tz>>}) <(l o A >
’(RU{<s[5]p=§'> 2 <m?>}) o

if I ¢ Var then H(s|p) = H(I)
The equational goal (s|p : s|p) # (I : I) as the result of a-lazy-param step is called
witness pair, and the goal (s[r]p : s) % (t: ¢')'is called result pair.

The Jo-unify rule for terms s and ¢ is applicable only if s and ¢ are not greater than
or equal to their initial forms s’ and t', respectively. This ordering constraint is a global
one, and is weaker than the ordinary one used in the saturation-based framework, where
the ordering constraint is locally imposed on every rewriting step.

The {}a-lazy-param rule is essentially same to Moser’s |/lazy-param. The additional work
for a-lazy-param is to generate a new annotation for a witness pair and to inherit the
annotation for the result pair. The newly generated annotation is the record of the initial
form of the witness pair. This record will be necessary for the ordering constraint check
performed at the succeeding {o-unify steps.

A Togp-—sequence is a sequence of multiset closures where each member of the sequence
can be obtained by applying one of the above inference rules to a preceding one. A Topp—
sequence for s =5 t starts with {(s : s) # (¢t : )} - €. It is called terminating if the empty
closure {} - o is derived. Then ¢ is the E-unifier resulting from the 7ogp-sequence.

Theorem 1. If the ordering > used in Togp is a strong ssmplification ordering, then Togp
is a complete transformation system for any E-unification problems.

Basic superposition proposed by Bachmair et al. [3, 4] is an excellent saturation-based
calculus for general equational reasoning. Moser [15] showed that a restrict calculus, de-
noted as &, of basic superposition for equational unit theories F is complete for enumer-
ating elements of CSUE(s,t) for any terms s and ¢.

In this paper, as a proof for the completeness of 7ogp, we shall show that, for any E-
unification problem, 7ogp can simulate any refutations made up over the restricted basic
superposition S whenever an ordering used in S is a strong simplification ordering. The
restrict calculus § consists of the following three rules:



215

1. Equality Resolution
(E oy
100 < = mgu(sa, a)>

2. Basic Left Superposition

(s#t)-0c (u~v)-o <p€]-,'7?os(s), | >

0 = mgu(s|po,uo)
(svlp #2) - 06 to@ ¥ sof and vol ¥ uof
3. Basic Right Superposition

(s~t)-0c (u=~v)-o p € FPos(s),
» 8 = mgu(s|,0,uo)
(s[v], =t)- a6 ? ~
p “’ tol ¥ sof and vol ¥ uol

An S-sequence for s =?E t is a sequence Cp, C1, - -+, of closures such that

— Cois (s t)- e
— each C; for i = 1,2, .- is either
e a closure (I ~ 7)€ for an axiom [ ~r € E, or

e a closure obtained by applying basic left (or right) superposition to precedmg clo-
sure C; and Cy (0 < 7,k < 14).

An S-sequence is a refutation if L - o is derived. Then ¢ is the F-unifier resulting from
the S—sequence.

Theorem 2 (Completeness of § [15]). The calculus S is complete for any E-unification
problems.

At first, we study how to simulate a refutation in § with a stronger calculus of Togp,
where we shall ignore the ordering constraint for Jo-unify and the annotations affixed with
equational goals in Zopp. Note that this stronger calculus is essentially identical to 7gp.
Next we shall verify that this simulation code also satisfies the global ordering constraint,
which is given in the original Topp, therefore, we can conclude 7ogp can simulate any
refutations in &, and thus Zogp is complete for E-unification problems.

The simulation of S by the stronger calculus of Togp(i.e., Tgp) is similar to the one
in Moser [15]. In this paper, we directly do a simulation of the calculus S. This is allowed
by restricting the ordering used in S to a strong simplification ordering. As is well known,

simplification ordering is much enough for practical application of § to arbitrary equational
theory. '

The direct simulation of S by 7ogpis achieved in two phases. The first is the simulation
of basic left superposition. The second is for basic right superposition.

Lemma 3 (Simulation of Basm Left Superposﬂ:mn) Let p be an E-unifier gener-
ated by an S-sequence for s _E t. Let E be the set of equations used for basic left su-

perposition. Then there is also a sequence of transformation steps in Topp based on E
terminating with p. :
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Proof. Each basic left superposition is of the form

(s#¢t)-0 (u=v)-o p € FPos(s),
(s[v]p £1t)-0b < 8 = mgu(s|po, uo) >

tod ¥ sof and vol ¥ ucl

This superposition can immediately be simulated in Zopp as follows:
{s:s) £ (t:t)} 0
{{slp: D) #(u:r), (splp:s) £ (t:t)}-0
{(slv]p:s"y £ (t:t)} -ob
Notice that the introduced annotation terms I and r in the intermediate step shown above
are exactly same to s|, and u, respectively, if u ~ v € E. Otherwise [ and r are appropriate

terms which are introduced at some base step in a recursively constructed simulation of
the basic right superposition with u ~ v. » a

U a-lazy-param(u ~ v)

| o-unify .

Lemma 4 (Simulation of Basic Right Superposition). Let p be an E-unifier gener-
ated by an S-sequence for s Z?E t using a simplification ordering . Let E be the set
of equations (and which are either from E or are generated by basic right superposition)
used for basic left superposition and Q a corresponding sequence of transformation steps
in Topp based on E. Then there is also a sequence Q' where just equations from E are
used and which terminates with a variant of p. '

Proof. We define the level of an equation to be the number of basic right superpositions
which were necessary to obtain it. We proof the lemma by multiset induction on p, where
B is a multiset of the level k of the equations in a Togp-transformation sequence based on
E. For an equation in E with level k > 0, there must be some basic right superposition

(u~v)-o (u/ ~') .o < q € FPos(u), >

- /
(ufv'lg > v) - o8 z(f_ﬁ Zgﬁ;l;&u@c’?e ¥ u'cl
where the input equations are levels k', k" < k. '
For the induction step, we have to distinguish among the direction of the application
of the equation (u[v']y >~ v) - 0#.
Case (a): left to right: In this case we furthermore have to among whether ¢ = A or not.
Case (a.1) left to right and q # A: We replace the transformation step
{(s:8)#(t:t)} 00
{(slp : 1) # (ulv']g : ), (s[vlp:s') # (t: 1)} - 00
by two successive applications of (u ~ v) - 06 and (u' ~v') - o8.
{(s:s) £ (t:t)}-0
{(slp: D) £ (u:r), (svlp:s) # (t=t'>}'09
{(ulg :m) # (v :n), (slp: 1) # (uv']g:r), (slv]p:s') £ (t:1)}-a0b
{(slp : 1) # (u[v']qg :7), (s[v]p:s’) & (t:t)}-0b

|} a-lazy-param(u[v'] ~ v)

|} a-lazy-param(u ~ v)

| o-unify

| a-lazy-param(v/

~ v')
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Notice that the introduced annotation terms [ and r in the first intermediate step
are exactly same to s|, and u, respectively, if u ~ v € E. Otherwise [ and r are
appropriate terms which should be introduced at some base step in a recursively
constructed simulation of the basic right superposition with u ~ v. The These are
similar for the other annotation m and n.

Case (a.2) left to right and ¢ = A: In this case the respective equation is (v' ~ v) - o8
and we replace the transformation step ' ' '

{s:8) £ (t: )} 0B <1(’ € fﬁ"jg’ >
. I .o LY. v=v ) ‘ :

(ol 0 W s, Gl N O 70 \ i 7 D em (sl = HO)
by two successive applications of (v' =~ u') - 66 and (u =~ v) - 0f. Note that the
simulation in this case is possible only if the term u' of u' ~ v'is not a variable.
Recall that we assumed E is consistent throughout this paper. Thus if the term o'
is a variable, then ' must also occur in the term v as its proper subterm. Hence
we have v'§ > 4’6 to such a pair v’ and v’ for any substitution §, because > is a
simplification ordering. This is a contradiction to the condition vaf ¥ u'cf in the
hypothesis. This is the reason why u' is not a variable.

{(s:8") #(t:t)}-00
{(slp: 1) £ ' :r), (s[u]p:s) £(t:t)} ob
{(slp: 1) £ (' :7), (W :m) & (u:n), (splp:s) £(t:t)} o8
, {(slp:1) £ (@ :r), (spv]p:s)y £ (t:t)} o0

J a-lazy-param(v’ ~ u')

I a-lazy-param(u ~ v)

{ o-unify

Case (b): right to left: We replace the transformation step

(o) 2 lt:t)) 00 <f s >
{(slp: 1) # <U tr), (sl(u]g)lp s 8) # (¢ tl>} s if v € Var then,'H(s‘p) = H(v)
by two successive applications of (v ~ u) - 06 and (u' ~v') - 8.

{(s:8y £ (t:t)} 00

{(slp: 1) £ (ver), (slulp:s) £(t:t)}- 00

{(slp: 1) #£ (v:r), (ulg:m) % (u' :n), (s[(ut']g)lp:s') £ (t:¢)} ob
{(slp : 1) # (v er), (s[(u[v']g)lp : 8') # (t:t)}-0b

I a-lazy-param(v ~ u)

| a-lazy-param(u’ ~ v')
{ o-unify

Now we have completed a direct simulation of S by Togp. The remaining for establish-
ing the completeness of Topp is to verify whether the simulation code shown above satisfy
the global ordering constraints for {o-unify steps. This can be achieved by investigating
the proof of the completeness of basic superposition calculus S shown in [?]. There the
strongness of simplification ordering plays an important role. The space allowed to us is
limited, so we shall omit this task here.
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