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— On extremal problems of MPR-posets —
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We first review several definitions and theorems used latter. The set {1,2,--- ,,n}r of
n elements is denoted by [n]. Let a; (i € [2n]) be any elements in €, and be sorted in

ascending order as follows:
Ty STy < STy S Tagt S0 S Tone

Then we call z, and z,,1 the median two points of the numbers a; (i € [2n]), and denote

(Tn, Tnt1) by
med2(ay, az, - -, az,) or med2(a; : i € [2n]).

We also call £,_1,Zn, Tny1 and T,2 the median four points of the numbers a; (2 € [2n]),
and denote (z,,_1,Zn, Tni1, Tny2) by

med4(a,, ag, - - ;,agn) or med4(a; : i € [2n]).

Let I; = [a;,bs] (i € [m]) be any family of closed intervals in £2. Then we denote the
median two points med2(a; : ¢ € [m],b; : ¢ € [m]) of all the endpoints a; and b; of I;
(i € [m) by |

“med2(ly, I, -, I,) or med2(l;: i € [m]).

We also denote the median four points med4(a; : 7 € [m],b; : i € [m]) of all the endpoints
a; and bi of I,' (’L S [m]) by

med4(l1, I, - -, In) or medd4(l;: i € [m]).

Let med2(J; : ¢ € [m]) = (Zm, Tm+1). Then we call the closed interval [z, Zmy1] in 2 the
median interval of the closed intervals I; (¢ € [m]), which is the key concept in a series of
our papers, and denote it by

med(Iy, Iy, -+, I,,) or med(l;:1 € [m]).

The following is Lemma 1 in [3] (lemma B in [5]). It is very useful to investigate charac-
teristics of each MPR.

Lemma A. Let a and b; (i € [2m]) be any elements in Q0. Then

med2(a, a,b; : i € [2m]) = med2(a, a; med4(b; : ¢ € 2m])). O
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From Theorem 1 in [1}, we see that med([A(p(w)), A(p(u))], I(v) : w — v) is the MPR-set
of node v under the condition that an element A(p(u)) in Sp) has been assigned to u’s
parent p(u). This subset of the MPR-set S, is denoted by S, |z. That is,

Sulz = med([z,z], I(v) : u — v),
where z is an element in Sy). The following is Theorem 1 in [3].

Theorem B. Let T' be a rooted el-tree (Ts,r). Then each MPR-set S, for each internal
node u of T' ts recursively decided by -

S = [min(Su | min(Spw)), max(S | max(Sye))) O

We now show a sufficient condition for a o(r)-version MPR-poset to have both the
greatest element and the least element.

Proposition 1. Let T be an el-tree, and r be any element in Vp. If

o(r) < min{ min(S,)|Vu € Vg, S,is a non-singleton }
or

o(r) > max{ max(S,)|Vu € Vg, S,is a non-singleton },

then (Rmp(T), <,(;)) has both the greatest element and the least element. O

Figure 1: An el-tree T}

We here give some examples to illustrate proposition 1. Let T3 be an el-tree shown in Fig
1. The set Rmp(T}) of MPRs is also given in Table 1. Then f, g,1, j and I in Vp(T1) satisfy
the conditions in proposition 1. Therefore we see that (Rmp(T1), <o(5)), (Rmp(T1), <o),
(Rmp(Th), <o), (Rmp(T1), <o(;) and (Rmp(T1), <)) have both the greatest element
and the least element (Fig 2 (a) ~ (e)).

We get easily the following remark from proposition 1.

Remark 1. Let T' be an el-tree rooted at r such that o(r) = min(o(Vp)). Then o(r)-
version MPR-poset, (Rmp(T'), <o(r)) has both the greatest element and the least element.
g : S
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Table 1: Rmp(T1)

() (Rmp(Th), <o(p) (b) (Rmp(T1), <o(9) (c) (Rmp(T1), <o)
M
)\3 )‘2
e A
Ar Xs
)\a ’

(d) (Rmp(T1), <o) (e) (Rmp(T1), <o()

Figure 2: o(r)-version MPR-posets

We now have the main theorem in this paper, which answers for whether there exists

the least element in a o(r)-version MPR-poset or not.
Let T'be a rooted el-tree (Ts,7). We define a reconstruction )\ on T as follows. We define

Aby Au) =z in S, satisfying z <o) y for any y in S,, that is, = is the least element of
a subposet (Sy, <o(-) in the poset (Rmp(T), <s(ry). This reconstruction A is particularly

written as )\,ffn(rb. .
We can get the following implicitly from propostion 1.-

Remark 2. Let T be a rooted el-tree (T,r). If

a(r) < min{ min(S,)|Yu € Vi, Suis a non-singleton },
then A\00> — A\ . The dual case also hoids. O
Lemma 1. Let T be a rooted el-tree (Ts,r). For each u in Vy, we have

min(S,) ( o(r) < min(S,) )
ASAE> () = { o (r) ( min(S,) < o(r) < max(S,) )
max(S,) (o(r) > max(S,)) O
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<o(r)>
min

Theorem 1. Let T be a rooted el-tree (Ty, 7). Then the reconstruction A ts the least

element of (Rmp(T),<o@m). O

We here show some examples of the MPR ASIM> | et T\ = (T, 7) be the tree T} rooted
min

at node j. Then for each u in V we can decide }\;‘;’,fj»(u), which is shown in Fig 3. We also

can see that A:,flfj» is equal to \g in Rmp(T}), i.e, the least element of (Rmp(T1), <q(;))
-

A2

As

- e As

R

Figure 3: AS9D> on Ty = (T, §) Figure 4: (Rmp(T1), <o(;))

min

It is known that (Rmp(7T), <,(r) dosen’t always have the greatest element. So, we show
one of the requirements for a reconstruction A in Rmp(7T’) to be a maximal element in the
o(r)-version MPR-poset.

Lemma 2. Let T be a rooted el-tree (F,,r). For eachu inV, we have max Syy < minI(u),
max I (u) < min Spy or Spw) € I(u) hold. O

Let T be a rooted el-tree (T, 7). We define two reconstructions <>, 3<7()> on T
as follows. We define a<*™> and <?("> by a<?>(4) = the smallest element 2 under
the usual ordering < of maximal elements in the subposet (Su, <s(r)) and ',3<°(")>(u) =
the greatest element z under the usual ordering < of maximal elements in the subposet

(Su{ Sa(r))-
Lemma 3. Let T be a rooted el-tree (Ts,r). For each u in Vy, we have

ety _ MRS (o) > min(SL))
| max(S,) (o(r) <min(Sy) )

<oy>(y _ Jmin(Sy)  (o(r) = max(S.) )
e ) = {max(Su) (o(r) <max(S,)) O

Then, we get the following proposition.
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Proposition 2. Let T be a rooted el-tree (Ts,r). Then, both a<°®™> and f<°)> are
mazimal elements of (Rmp(T), <,). O '

We here show some examples of the MPR a<°)> and 8<°®)>. Let Ty = (T3, k) be
the tree T} rooted at node k. Then for each u in V we can decide a<°®)>(y) and
B<°®>(y), which are shown in Fig 5(a) and (b) respectively. We also see that a<°®)>
and B<°®)> are equal to A\g and \g in Rmp(T}), respectively, which are maximal elements
of (Rmp(T1), <o) (Fig 6).

Figure 5(a): a<e®)> 5 Ty, = (n,k) (b): ,3<°(k)> on T) = (Tb,k:)
AB = ﬁ<°‘(k)> /\6 — a<‘7(k)>
As M N

A
AL !

A2
Figure 6: (Rmp(Tl),‘S.a(k))

Finally, we show interesting examples on the number of maximal elements of a o(r)-
version MPR-poset. Let T; be an el-tree shown in Fig 7. When T3 is rooted at p in Vo(T32),
we see that (Rmp(T3), <) has three maximal elements A;, A3 and Ag shown in Fig 8. In

" other words, it shows that the number of maximal elements of a o(r)-version MPR-poset

is not necessarily at most two.



55

Al = a<a’(p)> AS AG - ﬁ<‘7(P)>
3 o 1 n
Az AQ
lﬁ
a b ‘
J 6 A4 AS
g e
i*p
_ <q(p)>
11 m 7 k8 A7 = Anin
Figure 7: An el-tree T} Figure 8: (Rmp(T3), S,,(,,))
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