<table>
<thead>
<tr>
<th>項目</th>
<th>内容</th>
</tr>
</thead>
<tbody>
<tr>
<td>タイトル</td>
<td>Structures of Lyapunov Regular Sets with Non-Zero Exponents (Problems on complex dynamical systems)</td>
</tr>
<tr>
<td>作者(s)</td>
<td>Kurata, Masahiro</td>
</tr>
<tr>
<td>引用</td>
<td>数理解析研究所講究録 (1998), 1042: 143-146</td>
</tr>
<tr>
<td>発行日</td>
<td>1998-04</td>
</tr>
<tr>
<td>URL</td>
<td>http://hdl.handle.net/2433/62089</td>
</tr>
<tr>
<td>種類</td>
<td>Departmental Bulletin Paper</td>
</tr>
<tr>
<td>テキストバージョン</td>
<td>publisher</td>
</tr>
</tbody>
</table>
Structures of Lyapunov Regular Sets with Non-Zero Exponents

Masahiro KURATA
Nagoya Institute of Technology

1 Introduction

Let M be a closed manifold with a Riemannian metric and $f; M \rightarrow M$ be a C^2-diffeomorphism. For $\lambda, \mu > 0$ and $1 \leq k \leq \dim M - 1$, we denote by $\Lambda = \Lambda(-\mu, \lambda, k)$ the set consisting of Lyapunov regular points x such that

1. Lyapunov exponents of x are less than $-\mu$ or greater than λ,
2. the dimension of the fiber of stable bundle $E^s(x)$ equals k.

Without loss of generality, we may assume that Λ has a dense orbit. In this note we construct a "symbolic dynamics" that represents Λ, and study the structure of Λ in the case when Λ is a fractal set.

2 symbolic dynamics of Λ

The set Λ is represented by a "symbolic dynamics" as follows.

I Let $\mathcal{W} = \{W_n\}_{n \geq 0}$ be a family of sets W_n of words of length $n + 1$ such that

1. There are symbols $\{B_1, \cdots, B_p, C_1, \cdots, C_q\}$, and for any $n \geq 0$
 \[W_n \subset \{B_1, \cdots, B_p, C_1, \cdots, C_q\}^{n+1}, \]
2. $(\alpha_0, \cdots, \alpha_n) \in W_n$ implies $\alpha_0, \alpha_n \in \{B_1, \cdots, B_p\}$,
3. If $(\alpha_0, \cdots, \alpha_n) \in W_n, (\beta_0, \cdots, \beta_n) \in W_{m}$ and $\alpha_n = \beta_0$, then $(\alpha_0, \cdots, \alpha_n, \beta_1, \cdots, \beta_m) \in W_{n+m}$,
4. for any B_i, B_j ($1 \leq i, j \leq p$), there are $n \geq 1$ and $(\alpha_0, \cdots, \alpha_n) \in W_{n}$ with $\alpha_0 = B_i, \alpha_n = B_j$.

II For a family of sets of words $\mathcal{W} = \{W_n\}_{n \geq 0}$ as above, we define a subset of shift (not necessarily subshift) $\Sigma = \Sigma(\mathcal{W})$ as follows:

1. $\Sigma = \Sigma(\mathcal{W}) \subset \{B_1, \cdots, B_p, C_1, \cdots, C_q\}^\mathbb{Z}$
2. Σ is generated by $\mathcal{W} = \{W_n\}_{n \geq 0}$, that is,
 \[(a) (\alpha) = (\alpha_n)_{n \in \mathbb{Z}} \in \Sigma \text{ if and only if for any } N > 0 \text{ there are } m, n \geq N \]
 such that $(\alpha_{-m}, \alpha_{-m+1}, \cdots, \alpha_0, \cdots, \alpha_n) \in W_{m+n}$.
(b) $\alpha_0 \in \{B_0, \cdots, B_p\}$

III We denote by Σ a collection of $\Sigma = \Sigma(W)$, where $W = \{W_n\}_{n \geq 0}$, is defined in I and II. And an equivalence relation \sim is defined in the disjoint union $\cup \Sigma(W)$ as follows:

if $a \sim b$ for $a \in \Sigma, b \in \Sigma'$ and $\sigma^n(a) \in \Sigma, \sigma^n(b) \in \Sigma'$ then $\sigma^n(a) \sim \sigma^n(b)$, where σ is the shift map.

IV For the quotient space $\bar{\Sigma} = \cup \Sigma(W)/\sim$, a shift map $\tilde{\sigma} : \tilde{\Sigma} \to \bar{\Sigma}$ is defined as follows:

for $\underline{a} = (\alpha_n)_n \in \Sigma$ with $\alpha_0, \alpha_k \in \{B_1, \cdots, B_p\}$, we have $\tilde{\sigma}^k(\underline{a}) = [\underline{b}]$, where $\underline{b} = (\beta_n)_n \in \Sigma$ is given by $\beta_n = \alpha_{n+k}$.

With the notations as above, we have the following.

Theorem 2.1. For a Lyapunov regular set $\Lambda = \Lambda(-\mu, \lambda, k)$, there are

1. a collection $\Sigma = \{\Sigma(W)\}$ of countable subsets of shifts $\Sigma(W),$
2. an equivalence relation \sim on $\cup \Sigma(W)$ and the shift map $\tilde{\sigma} : \bar{\Sigma} = \cup \Sigma(W)/\sim \to \bar{\Sigma},$
3. a collection of maps $\Psi = \Psi_\Sigma : \Sigma \to \Lambda$ (for $\Sigma \in \Sigma$) which is compatible with the equivalence relation \sim,

such that the map

$$
\tilde{\Psi} : \tilde{\Sigma} \to \Lambda
$$

induced from $\{\Psi = \Psi_\Sigma \mid \Sigma \in \Sigma\}$ is surjective and the diagram

$$
\begin{array}{ccc}
\tilde{\Sigma} & \xrightarrow{\tilde{\sigma}} & \tilde{\Sigma} \\
\downarrow & & \downarrow \\
\Lambda & \xrightarrow{f|\Lambda} & \Lambda
\end{array}
$$

is commutative.

Remark 2.1. Let ϵ be an arbitrary positive number. In Theorem 2.1. we may choose the symbols $\{B_1, \cdots, B_p, C_1, \cdots, C_q\}$ of any W and maps $\Psi = \Psi_\Sigma$ such that

1. $p = 1,$
2. diam $\Psi(\Sigma) < \epsilon$ for $\Sigma = \Sigma(W) \in \Sigma$,
3. for $x = \Psi((\alpha_n)_n) \in \Psi(W)$
 $||Tf^n | E^s(x)|| < \exp(-\mu n)$ if $\alpha_0 = \alpha_n = B_1,$
 $||Tf^{-n} | E^u(x)|| < \exp(-\lambda n)$ if $\alpha_{-n} = \alpha_0 = B_1.$
3 Locally self-similarity with countable contractions

Let $\Lambda = \Lambda(-\mu, \lambda, k)$ be a Lyapunov regular set. In the sequel we assume that $\Sigma = \{\Sigma\}$, where $\Sigma = \Sigma(W)$, and maps $\Psi = \Psi_\Sigma : \Sigma \rightarrow \Lambda$ ($\Sigma \in \Sigma$) are given as in section 2 and satisfy Remark 2.1.

Then Λ is a countable union of closed sets:

$$\Lambda = \bigcup_{\Sigma \in \Sigma} \Psi(\Sigma).$$

In this section we consider the structure of $\Psi(\Sigma)$.

Let $G_k(W)$ be the set of generators of W, that is,

$$G_k(W) = \{(a_0, \cdots, a_k) \in W_k \mid a_0 = a_k = B_1, a_i \in \{C_1, \cdots, C_q\} \quad 1 \leq i \leq k-1\},$$

$$G(W) = \bigcup_k G_k(W).$$

For $a = (a_0, \cdots, a_k) \in G(W)$, the right contraction

$$R(a) : \Psi(\Sigma) \rightarrow \Psi(\Sigma)$$

is defined by

$$R(a)(\Psi((\alpha_n)_n) = \Psi((\beta_n)_n) \text{ for } (\alpha_n)_n \in \Sigma,$$

where

$$\beta_n = \begin{cases}
\alpha_{n-k}, & k \leq n, \\
\alpha_n, & 0 \leq n \leq k, \\
\alpha_n, & n \leq 0.
\end{cases}$$

Similarly the left contraction

$$L(a) : \Psi(\Sigma) \rightarrow \Psi(\Sigma)$$

is defined by

$$L(a)(\Psi((\alpha_n)_n) = \Psi((\beta_n)_n) \text{ for } (\alpha_n)_n \in \Sigma,$$

where

$$\beta_n = \begin{cases}
\alpha_n, & 0 \leq n, \\
\alpha_{n+k}, & -k \leq n \leq 0, \\
\alpha_{n+k}, & n \leq -k.
\end{cases}$$

Then we have the following.

Proposition 3.1. The set $\Psi(\Sigma)$ is a countable union of images of $\Psi(\Sigma)$ by maps $R(a)L(b)$;

$$\Psi(\Sigma) = \bigcup_{a, b \in G(W)} R(a)L(b)(\Psi(\Sigma)).$$

If the map $\Psi = \Psi_\Sigma : \Sigma \rightarrow \Lambda$ is injective, then for any $a, b \in G(W)$ the map

$$L(b)R(a) = R(a)L(b) : \Psi(\Sigma) \rightarrow \Sigma(\Sigma)$$

is a contraction. And $\Psi(\Sigma)$ is self-similar by countable contractions.
4 Hausdorff dimension of local stable manifolds

Form the propositions in the previous section, we have

\[\Psi(\Sigma) = \bigcup_{a_1,b_1 \in G(\mathcal{W})} R(a_1)L(b_1)(\Psi(\Sigma)) \]
\[= \bigcup_{a_2,b_2 \in G(\mathcal{W})} \bigcup_{a_1,b_1 \in G(\mathcal{W})} R(a_2)L(b_2)R(a_1)L(b_1)(\Psi(\Sigma)) \]
\[= \bigcup_{a_1,a_2 \in G(\mathcal{W})} \bigcup_{b_1,b_2 \in G(\mathcal{W})} R(a_2)R(a_1)L(b_2)L(b_1)(\Psi(\Sigma)) \]
\[= \ldots \]
\[= \bigcup_{a,b \in G(\mathcal{W})^N} R(a)L(b)(\Psi(\Sigma)), \]

where

\[a = (a_1,a_2,\ldots), b = (b_1,b_2,\ldots) \in G(\mathcal{W})^N, \]

and

\[L(b)(\Psi(\Sigma)) = \bigcap_{N \geq 1} L(b_N) \cdots L(b_1)(\Psi(\Sigma)). \]

Besides the set \(L(b)(\Psi(\Sigma)) \) coincides with an intersection of a local unstable manifold and \(\Psi(\Sigma) \).

Let \(\text{Lip}(R(a) | L(b)(\Psi(\Sigma))) \) be the Lipshitz constant of the map

\[R(a): L(b)(\Psi(\Sigma)) \rightarrow L(b)(\Psi(\Sigma)). \]

By choosing \(\epsilon > 0 \) in Remark 2.1 sufficiently small, we have

\[\text{Lip}(R(a) | L(b)(\Psi(\Sigma))) < \exp(-\lambda n). \]

Because the number of the elements of \(G_k(\mathcal{W}) \) is less than or equals \(q^{k-1} \), this implies the following.

Proposition 4.1. For \(b \in G(\mathcal{W})^N \), there is \(c(b) > 0 \) such that

\[\sum_{a \in G(\mathcal{W})} \text{Lip}(R(a) | L(b)(\Psi(\Sigma)))^{c(b)} = 1. \]

The number \(c(b) \) dominates the Hausdorff dimension of the intersection of the local unstable manifold and \(\Psi(\Sigma) \):

Proposition 4.2. The Hausdorff dimension of \(L(b)(\Psi(\Sigma)) \) is less than or equals \(c(b) \).

References
