<table>
<thead>
<tr>
<th>Title</th>
<th>Kneading sequences for symmetric PL bimodal maps (Problems on complex dynamical systems)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Author(s)</td>
<td>Nakamura, Satomi; Oka, Hiroe</td>
</tr>
<tr>
<td>Citation</td>
<td>数理解析研究所講究録 (1998), 1042: 123-132</td>
</tr>
<tr>
<td>Issue Date</td>
<td>1998-04</td>
</tr>
<tr>
<td>URL</td>
<td>http://hdl.handle.net/2433/62091</td>
</tr>
<tr>
<td>Type</td>
<td>Departmental Bulletin Paper</td>
</tr>
<tr>
<td>Textversion</td>
<td>publisher</td>
</tr>
</tbody>
</table>

Kyoto University
Kneading sequences for symmetric PL bimodal maps

大阪大学大学院理学研究科 中村里美 (Satomi Nakamura)
龍谷大学理工学部 岡宏枝 (Hiroe Oka)

1 PL bimodal map

PL bimodal maps are the piecewise linear maps on the interval with three monotone segments. We consider the family of symmetric bimodal maps on the interval $[-1, 1]$, which map -1 and 1 to -1 and 1 respectively. A bimodal map has two turning points t_1 and t_2 on $(-1, 1)$. The map is strictly increasing on $[-1, t_1]$ and on $[t_2, 1]$, and strictly decreasing on $[t_1, t_2]$. Such maps are called $\{+ - +\}$ type bimodal maps. Let λ be the slope on the first and third segments, and $-\mu$ be that on the second segment $(\lambda, \mu > 0)$. The map is given by the formula

$$F_{\lambda, \mu}(x) = \begin{cases}
\lambda x + \lambda - 1 & (x \leq t_1) \\
-\mu x & (t_1 \leq x \leq t_2) \\
\lambda x - (\lambda - 1) & (x \geq t_2)
\end{cases}$$

where $t_1 = -t_2 = \frac{1 - \lambda}{\lambda + \mu}$. The parameters λ and μ are chosen from the set

$$D = \{ (\lambda, \mu) : \lambda > 1, \mu > 1, \frac{2}{\lambda} + \frac{1}{\mu} \geq 1 \}.$$

Since the maps are bimodal and symmetric at the origin, $t_1 < 0$. Therefore $\lambda > 1$. If $\mu < 1$ then there exists an attracting fixed point. If $\mu = 1$ then $x \in [t_1, t_2] \setminus \{0\}$ is 2-periodic. Therefore the condition $\mu > 1$ is necessary for topological entropy to be positive. The last condition $\frac{2}{\lambda} + \frac{1}{\mu} \geq 1$ is required for the existence of an F-invariant interval.

Lemma 1.1 Assume that $\lambda, \mu > 1$. There exists an interval whose interior is invariant under F, if and only if $\frac{2}{\lambda} + \frac{1}{\mu} \geq 1$.
If $\frac{2}{\lambda} + \frac{1}{\mu} < 1$, then the invariant interval is a Cantor set. In this case, topological entropy is log 3.

Now we consider another set of the parameters λ and μ

$$D_0 = \{ (\lambda, \mu) \in D : \frac{1}{\lambda} + \frac{1}{\mu} < 1 \}.$$

For $(\lambda, \mu) \in D \setminus D_0$ there exists an F-invariant interval, such that F maps the negative points and the positive points to positive points and negative points respectively.

Lemma 1.2 For $(\lambda, \mu) \in D$, we have $F^{2}_{\lambda, \mu}(t_1) > 0$, if and only if $\frac{1}{\lambda} + \frac{1}{\mu} < 1$.

2 Symbolic dynamics for the bimodal maps

2.1 Kneading sequences

We consider kneading sequences adapted to a special case of bimodal maps that are symmetric at the origin. Let f be a $\{+ - +\}$ type bimodal map with two turning points $t_1 < 0$ and $t_2 > 0$. Let f^n is the nth iterate of f. The orbit of $x_0 \in [f(t_2), f(t_1)]$ is

$$O(x_0) = (x_0, f(x_0), f^2(x_0), \cdots)$$

$$= (x_0, x_1, x_2, \cdots).$$

Its itinerary is

$$I(x_0) = (A_0 A_1 A_2 \cdots),$$

where

$$A_i = \begin{cases}
L & (f(t_2) \leq x_i < t_1) \\
C_L & (x_i = t_1) \\
M & (t_1 < x_i t_2) \\
C_R & (x_i = t_2) \\
R & t_2 < (x_i \leq f(t_1)).
\end{cases}$$
The itineraries $K_L(f), K_R(f)$ for the critical values $f(t_1), f(t_2)$ are called the **kneading sequences** of the map:

$$K_L(f) = I(f(t_1)), K_R(f) = I(f(t_2)).$$

For the itinerary $I(x_0) = (A_0A_1A_2\cdots)$, we denote the number of i's such that $A_i = M$ (for $i < n$) by θ_n, and let $\epsilon_n = (-1)^{\theta_n}$. We denote a symbol by a capital letter without underline and a sequence by a capital letter with underline.

We define an order on the symbols and the sequences as follows.

(i) $L < C_L < M < C_R < R$.

(ii) let $S = (A_0A_1A_2\cdots)$ and $T = (B_0B_1B_2\cdots)$ be two different sequences. Let k be the smallest non-negative integer with $A_k \neq B_k$. We say $S < T$ if $A_k < B_k$ and $\epsilon_k = 1$ or if $A_k > B_k$ and $\epsilon_k = -1$ for the above k.

For $x, y \in [f(t_2), f(t_1)]$, it follows that

(i) if $I(x) < I(y)$ then $x < y$.

(ii) if $x < y$ then $I(x) \leq I(y)$.

$|A|$ denote the cardinality of A. When $|A| = 0$, we write $A = \phi$. If $|A| > 0$, then $A > \phi$.

For $A = (A_0A_1A_2A_3\cdots)$, define the **shift operator** σ by

$$\sigma(A) = \begin{cases}
\phi & \text{if } A = C_L, C_R \text{ or } \phi \\
(A_1A_2A_3\cdots) & \text{otherwise}
\end{cases}$$

We call a sequence A **maximal** if $\sigma^k(A) \leq A$ for $k = 1, 2, \cdots$. The kneading sequence $K_L(f)$ is maximal.
2.2 The products of the sequences

We say a sequence A is **even** or **odd** according to the parity of the number of M's it contains. We shall write AB for the concatenation of A and B, and $A^n = A \cdots A$ (n times) and $A^\infty = AA \cdots$. Let $A \neq \phi$ and $B \neq C_L$ or C_R. We define \bar{A} as follows:

$$\bar{A}_i = \begin{cases}
R & (A_i = L) \\
C_R & (A_i = C_L) \\
M & (A_i = M) \\
C_L & (A_i = C_R) \\
L & (A_i = R)
\end{cases}$$

We define ***-product and ****-product as follows:

(i) if A is even

$$A * B_0 B_1 \cdots = AB_0 AB_1 \cdots$$

(ii) if A is odd

$$A * B_0 B_1 \cdots = \bar{A}_0 \bar{B}_1 B_1 \cdots$$

where

$$\bar{B}_i = \begin{cases}
M & (B_i = L) \\
L & (B_i = M) \\
R & (B_i = R)
\end{cases}$$

(iii) if A is even

$$A ** B_0 B_1 \cdots = AB_0 \bar{A} B_1 \cdots$$

(iv) if A is odd
\[A**B_0B_1\cdots = A\check{B}_0\underline{A}\hat{B}_1\cdots \]

where

\[B_i = \begin{cases}
L & (B_i = L) \\
R & (B_i = M) \\
M & (B_i = R)
\end{cases} \]

\[\check{B}_i = \begin{cases}
M & (B_i = L) \\
L & (B_i = M) \\
R & (B_i = R)
\end{cases} \]

\[\hat{B}_i = \begin{cases}
M & (B_i = L) \\
L & (B_i = M) \\
R & (B_i = R) \end{cases}. \]

Let \(A \) be maximal. We say \(A \) is \textbf{primary} if it cannot be written as \(B*D \) or \(B**D \) with \(B \neq \phi \) and \(D \neq \phi \).

There are some kneading sequences \(K_L(f) \) that contain the symbol \(C_L \). These sequences can be written \((AC_L)^\infty \) or \((AC_R\overline{A}C_L)^\infty \) by using a sequence \(A \neq \phi \). These sequences satisfy the following inequalities:

\[A*L^\infty < AC_L < A*ML^\infty \]

\[A**M^\infty < AC_R\overline{A}C_L < A**RM^\infty \]

Proposition 2.1 Let \(AC_L \) be maximal. If \(A*L^\infty \leq K_L(f) \leq A*ML^\infty \) then there is a \(B \) such that \(K_L(f) = A*B \). This \(B \) is maximal.

Proof. Put \(n = |AC_L| \). Assume that \(A \) is even. We first show that

\[A*L^\infty \leq \sigma^n(K_L(f)) \leq A*ML^\infty. \] \hspace{1cm} (1)

Our assumptions implies

\[(AL)^\infty \leq K_L(f) \leq AM(AL)^\infty. \]
Then we have $K_L(f) = AB_0 \cdots$, where $B_0 = L, C_L$, or M. If $B_0 = L$ then $\sigma^n((AL)^\infty) \leq \sigma^n(K_L(f))$. If $B_0 = M$ then $\sigma^n(AM(AL)^\infty) \leq \sigma^n(K_L(f))$. In both of the cases we have $(AL)^\infty \leq \sigma^n(K_L(f))$. We get $\sigma^n(K_L(f)) \leq K_L(f)$ since $K_L(f)$ is maximal. Therefore we obtain the inequality (1). If $B_0 = C_L$, the inequality (1) holds since $\sigma^n(K_L(f)) = K_L(f)$.

By induction, for all $p \geq 1$

$$A* L^\infty \leq \sigma^{np}(I\iota_L'(f)) \leq A* ML^\infty.$$

Thus $K_L(f)$ is of the form AB_0X. From the reasoning in the preceding paragraph, it follows that X must be again of the same form. Hence

$$K_L(f) = AB_0AB_1 \cdots = A*B.$$

In the case that A is odd, we also have $K_L(f) = A*B$.

Next, we show that $B = B_0B_1 \cdots$ is maximal. For that purpose it is enough to prove that $\sigma^k(B) \leq B$ for any k. Since $K_L(f)$ is maximal, it follows that for any k

$$\sigma^{kn}(A*B) \leq A*B.$$

(2)

We assume that for some \tilde{k}

$$B_k B_{k+1} \cdots B_{k+\tilde{k}-1} = B_0B_1 \cdots B_{\tilde{k}-1}$$

(3)

and

$$B_{k+\tilde{k}} \neq B_k.$$

(4)

If A is even, then from (2)

$$AB_k AB_{k+1} \cdots AB_{k+\tilde{k}} < AB_0 AB_1 \cdots AB_{\tilde{k}}.$$

Since $AB_k AB_{k+1} \cdots B_{k+\tilde{k}-1}A = AB_0 AB_1 \cdots B_{\tilde{k}-1}A$, we obtain $\sigma^k(B) < B$. We also have the same inequality in the case A is odd. If the assumption (3) (4) does not hold for any \tilde{k}, then B is periodic with period k, i.e. $\sigma^k(B) = B$.

\[\square \]
Lemma 2.2 Assume $A \ast L^\infty \leq K_L(f) \leq A \ast ML^\infty$. If $K_L(f) = A \ast B$ then $L^\infty \leq B \leq ML^\infty$ and $\sigma(B) \leq \sigma^k(B)$ for any $k \geq 1$.

Lemma 2.3 Assume $A \ast L^\infty \leq K_L(f) \leq A \ast ML^\infty$. If $\sigma^n(K_L(f)) \leq I(x) \leq K_L(f)$, then $\sigma^n(K_L(f)) \leq I(f^n(x)) \leq K_L(f)$, where $n = |AC_L|$.

Proposition 2.4 Let $AC_R \overline{AC}_L$ be maximal. If $A \ast M^\infty \leq K_L(f) \leq A \ast RM^\infty$ then there is a B such that $K_L(f) = A \ast B$. This B is maximal.

Lemma 2.5 Assume $A \ast M^\infty \leq K_L(f) \leq A \ast RM^\infty$ If $K_L(f) = A \ast B$ then $M^\infty \leq B \leq RM^\infty$ and $\sigma(B) \leq \sigma^k(B)$ for any $k \geq 1$.

Lemma 2.6 Assume $A \ast M^\infty \leq K_L(f) \leq A \ast RM^\infty$. If $\sigma^n(K_L(f)) \leq I(x) \leq K_L(f)$, then $\sigma^n(K_L(f)) \leq I(f^n(x)) \leq K_L(f)$, where $n = |AC_R|$.

2.3 The properties of kneading sequence for PL bimodal maps

Now we remember Lemma 1.2 that for $(\lambda, \mu) \in D_0$ we have $F_{\lambda,\mu}^2(t_1) > 0$. The map $F_{\lambda,\mu}(x)$ has a fixed point $x = 0$. The itinerary of this point is M^∞. Therefore for $(\lambda, \mu) \in D_0$ $K_L(F_{\lambda,\mu}) > RM^\infty$.

Proposition 2.7 If $K_L(F_{\lambda,\mu}) > RM^\infty$, then $K_L(F_{\lambda,\mu})$ is primary.

Proof. Assume that $K_L(F_{\lambda,\mu}) = AB$. Lemma 2.3 implies that there is an interval J such that $F_{\lambda,\mu}^n(J) = J$ for $n = |AC_L|$. We can take $\{x | \sigma^n(K_L(F_{\lambda,\mu})) \leq I(x) \leq K_L(F_{\lambda,\mu})\}$ for the above J. Then we find $F_{\lambda,\mu}^n$ on the interval J is unimodal. Let κ and $-\nu$ ($\kappa, \nu > 0$) be the slopes of $F_{\lambda,\mu}^n(J)$. Let k be the total number of L's and R's in A, so the number of M's is $n - 1 - k$. If A is even, then we get the slopes

$$\kappa = (-\mu)^{n-1-k}\lambda^k \lambda \geq \lambda^2$$
$$(-\nu) = (-\mu)^{n-1-k}\lambda^k(-\mu) \leq -\lambda \mu$$
respectively. If A is odd, then

\[
\kappa = (-\mu)^{n-1-k}\lambda^{k}(-\mu) \geq \mu^{2}
\]

\[
(-\nu) = (-\mu)^{n-1-k}\lambda^{k}\lambda \leq -\lambda\mu.
\]

In both of the cases, we get $\frac{1}{\kappa} + \frac{1}{\nu} < 1$, since $K_{L}(F_{\lambda,\mu}) > RM^\infty$ implies $\frac{1}{\lambda} + \frac{1}{\mu} < 1$. This contradicts the result in Misiurewicz-Visinescu [2] that $\frac{1}{\kappa} + \frac{1}{\nu} > 1$ is necessary for the existence of an F-invariant interval for unimodal maps.

Proposition 2.8 If $K_{L}(F_{\lambda,\mu}) > RM^\infty$, then $K_{L}(F_{\lambda,\mu})$ is primary.

Theorem 2.9 Let $K_{L}(F_{\lambda,\mu})$ be a maximal and primary sequence such that $K_{L}(F_{\lambda,\mu}) > RM^\infty$. There is ν such that $K(g_{\nu}) = K_{L}(F_{\lambda,\mu})$, where g_{ν} is the PL bimodal map with the slopes alternately ν, $-\nu$, $\nu(\nu > 1)$.

Proof. From the maximality and the primarity of $K_{L}(F_{\lambda,\mu})$ as well as Proposition 2.1, we have one of the inequalities $K_{L}(F_{\lambda,\mu}) < A* L^\infty$ or $K_{L}(F_{\lambda,\mu}) > A* ML^\infty$. We set

\[
M_{F_{\lambda,\mu}} = \{\nu : K_{L}(g_{\nu}) < K_{L}(F_{\lambda,\mu})\}
\]

and

\[
P_{F_{\lambda,\mu}} = \{\nu : K_{L}(g_{\nu}) > K_{L}(F_{\lambda,\mu})\},
\]

and we claim these are open. We show only that $M_{F_{\lambda,\mu}}$ is open, and we can prove that $P_{F_{\lambda,\mu}}$ is open in the same way. We put $n = |AC_{L}|$, and assume that A is even. We take $\nu \in M_{F_{\lambda,\mu}}$ with $K_{L}(g_{\nu}) = AD_{n}D_{n+1} \cdots < K_{L}(F_{\lambda,\mu})$ such that D_{n} is not equal to the nth symbol of $K_{L}(F_{\lambda,\mu})$. If $D_{n} \neq C_{L}$ then it is obvious that $M_{K(F_{\lambda,\mu})}$ is open. If $D_{n} = C_{L}$ then $K_{L}(F_{\lambda,\mu}) > A* ML^\infty$. In this case there exists s_{0} such that $K_{L}(F_{\lambda,\mu}) > AMLs_{0} \cdots$. Thus the sets $\{\tilde{D} = AM(\tilde{AL})^{s} : s > s_{0}\}$ and $\{\tilde{D} = AL(\tilde{AL})^{s} : s > s_{0}\}$ are included in $M_{F_{\lambda,\mu}}$, and $M_{F_{\lambda,\mu}}$ is open. If A is odd, we can also prove that $M_{F_{\lambda,\mu}}$ is open in the same way.
3 Monotonicity of topological entropy

In this section we consider the monotonicity of kneading sequences and that of topological entropy.

We define an order on a pair of the parameters.

(i) We say $(\lambda_1, \mu_1) \leq (\lambda_2, \mu_2)$ if $\lambda_1 \leq \lambda_2$ and $\mu_1 \leq \mu_2$.

(ii) We say $(\lambda_1, \mu_1) < (\lambda_2, \mu_2)$ if $(\lambda_1, \mu_1) \leq (\lambda_2, \mu_2)$ and either $\lambda_1 \neq \lambda_2$ or $\mu_1 \neq \mu_2$.

We denote the pair of $K_L(F_{\lambda,\mu})$ and $K_R(F_{\lambda,\mu})$ by $K(\lambda, \mu)$. We say $K(\lambda_1, \mu_1) < K(\lambda_2, \mu_2)$ if and only if $K_L(F_{\lambda_1,\mu_1}) < K_L(F_{\lambda_2,\mu_2})$ and $K_R(F_{\lambda_1,\mu_1}) > K_R(F_{\lambda_2,\mu_2})$.

Let $h(\lambda, \mu)$ be the topological entropy of $F_{\lambda,\mu}$.

Proposition 3.1 Let $(\lambda_1, \mu_1), (\lambda_2, \mu_2) \in D \setminus D_0$. If $(\lambda_1, \mu_1) < (\lambda_2, \mu_2)$ then $h(\lambda_1, \mu_1) < h(\lambda_2, \mu_2)$.

We can show this proposition applying the result of [2] that proved the monotonicity of the topological entropy for PL unimodal maps.

Let

$$D_1 = \left\{ (\lambda, \mu) \in D_0 : R C_R L C_L < K_L(F_{\lambda,\mu}) < R(RL)^\infty \right\}.$$

We obtain a proposition about the monotonicity of kneading sequences as follows:

Proposition 3.2 Let $(\lambda_1, \mu_1), (\lambda_2, \mu_2) \in D_0 \setminus D_1$. If $(\lambda_1, \mu_1) < (\lambda_2, \mu_2)$ then $K(\lambda_1, \mu_1) < K(\lambda_2, \mu_2)$.

The proof of this proposition is given by an analytical estimation.

Theorem 3.3 Let $(\lambda_1, \mu_1), (\lambda_2, \mu_2) \in D_0 \setminus D_1$. If $(\lambda_1, \mu_1) < (\lambda_2, \mu_2)$ then $h(\lambda_1, \mu_1) < h(\lambda_2, \mu_2)$.

We can prove this theorem from Theorem 2.9 and Proposition 3.2.
Theorem 3.4 For a constant c with $0 < c < \log(3)$, the iso-entropy curve given by $h(\lambda, \mu) = c$ is connected.

We prove this theorem in [3].

References

