0000000000
1041 0 1998 0 143-150 143

Prefix Free Generating Sets of Formal Languages

Mikiharu TERADA, Yasuhito MUKOUCHI and Masako SATO
FH 85 CIIS--IN ik B¥

Department of Mathematics and Information Sciences
Osaka Prefecture University, Sakai, Osaka, 599-8531, Japan

Abstract. This paper deals with a particular type of generating set, called prefiz free, for a
language. Given a language L over an alphabet X, a set G is a generating set of L, denoted
by L C G, if L C G*. It is well known that a prefix free set G has the property of unique
decipherability for all strings in G+.

We first show that the class PF of all prefix free sets is a complete lattice under the partial
order C. In terms of the result, it is shown that for a language L, the class PF G, of all prefix
free and reduced generating sets for L is also a complete lattice under the relation C and has
the least element G'Pf and the greatest element G}'P. Especially we are concerned with the
least element GIPf of the lattice. If GIPf is finite, it has the fewest number of strings among
PFG. We give the necessary and sufficient condition for Giff to be finite. Moreover, we
present a polynomial time algorithm for computing G'Ff for a finite language L. For an infinite
language, we consider a problem of identifying Gi,{‘f in the framework of identification in the
limit proposed by Gold for language learning, and give a polynomial time learning algorithm
for computing G‘I“l‘f, provided that the target G‘"f is finite.

1. Introduction

In this paper, we consider a particular set of strings that generates every string in a formal
language L over an alphabet X. A set S of strings is a generating set of a language L, denoted
by L C S, if L C ST, that is, every string of L is represented as a concatenation of strings in
S. For instance, let ¥ = {a,b} and L = {(aab)’b(aa)’ | i,j € N} be a regular language. Then
the sets {aab, b,aa} and {aa,b} of strings are generating sets of L. Clearly the alphabet X' is a
generating set of any language L consisting of nonempty strings, and moreover the language L
itself is a generating set of L.

We introduce a particular type of generating set, called prefiz free, for a language. A set S
of strings is prefix free, if for any string of S, there is no proper prefix in S of the string. In
the above example, the string aa is a proper prefix of the string aab and thus S = {aab,b,aa}
is not prefix free. For a string u, a sequence uj, Uy, - -, Uy of strings in S is a factorization of u
in S, if u = ujug---u,. A prefix free set S has the property of so-called unique decipherability
in terminology of coding theory in the sense that any string in ST has a unique factorization in
S. In coding theory, such a set is called code and has been discussed in connection with unique
decipherability. Refer in detail to e.g. [3]. .

In this paper, we introduce a binary relation C for subsets of Zt. First we show that the class
PF of all prefix free sets over X has a lattice structure with respect to the relation C, where X'
is the greatest element of PF.

Next, we investigate the class PFGy, of all prefix free and reduced generating sets of a given
language L. We show that the class PFGy is also a lattice with both the least element and the
greatest element of the class. In particular, we are interested in the least prefix free generating

144

set, denoted by G’"’f of a language L. We present an explicit expression of G’ii‘f by introducing
some operation for sets of strings.

Finally, we present a polynomial time algorithm for computing the least prefix free generating
set of a finite language. Furthermore, for an infinite language L, we propose a polynomial time
inductive inference algorithm for identifying the least prefix free generating set G"I’I‘f i the limit
in terms of the framework for language learning introduced by Gold[4].

In article[6], Watanabe has shown that a simple prefix free set (a generating set of L) has a
finite lattice structure. Another, by article[5], Yokomori has discussed inductive learnability of
languages with strict prefiz property from the viewpoint of polynomial-time learnability in terms
of strictly deterministic automata. In this note, we shall extend this strict prefix property to the
prefix free property.

2. Prefix Free Generating Sets of Formal Language

2.1. Preliminaries

We start with some basic definitions and notations used in this paper.

Let ¥ be a finite alphabet. Let £* be the set of all strings over X, and Xt be the set of all
finite nonempty strings over X. The empty string is denoted by A. For a string w € X*, |w| denote
the length of w. In particular, the length of A is 0.

The concatenation of strings v and v is denoted by uv. For a strmg w, a string u € X* is a
prefiz of w, if there is a string v € X* such that w = wv, particularly when v € X+, u is a proper
prefix of w.

For subsets S; and Sy of X*, let us denote S1S; = {zy | = € S1,y € S3}. Define S¥+1 = SS*
for nonnegative integer k, where S° = {)\}. Let S* = U2, S¥, and S* = U2, S*.

Let N be the set of nonnegative integers, and for a finite set S, |S| be the cardinality of S.

For sets S;,8y C X, we define the following binary relation:

S; ES; ifand only if S; C S';'.

Clearly S C X for any set S C XT. As easily seen, the relation C is reflective and transitive but
not antisymmetric. Indeed, for S; = {a,b} and Sz = {a,b, ab}, clearly S; C Sz and S; C S but
S1 # S,. As shown below, the relation C is antisymmetric for prefix free sets.

By the definition of C, it immediately follows that:

Lemma 2.1. Let S be a set of subsets of Xt, and S1, Sy and T be subsets of X*. Then
(1) if SCT for any S € S, then Uses SET and Nses SCT,
(2) if S C Sz and S3 T T, then S, C T.

2.2. Prefix Free Sets

Definition 2.1. A set S C X7 is prefiz free, if any string in S is not proper prefix of another
string in S. By PF we denote the set of all prefix free sets.

As well known in coding theory, a prefix free set has the property of unique decipherability.
That is, any message (string) has a unique factorization in terms of strlngs in the prefix free set.
Using the property, it is easily shown that:

Lemma 2.2. The set (PF,C) is a partially ordered set.

145

Lemma 2.3. Let S be a prefix free set. Then

(1) for any string w € ST, there is a unique factorization uy,u,- -+, un of strings in S such
that w = ujug * * * Un, :

(2) for any strings u,v € X, if uv,u € St then v € ST.

For a set S C X1, we define
Pre(S) = {u € S| there is no proper prefix of u in S}.
By the above deﬁnition, the next result immediately follows:

Lemma 2.4. For any set S C YT, the set Pre(S) satzsﬁes the following conditions:
(1) Pre(S) C S. (2) Pre(S)E’Pf '
(8) For any string w € S, there is a prefix u € Pre(S) of w.

Definition 2.2. Define a binary operation O(z,y) for two strings z,y € X, and a set operation
O(S) for a set S C IT:

{z}, ifx=uy,
— {:1:7 yl}’ if 3y' € Yts.it. Y= :L‘y’,
Oley) = {«',y}, if Iz’ € Xtst.x =y,
{z,y}, otherwise,

o) = U Oy

(z,y)ESXS

For a string w, a set {x,y} of two strings is a direct ancestor of w, if w € O(z,y) and w # =,y.
Furthermore, we define O°(S) = S and O"*1(S) = O(0™(S)) (n € N). And define the closure

O*(S) as follows:
~ Y 0"s)
neN

Clearly O(O*(S)) = 0*(S) and if O™(S) = O"1(S) for some n € N then O*(S) = O™(S) for
any m > n.
As a direct result of the definition of O(S), it follows that:

Lemma 2.5. Let S,S; and Sy be subsets of . Then
(1) S CO™(S) C O™*1(S) C O*(S) for anyn € N,
(2) 51 g 52 implies O*(Sl) Q_ O*(Sz)

Note that for any w € O"*1(S) — O™(S), there is a direct ancestor {z,y} C O™(S) of w, and
moreover & (or y) is contained in O™(S) — O"~1(S), where O7}(S) = ¢

Lemma 2.6. Let S and T be subsets of ¥t such that S T T. If T is prefiz free, then O*(S)C T
and Pre(O*(S)) C T.

Lemma 2.7. For any set S C X+, O*(S) C Pre(O*(S)).

Hereafter, we investigate a lattice structure of PF. For a subset P of PF, sup(P) and inf(P)
denote the least upper bound and the greatest lower bound of P in PF under the partially ordered
relation C, respectively.

Lemma 2.8. For any P C PF, sup('P) Pre(0O*(Ugep S))-

146

Proof. Put T = Pre(O*(Ugep S))- By Lemma 2.7, O*(Ugep S) E T, and thus by Lemma 2.1(2),
S C T for any S € P. Hence T is an upper bound of P.
Let T' € PF be any upper bound of P. Then by Lemma 2.1(1), Usep S T T'. Since T" is
prefix free, it implies by Lemma 2.6 that T C T”. Hence T is the least upper bound of P in PF.
n

As mentioned before, X' is a prefix free set, and § € X for any S € PF. Hence X is the
greatest element of PF, i.e., sup(PF) = X.

Lemma 2.9. For any P C PF, inf(P) = Pre(O*(Ngep ST))-

Proof. Put T = Pre(O*(Ngep ST)). By Lemma 2.7, T C O*(Ngep ST) C T.

We first prove that T is a lower bound of P, i.e.,, T C S for any S € P. Assume that
Nser ST & O(Ngep ST) and let w € O(Ngep ST) — Ngep ST. Then there is a direct ancestor
{u,v} C Ngep ST such that v = vw. Since each S € P is prefix free, by Lemma 2.3(2), we
have w € Ngep ST, and a contradiction. Hence we have O(Ngep ST) = Ngep ST, and thus
O*(Nsep ST) =Nsep ST. Since T C O*(Ngep ST), T C Nsep ST. Consequently T C S for any
S € P,ie., T is alower bound of P.

Nextly, we prove that T is the greatest lower bound of P. Let 7" € PF be any lower bound
of P. Then T" C S for any S € P, and thus T' C Ngep ST. Since Ngep ST C T, weget TV C T
Therefore T is the greatest lower bound of P. u

By Lemma 2.8 and Lemma 2.9, the next result on PF immediately follows:

Theorem 2.10. The set (PF,C) is a complete lattice and X is the greatest element of PF.

2.3. Prefix Free Generating Sets

A language over X is a subset of Xt. In this subsection, we consider a particular set of strings
generating all strings in a given language.

Definition 2.3. Let G C YT and L be a language. G is a generating set of L if L T G. A
generating set G of L is reduced (with respect to L) if L Z G’ for any proper subset G’ of G. By
PFG1 we denote the set of all prefix free and reduced generating sets of L.

Note that if a generating set G of a language L is prefix free, by Lemma 2.3(1) each string of
L has a unique factorization of strings in G. Thus for any prefix free generating set G of L, we
have a unique reduced generating set Go C G by deleting strings of G not used in factorizations
of strings of L. Thus we get:

Lemma 2.11. Let L be a language and G be a prefix free generating set of L. Then there uniquely
exists a prefix free and reduced generating set Go € PFGy, of L such that Gy C G.

We first show that Pre(O*(L)) introduced in the previous section is a prefix free and reduced
generating set of a language L and moreover, the greatest element in the class PFG; under the
relation C.

Lemma 2.12. For any language L, the set Pre(O*(L)) is a prefiz free and reduced generating set
of O*(L).

Lemma 2.13. Let S C X*. For any w € O*(S), there is a string u € S such that u = vw for
some v € (0*(S))*.

147

Theorem 2.14. For any language L, Pre(O*(L)) € PFGy.

Theorem 2.15. For any language L, Pre(O*(L)) is the least element of PFG 1, under the partially
ordered relation . ‘

Proof. Put T = Pre(O*(L)). By Theorem 2.14, T is a prefix free and reduced generating set of
L. Thus we show that T is the least element of PFGy,.

Let G be any prefix free and reduced generating set of L. Then since L C G and G is prefix
free, it implies from Lemma 2.6 that O*(L) C G. This means T' C G because of T C O*(L).
Hence T is the least element of PFGy,. [

Clearly Giup consists of all symbols of X' appearing in some string of L. In what follows, we
denote by G'*f and G7'® the least element and the greatest element in PFGy, respectively. That
is, ‘ S '
Gt = Pre(O*(L)), G P = {a € X'| a appears some string in L},

and for any G E PFGL, Gill}f CGC qup. :
As a direct result of the above theorem, it follows that:

Corollary 2.16. Let L be a language. If G}ff 1s finite, then
|G| < |G|, for any finite G € PFGy, where G # G‘i’f
Corollary 2.17. Let Ly and Lo be languages. If Ly C Lo, then G‘I‘l’f C G‘i‘;f
Now we investigate a lattice structure of PFGy, for a given language L.
Lemma 2.18. Let L be a language. For any subset G C PFGy, sup(G) € PFGy.

Lemma 2.19. Let L be a language. For any subset G C PFGy,, there is the greatest lower bound
of G in PFGy,.

In general, for a subset G C PFGy, inf(G) is not always the greatest lower bound of G in PFG .
In fact, let us consider a language L = {w}*, where w = abcdacdaab. Let G1 = {abcd, aab, acd}
and Go = {ab,cda}. As easily seen, G1,G2 € PFGy, and inf{Gy, G2} = {abcdaab, w}. Clearly
inf{G1, G2} is not reduced although L T inf{G1,G2}. The greatest lower bound of {G;, G2} is
given by {w} C inf{G1,G2}. Note that the set {w} is the greatest lower bound of PFGy, i.e.,
Ginf = {w}.

By Theorem 2.14, Theorem 2.15, Lemma 2.18 and Lemma 2.19, we have the main result in
this paper as follows:

Theorem 2.20. For a language L, (PFGy,C) is a complete lattice under the partially ordered
relation C.

Next, we consider a case that GiL“f is finite. As shown in Corollary 2.16, Giff has the fewest
cardinality among PFGr. '
For a finite language, the next result is given:

Lemma 2.21. Let L be a finite language. Then there is an integer n € N such that O"(L) =
O*(L), and moreover the set O*(L) is finite.

Lemma 2.22. Let S C X and n € N. For any w € O™(S), there is a finite subset Sy, of O™(S)
such that '
(1) w € Sy, and (2) for any u € Sy, with u # w, Sy, contains some direct ancestor of u.

148

Theorem 2.23. Let L be a language. GiL“f 1s finite if and only if there is a finite subset S of L
such that L T Gi;f.

For a string w € X+, head(w) represents the first letter of w. We consider a particular prefix
free generating set introduced by Yokomori[5]:

A prefix free S is simple if head(u) # head(v) for any u,v € S with u # v. For a language
L, by SPFG, be the set of all simple prefix free and reduced generating sets of L. Clearly the
cardinality of any simple prefix free set is less than or equal to that of Y.

Watanabe[6] has shown the next result on SPFGy:

Theorem 2.24 (Watanabe[6]). For any language L, the set SPFGy, is a finite lattice.

3. Polynomial Time Algorithms for Computing Ginf

In this section, we present an efficient algorithm for computing a prefix free and reduced generating
set fo of a given language L, provided that G%‘f is finite. For an infinite language, we give an
efficient learning algorithm for Gi‘f in the framework of identification in the limit due to Gold[4].

3.1. An Algorithm for a Finite Language

We first consider GIf for a finite language L. As shown in the previous section, GiFf = Pre(0*(L)).
If L is finite, O"(L) = O"*(L) for some n, and O*(L) = O™(L) as shown in Lemma 2.21. Thus
it is easy to compute the set Giff, but the number n of operations O may be exponential even
if L is finite. In order to avoid it, we introduce another operation instead of O as follows: For
z,y € Xt and S C X7,

~ B {y'}, if ' € S+gt. y = zy,
Ol@y) = { @, otherwise,

o(s) = U O(z,y) UPre(S).
xE€Pre(S)
y€S—Pre(S)

Similarly to the definition of the operation O, we define 0%(S) = S and O™*1(S) = O(O™(S))
(n € N). B : 5 5

Clearly if O™(S) is prefix free for some n, O™(S) = O™(S) for any m > n, and we denote it
by O*(S).

Lemma 3.1. For any nonempty set S C Xt and anyn € N,
(1) O™(S) EO™H(S), (2) O™(S) C O™(S).

For a finite set S of strings, we denote by ||S|| the sum of lengths of strings contained in S.

Lemma 3.2. Let L be a finite language. Then B
(1) |O™(L)| > |O™(L)|, where the equality is valid if O™(L) is prefiz free.
(2) ||lO™(L)|| < [|O™(L)||, and the equality is valid if and only if O™(L) is prefiz free.

Theorem 3.3. For any finite language L, O*(L) = G,

We first present a procedure for computing 5(5) for a given finite set S:

Algorithm O(S)
Input: a finite set S of strings;

Output: the set O(S);

149

begin
T := ¢; :
for each (z,y) € (Pre(S) x (S — Pre(S))) do T :=TU O(x,v);
output 7 U Pre(S)

end.

Let n = |S| and m = max{|z| | £ € S}. In the above procedure, Pre(S) can be computed in
O(n2m) of time, and for each pair (z,y), O(z,y) can be computed in O(m). Thus the procedure
for O(S) correctly output O(S) in O(n®m) of time.

Now we give a polynomial time algorithm for computing GiLnf as follows:

Algorithm Giff
Input: a finite language L;
Output: the set Gil{‘f;

begin
T:=L;
repeat
T :=T; T:=0(T)
until T = T';
output T
end.

Theorem 3.4. Let L be any finite language. Then Algorithm Gi[‘}f correctly computes Gil‘jf m
O(n®m?) of time, where n = |L| and m = max{|z| | z € L}.

3.2. Identification of G in the Limit

In this subsection, we consider a problem of identifying Gif,‘f in the frame work of inductive
inference based on identification in the limit introduced by Gold[4] for language learning, provided
G is finite. I

Inductive inference is a process to guess an unknown general rule from given examples. Gold[4]
proposed a mathematical model of inductive inference based on a criteria called identification wn
the limit as follows: A positive presentation o of a language L is an infinite sequence wy,ws," -
of strings such that {w, | n > 1} = L. An inference machine M is an effective procedure that
requests a string and produces a conjecture at a time. Given a positive presentation o = wy, wa, -,
M generates an infinite sequence g1, gz, - - - of conjectures. In language identification, conjectures
mean some devices defining languages such as automata, formal grammars and so on. Refer in
detail to Angluin[1]. In this paper, conjectures generated by the inference machine are finite sets
of strings. We say that M identifies G in the limit from positive data of a target language L, if
there is an integer n such that g, = Gil{lf for any m > n.

Let Ty, T, - - be an infinite sequence of sets of strings. The sequence T1,T5,- - converges to
a set T C YT, denoted by nlglgo T, = T, if there exists an integer ng such that T, = T for any
n > ng.

Let 0 = wy,ws,--- be a positive presentation of L, and let S, = {w1,ws, - -,wp} for each
n € N.

Lemma 3.5. Let L be a language. If GiLnf is finite, then

lim Ginf — Ginf
n—00 Sn L

150

Lemma 3.6. For a finite set S C £F and a string w € I,

inf __ inf
Gg‘u{w} = Glcr:lglfu{w}'

Now we present an inference algorithm as follows:

Algorithm LA
Input: a positive presentation of a language L;

Output: a sequence of prefix free and reduced generating sets;

begin
To:=¢; n:=1;
repeat
read the next data wp;
To =G Gw,y
output T;, as the n-th conjecture;
n:=n+1
forever
end.

For each n, let S, = {w1,---,wn} be a sample set of a target language L, and T), be the n-th
conjecture of the above algorithm.

Theorem 3.7. Let L be a language. If GiL“f 18 finite, the algorithm LA identifies Gil’}f in the limit,
and may be implemented to update the conjecture in time O(n3m?), where m = max{|w;| | i =
1,2,---,n}.

Proof. By Lemma 3.6, it is easy to show that T,, = Gg‘: for any n. Appealing to Lemma 3.5, we
obtain nango T, = G2 because G is finite. Thus the algorithm identifies GI*f in the limit.

Using Theorem 3.3, |Gf§“f| < n and the length of the longest strings in Gg‘: is less than or equal

to that in S,. Thus by Theorem 3.4, the n-th conjecture T,, = Giﬁf_lu {w,} MY be implemented
to update the conjecture in time O(n3m?), where m = max{|w;| | i =1,2,---,n}. |
References

[1] D. Angluin, Inductive Inference of Formal Languages from Positive Data, Information and
Control, 45, 117-135, (1980).

[2] R. Ash, “Information Theory,” Interscience Publishers, 1965.

[3] R.M. Capocelli, A Decision Procedure for Finite Decipherability and Synchronizability of Mul-
twalued Encodings, IEEE Transactions on Information Theory, IT-28, No. 2, 307-318, (1982).

[4] E.M. Gold, Language Identification in the Limit, Information and Control, 10, 447-474, (1967).

[5] T. Yokomori, On Polynomial-Time Learnability in the Limit of Strictly Deterministic Au-
tomata, Machine Learning, 19, 153-179, (1995).

[6] N. Watanabe, Polynomial-Time Inductive Inference of Simple Regular Automata, Master the-
sis, Osaka Prefecture University, 1996.

