<table>
<thead>
<tr>
<th>Title</th>
<th>LAYER HEAT POTENTIALS FOR A BOUNDED CYLINDER WITH FRACTAL LATERAL BOUNDARY (Problems on complex dynamical systems)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Author(s)</td>
<td>Watanabe, Hisako</td>
</tr>
<tr>
<td>Citation</td>
<td>数理解析研究所講究録 (1998), 1042: 112-122</td>
</tr>
<tr>
<td>Issue Date</td>
<td>1998-04</td>
</tr>
<tr>
<td>URL</td>
<td>http://hdl.handle.net/2433/62092</td>
</tr>
<tr>
<td>Type</td>
<td>Departmental Bulletin Paper</td>
</tr>
<tr>
<td>Textversion</td>
<td>publisher</td>
</tr>
</tbody>
</table>

Kyoto University
1. Introduction

Let D be a bounded smooth domain in \mathbb{R}^d and set

$$\Omega_D = D \times (0,T) \quad \text{and} \quad S_D = \partial D \times [0,T].$$

The double layer heat potential Φf of $f \in L^p(S_D)$ is defined by

$$\Phi f(X) = -\int_0^T \int_{\partial D} \langle \nabla_y W(X - Y), n_y \rangle f(Y) d\sigma(y) ds$$

for $X = (x, t) \in (R^d \setminus \partial D) \times \mathbb{R}$, where \langle , \rangle is the inner product in \mathbb{R}^d, n_y is the unit outer normal to ∂D, σ is the surface measure on ∂D and W is the fundamental solution for the heat operator, i.e.,

$$W(X) = W(x, t) = \begin{cases} \exp \left(-\frac{t|x|^2}{4t} \right) & \text{if } t > 0 \\ 0 & \text{otherwise.} \end{cases}$$

The double layer heat potential is important not only physically but also mathematically. For example, R. M. Brown proved that the solution to the initial-Dirichlet problem in a Lipschitz cylinder for the heat operator can be written by a double layer heat potential and the solution to the initial-Neumann problem in a Lipschitz cylinder for the heat operator is given by a single layer heat potential (cf. $[B_1], [B_2]$).

If D is a bounded domain with fractal boundary, then n_y and the surface measure can not be defined. But if D has a smooth boundary and f is a C^1-function on \mathbb{R}^{d+1} with compact support, then we see by the Green formula that for $X = (x, t) \in D \times \mathbb{R}$

$$\Phi f(X) = \int_0^T ds \int_{\mathbb{R}^d \setminus \overline{D}} \langle \nabla_y f(Y), \nabla_y W(X - Y) \rangle dy$$

$$+ \int_0^T ds \int_{\mathbb{R}^d \setminus \overline{D}} f(Y) \Delta_y W(X - Y) dy$$

Typeset by \LaTeX
and for \(X = (x, t) \in (\mathbb{R}^d \setminus \overline{D}) \times \mathbb{R} \)

\[
\Phi f(x) = -\int_0^T ds \int_D (\nabla_y f(Y), \nabla W(x - Y)) dy \\
- \int_0^T ds \int_D f(Y) \Delta_y W(x - Y) dy
\]

(1.3)

So we see that, if a function \(f \) defined on \(S_D \) can be extended to be a function \(\mathcal{E}(f) \) on \(\mathbb{R}^d \times [0, T] \) such that for each \(t \in [0, T] \) the function \(x \mapsto \mathcal{E}(f)(x, t) \) is a \(C^1 \)-function on \(\mathbb{R}^d \setminus \partial D \) and for each \(x \in \mathbb{R}^d \setminus \partial D \) and each \(j \) \((j = 1, 2, \cdots, d)\) the function \(t \mapsto \frac{\partial \mathcal{E}(f)}{\partial x_j}(x, t) \) is measurable, then the right-hand sides of (1.2) and (1.3) may be defined.

In this paper we assume that \(D \) is a bounded domain in \(\mathbb{R}^d \) \((d \geq 2)\) and \(\partial D \) is a \(\beta \)-set satisfying \(d - 1 \leq \beta < d \). Here, according to [JW] we say that a closed set \(F \) is a \(\beta \)-set if there exist a positive Radon measure \(\mu \) on \(F \) and positive real numbers \(r_0, b_1, b_2 \) such that

\[
b_1 r^\beta \leq \mu(B(z, r) \cap F) \leq b_2 r^\beta
\]

for all \(z \in F \) and all \(r \leq r_0 \), where \(B(z, r) \) stands for the open ball in \(\mathbb{R}^d \) with center \(z \) and radius \(r \).

We note that, if \(D \) is a bounded Lipschitz domain, then \(\partial D \) is a \((d - 1)\)-set and the surface measure \(\mu \) has the property (1.4) for \(F = \partial D \) and \(\beta = d - 1 \). Furthermore if \(\partial D \) consists of a finite number of self-similar sets, which satisfies the open set condition, and whose similarity dimensions are \(\beta \), then \(\partial D \) is a \(\beta \)-set such that the \(\beta \)-dimensional Hausdorff measure \(\mathcal{H}^\beta \) restricted to \(\partial D \) has the property (1.4) for \(F = \partial D \) (cf. [Hu]).

Let \(0 < \alpha \leq 1 \) and \(F \) be a closed set in \(\mathbb{R}^d \). We denote by \(\Lambda_\alpha(F \times [0, T]) \) the Banach space of all continuous functions \(f \) on \(F \times [0, T] \) such that \(f(\cdot, t) \) is \(\alpha \)-Hölder continuous for every \(t \in [0, T] \) with norm

\[
\|f\|_{\infty, \alpha} = \sup_{X \in F \times [0, T]} |f(X)| + \sup_{x, y \in F, x \neq y, t \in [0, T]} \frac{|f(x, t) - f(y, t)|}{|x - y|^\alpha}.
\]

Further let \(0 < \alpha, \lambda \leq 1 \). We also denote by \(\Lambda_{\alpha, \lambda}(F \times [0, T]) \) the Banach space of all \(f \in \Lambda_\alpha(F \times [0, T]) \) such that \(f \) is \(\lambda \)-Hölder continuous with respect to the time variable with norm

\[
\|f\|_{\infty, \alpha, \lambda} = \|f\|_{\infty, \alpha} + \sup_{x \in F, t, s \in [0, T], t \neq s} \frac{|f(x, t) - f(x, s)|}{|t - s|^\lambda}.
\]

We will prove the following lemma in §3.
Lemma 1.1. Let $d - 1 \leq \beta < d$ and F be a compact β-set in \mathbb{R}^d satisfying (1.4) and $F \subset B(0,R/2)$. Then there exists a bounded operator \mathcal{E} from $\Lambda_\alpha(F \times [0,T])$ to $\Lambda_\alpha(\mathbb{R}^d)$ with the following properties:

(i) $\mathcal{E}(f)(\cdot,t)$ is a C^1-function on $\mathbb{R}^d \setminus F$ for each $t \in [0,T]$, and both of $\mathcal{E}(f)(x,\cdot)$ and $\left(\frac{\partial \mathcal{E}(f)}{\partial x_j}\right)(x,\cdot)$ ($j = 1, \ldots, d$) are measurable for each $x \in \mathbb{R}^d$ and for each $x \in \mathbb{R}^d \setminus F$, respectively,

(ii) $\mathcal{E}(f) = f$ on F and supp $\mathcal{E}(f)(\cdot,t) \subset B(0,2R)$ for each $t \in [0,T]$.

(iii) $\left| \frac{\partial \mathcal{E}(f)}{\partial y_i}(y,s) \right| \leq c\|f\|_{\infty,\alpha}\text{dist}(y,\partial D)^{\alpha-1}$, $\left| \frac{\partial^2 \mathcal{E}(f)}{\partial y_i \partial y_k}(y,s) \right| \leq c\|f\|_{\infty,\alpha}\text{dist}(y,\partial D)^{\alpha-2}$ for every $(y,s) \in (\mathbb{R}^d \setminus F) \times [0,T]$.

(iv) If $f \in \Lambda_\alpha,\lambda(F \times [0,T])$, then $\mathcal{E}(f) \in \Lambda_\alpha,\lambda(\mathbb{R}^d \times [0,T])$.

Using Lemma 1.1 we define, for $f \in \Lambda_\alpha(S_D)$,

\[
\Phi f(X) = \int_0^T ds \int_{\mathbb{R}^d \setminus \overline{D}} \langle \nabla \mathcal{E}(f)(y,s), \nabla_y W(X-Y) \rangle dy + \int_0^T ds \int_{\mathbb{R}^d \setminus \overline{D}} \mathcal{E}(f)(y,s) \Delta_y W(X-Y) dy
\]

for $X = (x,t) \in D \times \mathbb{R}$ and

\[
\Phi f(X) = -\int_0^T ds \int_D \langle \nabla \mathcal{E}(f)(y,s), \nabla_y W(X-Y) \rangle dy - \int_0^T ds \int_D \mathcal{E}(f)(y,s) \Delta_y W(X-Y) dy
\]

for $X = (x,t) \in (\mathbb{R}^d \setminus \overline{D}) \times \mathbb{R}$.

Furthermore we also define the operator K by

\[
Kf(Z) = \frac{1}{2} (I_1(Z) + I_2(Z)),
\]

where

\[
I_1(Z) = \int_0^T ds \int_{\mathbb{R}^d \setminus \overline{D}} \langle \nabla \mathcal{E}(f)(y,s), \nabla_y W(Z-Y) \rangle dy
\]

\[
+ \int_0^T ds \int_{\mathbb{R}^d \setminus \overline{D}} (\mathcal{E}(f)(Y) - f(Z)) \Delta_y W(Z-Y) dy
\]

\[
+ f(Z) \int_{(\mathbb{R}^d \setminus \overline{D}) \times \{0\}} W(Z-Y) dy
\]
and
\[
I_2(Z) = - \int_0^T ds \int_D \langle \nabla \mathcal{E}(f)(y, s), \nabla y W(Z - Y) \rangle dy \\
- \int_0^T ds \int_D (\mathcal{E}(f)(Y) - f(Z)) \Delta_y W(Z - Y) dy - f(Z) \int_{D \times \{0\}} W(Y - Z) dy
\]

Under these notations we will prove the following theorem in §3.

Theorem. Assume that \(D \) is a bounded domain in \(\mathbb{R}^d \) such that \(\partial D \) is a \(\beta \)-set. If \(0 \leq \beta - (d - 1) < \alpha < 1 \) and \(f \in \Lambda_{\alpha, \alpha/2}(S_D) \), then, for each \(Z \in \partial D \times [0, T] \),

\[
\lim_{X \to Z, X \in D \times (0, T)} \Phi f(X) = Kf(Z) + \frac{1}{2}f(Z)
\]

and

\[
\lim_{X \to Z, X \in (\mathbb{R}^d \setminus \overline{D}) \times (0, T)} \Phi f(X) = Kf(Z) - \frac{1}{2}f(Z).
\]

Thus we see that our double layer heat potentials have the same boundary behavior as the usual ones for a bounded cylinder with smooth lateral boundary.

Remark. In this paper we shall treat the double layer heat potentials of Hölder continuous functions on \(S_D \). But under a similar consideration we can also the double layer heat potentials of functions in a Besov space on \(S_D \) and prove that they have the parabolically non-tangential limit at a.e. \(Z \in S_D \).

2. Properties of \(W \)

In this section we recall and study properties of the function \(W \). To do so, we use the parabolic metric \(\delta \) defined by

\[
\delta(X, Y) = (|x - y|^2 + |t - s|)^{1/2} \quad \text{for } X = (x, t) \text{ and } Y = (y, s).
\]

Lemma 2.1. (i) \(W(X) \leq c\delta(X, 0)^{-d} \),

(ii) \(|\nabla_x W(X)| \leq c\delta(X, 0)^{-d-1} \) if \(X \neq 0 \),

(iii) \(\left| \frac{\partial^2}{\partial x_i \partial x_j} W(X) \right| \leq c\delta(X, 0)^{-d-2} \), \(\left| \frac{\partial}{\partial t} W(X) \right| \leq c\delta(X, 0)^{-d-2} \) if \(X \neq 0 \),

(iv) \(\left| \frac{\partial^2}{\partial x_i \partial x_j \partial x_k} W(X) \right| \leq c\delta(X, 0)^{-d-3} \), \(\left| \frac{\partial^2}{\partial x_i \partial t} W(X) \right| \leq c\delta(X, 0)^{-d-3} \) if \(X \neq 0 \),

(v) \(|W(X - Y) - W(Z - Y)| \leq c\delta(X, Z) \epsilon \{ \delta(X, Y)^{-d-\epsilon} + \delta(Z, Y)^{-d-\epsilon} \} \)

if \(0 \leq \epsilon \leq 1 \) and \(X \neq Y, Z \neq Y \),

(vi) \(|\nabla_y W(X - Y) - \nabla_y W(Z - Y)| \leq c\delta(X, Z) \epsilon \{ \delta(X, Y)^{-d-1-\epsilon} + \delta(Z, Y)^{-d-1-\epsilon} \} \)

if \(0 \leq \epsilon \leq 1 \) and \(X \neq Y, Z \neq Y \).
Proof. The assertions (i), (ii), (iii) and (iv) are well known (cf. [B2, p.5]). The assertions (v) and (vi) will be shown by the same method as in the proof of Lemma 2.3 in [W2].

Let Ω_0 be a bounded piecewise smooth domain in \mathbb{R}^d and u, v be smooth functions on $\overline{\Omega}_0 \times [0, \rho]$. Using the divergence theorem, we obtain

\begin{equation}
\int_0^\rho \int_{\Omega_0} (uL^*v - vLu) \, dx \, dt
= \int_0^\rho dt \int_{\partial \Omega_0} \langle u\nabla_x v - v\nabla_x u, n_x \rangle \, d\sigma(x) - \int_{\Omega_0 \times \{t=0\}} uv \, dx + \int_{\Omega_0 \times \{t=\rho\}} uv \, dx,
\end{equation}

where

$L = \triangle - \frac{\partial}{\partial t}$ and $L^* = \triangle + \frac{\partial}{\partial t}$.

If $Lu = L^*v = 0$ in $\Omega_0 \times (0, \rho)$, then (2.1) implies

\begin{equation}
\int_0^\rho dt \int_{\partial \Omega_0} \langle u\nabla_x v - v\nabla_x u, n_x \rangle \, d\sigma(x) - \int_{\Omega_0 \times \{t=0\}} uv \, dx + \int_{\Omega_0 \times \{t=\rho\}} uv \, dx = 0.
\end{equation}

Let $X = (x, t)$ ($0 \leq t \leq T$) be an exterior point of $\Omega_0 \times (0, T)$. Then, setting $u = 1$ and $v(Y) = W(X - Y)$ and noting that $W(X - Y) = 0$ for $Y = (y, T)$, we deduce from (2.2)

\begin{equation}
\int_0^T ds \int_{\partial \Omega_0} \langle \nabla_y W(X - Y), n_y \rangle \, d\sigma(y) - \int_{\Omega_0 \times \{s=0\}} W(X - Y) \, dy = 0.
\end{equation}

Hereafter we assume that D is a bounded domain in \mathbb{R}^d such that ∂D is a β-set satisfying $\overline{D} \subset B(O, R/2)$.

Let us use the Whitney decomposition to approximate D and $\mathbb{R}^d \setminus \overline{D}$ (cf. [S, p.167]). Let $\mathcal{W}(D)$ be the Whitney decomposition of D and define

\[A_n = \bigcup_{k=k_0}^n \bigcup_{Q \in \mathcal{W}_k(D)} Q, \]

where $\mathcal{W}_k(D) = \{Q \in \mathcal{W}(D); Q \text{ is a } k\text{-cube}\}$ and k_0 is the smallest integer k such that $\mathcal{W}_k(D) \neq \emptyset$.

Similarly we also define

\[B_n = \left(\bigcup_{k=-\infty}^n \bigcup_{Q \in \mathcal{W}_k(\mathbb{R}^d \setminus \overline{D})} Q \right). \]

Then we have the following lemma.
Lemma 2.2. Set

\[g_n(X) = \int_0^T \int_{A_n} \Delta_y W(X - Y) dy \quad \text{and} \quad h_n(X) = \int_0^T \int_{B_n} \Delta_y W(X - Y) dy. \]

Then \(\lim_{n \to \infty} g_n(X) \) and \(\lim_{n \to \infty} h_n(X) \) exist on \(\mathbb{R}^d \times [0, T] \) and for \(X \in \mathbb{R}^d \times (0, T] \)

\[\lim_{n \to \infty} g_n(X) = \int_{D \times \{0\}} W(X - Y) dy - \chi_D(X) \]

and

\[\lim_{n \to \infty} h_n(X) = \int_{(\mathbb{R}^d \setminus \overline{D}) \times \{0\}} W(X - Y) dy - \chi_{\mathbb{R}^d \setminus \overline{D}}(X). \]

Proof. Let \(X = (x, t) \in \mathbb{R}^d \times (0, T] \) and \(t > \rho > 0 \). Applying (2.2) to \(A_n \times (0, \rho) \), we have

\[\int_0^\rho ds \int_{\partial A_n} \langle \nabla_y W(X - Y), n_y \rangle d\sigma(y) - \int_{A_n \times \{0\}} W(X - Y) dy + \int_{A_n \times \{\rho\}} W(X - Y) dy = 0. \]

Using the divergence theorem for \(A_n \) in \(\mathbb{R}^d \), we have

\[\int_0^\rho ds \int_{A_n} \Delta_y W(X - Y) dy - \int_{A_n \times \{0\}} W(X - Y) dy + \int_{A_n \times \{\rho\}} W(X - Y) dy = 0. \]

As \(\rho \to t \) and \(n \to \infty \), we obtain,

\[\lim_{n \to \infty} g_n(X) = \int_{D \times \{0\}} W(X - Y) dy - \chi_D(X). \]

On the other hand \(g_n(X) = 0 \) for \(t = 0 \). Hence \(\lim_{n \to \infty} g_n(X) \) exists for each \(X \in \mathbb{R}^d \times [0, T] \).

Similarly we can also prove the conclusion for \(h_n \).

\[\square \]

3. Double layer heat potentials

In this section we first prove Lemma 1.1 in §1.
Proof of Lemma 1.1 We use the extension operator \mathcal{E}_{0} in [S, p.172] and choose a C^{∞}-function ϕ_{0} such that

$$\phi_{0} = 1 \text{ on } B(0, R), \quad \text{supp } \phi_{0} \subset B(0, 2R) \quad \text{and} \quad 0 \leq \phi_{0} \leq 1.$$

We define

$$\mathcal{E}(f)(x,t) = \mathcal{E}_{0}(f(\cdot, t))(x)\phi_{0}(x)$$

for $f \in \Lambda_{\alpha}(F)$ and $(x,t) \in (\mathbb{R}^{d} \setminus F) \times [0,T]$ and

$$\mathcal{E}(f)(x,t) = f(x,t) \quad \text{on } (x,t) \in F \times [0,T].$$

Then properties (i), (ii), (iii) follow from the definition and (13) on p.174 in [S]. Since the operator \mathcal{E}_{0} is linear, positive and maps the constant function 1 to 1, (iv) is also valid.

In [W1] we gave the following lemma.

Lemma A. Let δ, k be non-negative numbers satisfying $d-\beta > \delta$ and $d-\delta-k > 0$. Then

$$\int_{B(z,r)} \text{dist}(y, \partial D)^{-\delta} |y-z|^{-k} dy \leq cr^{d-\delta-k}$$

for every $z \in \partial D$ and $r > 0$.

We next show that the double layer heat potential defined by (1.5) and (1.6) converges.

Lemma 3.1. Let $0 \leq \beta - (d-1) < \alpha < 1$ and $f \in \Lambda_{\alpha}(S_{D})$. Then Φf is caloric in $(\mathbb{R}^{d} \setminus \partial D) \times \mathbb{R}$.

Proof. Set, for $X = (x,t) \in D \times \mathbb{R}$,

$$(3.1) \quad J_{1}(X) = \int_{0}^{T} ds \int_{\mathbb{R}^{d} \setminus \overline{D}} \langle \nabla_{y} \mathcal{E}(f)(y,s), \nabla_{y} W(X-Y) \rangle dy$$

and let $X_{0} = (x_{0},t_{0}) \in D$. Choose $\rho > 0$ satisfying $\overline{B(x_{0},2\rho)} \subset D$. If $X = (x,t) \in B(x_{0},\rho) \times \mathbb{R}$, then we deduce from Lemmas 2.1 and 1.1 and Lemma A

$$|J_{1}(X)| \leq \int_{0}^{T} ds \int_{\mathbb{R}^{d} \setminus \overline{D}} \text{dist}(y, \partial D)^{\alpha-1} \delta(X,Y)^{-1-d} dy \leq c_{1} \rho^{-1-d} \|f\|_{\infty,\alpha}$$

whence J_{1} converges locally uniformly in D. We denote by g_{1} the integrand of the right-hand side on (3.1). Since

$$|\nabla_{y} \frac{\partial^{2}}{\partial x_{i} \partial x_{j}} W(X-Y)| \leq c_{2} \delta(X,Y)^{-d-3} \text{ and } |\nabla_{y} \frac{\partial}{\partial t} W(X-Y)| \leq c_{3} \delta(X,Y)^{-d-3},$$

we deduce from the above integrals that J_{1} converges locally uniformly in D.
we see that the integral of Lg_1 over $(\mathbb{R}^d \backslash \overline{D}) \times [0,T]$ also converges locally uniformly on D. Therefore J_1 satisfies the heat equation in $D \times \mathbb{R}$.

Next, set

$$J_2(X) = \int_0^T ds \int_{\mathbb{R}^d \backslash \overline{D}} \mathcal{E}(f)(y,s) \Delta W(X-Y)dy.$$

Using Lemma 1.1, (iii), we can show by the above method that J_2 also converges locally uniformly in D and satisfies the heat equation. Thus we conclude that $\Phi f = J_1 + J_2$ has the same properties in $D \times \mathbb{R}$. We can show that Φf also has the same properties in $(\mathbb{R}^d \backslash \overline{D}) \times \mathbb{R}$. \qed

Using Lemma 2.1, (iv), (v) and Lemma A, we can prove the following lemma by a similar method to that in the proof of [W1, Lemma 3.3].

Lemma 3.2. Let $0 \leq \beta - (d - 1) < \alpha < 1$ and $f \in \Lambda_{\alpha, \alpha/2}(S_D)$. Then both of the function J_1 defined by (3.1) and the function J_3 defined by

$$J_3(X) = \int_0^T ds \int_{\mathbb{R}^d \backslash \overline{D}} (\mathcal{E}(f)(Y) - \mathcal{E}(f)(X)) \Delta W(X-Y)dy$$

are are continuous on $\mathbb{R}^d \times [0,T]$. Furthermore the function J_1' (resp. J_3') obtained by replacing $\mathbb{R}^d \backslash \overline{D}$ with D in the definition of J_1 (resp. J_3) is also continuous on $\mathbb{R}^d \times [0,T]$.

Lemma 3.3. Let $0 \leq \beta - (d - 1) < \alpha < 1$ and $g \in \Lambda_{\alpha, \alpha/2}(\mathbb{R}^d \times [0,T])$ such that $g(\cdot, t) \in C^1(\mathbb{R}^d)$, $\text{supp} \ g(\cdot, s) \subset B(0, r_0)$ for every $t \in [0,T]$ and $\frac{\partial g}{\partial x_j}(x, \cdot)$ is bounded for every $x \in \mathbb{R}^d$. Let $X=(x,t) \in \mathbb{R}^d \times (0,T]$ and set, for $0 < \rho \leq T$,

$$A_{\rho}g(X) = \int_0^\rho ds \int_{\mathbb{R}^d \backslash \overline{D}} \langle \nabla g(Y), \nabla_y W(X-Y) \rangle dy$$

$$+ \int_0^\rho ds \int_{\mathbb{R}^d \backslash \overline{D}} (g(Y) - g(X)) \Delta_y W(X-Y)dy$$

$$+ g(X) \int_{(\mathbb{R}^d \backslash \overline{D}) \times \{0\}} W(X-Y)dy$$

and

$$B_{\rho}g(X) = - \int_0^\rho ds \int_D \langle \nabla g(Y), \nabla_y W(X-Y) \rangle dy$$

$$- \int_0^\rho ds \int_D (g(Y) - g(X)) \Delta_y W(X-Y)dy$$

$$- g(X) \int_{D \times \{0\}} W(X-Y)dy.$$
Then

\[A_T g(X) = B_T g(X) + g(X) \text{ for } X \in \mathbb{R}^d \times (0, T] \]

Proof. To simplify the notation, we use \(A_\rho(x) \) and \(B_\rho(X) \) instead of \(A_\rho g(X) \) and \(B_\rho g(X) \), respectively. We first show (3.2) in case \(D = D_0 \) is a bounded piecewise smooth domain. Let \(X = (x, t) \) and set, for \(0 < \rho < t \),

\[I_\rho(X) = - \int_0^\rho ds \int_{\partial D_0} g(Y) \langle \nabla_y W(X - Y), n_y \rangle d\sigma(y). \]

The Green formula for \(D_0 \) yields

\[I_\rho(X) = - \int_0^\rho ds \int_{\partial D_0} \langle \nabla g(Y), \nabla_y W(X - Y) \rangle dy \]

\[- \int_0^\rho ds \int_{D_0} (g(Y) - g(X)) \triangle_y W(X - Y) dy \]

\[- g(X) \int_0^\rho ds \int_{D_0} \triangle_y W(X - Y) dy \]

From (2.2) we deduce

\[\int_0^\rho ds \int_{D_0} \triangle_y W(X - Y) dy \]

\[= \int_{(\mathbb{R}^d \setminus \partial D_0) \times (0, \rho]} W(X - Y) dy - \int_{D_0 \times \{0\}} W(X - Y) dy, \]

whence

\[\int_0^t ds \int_{D_0} \triangle_y W(X - Y) dy = \int_{D_0 \times \{0\}} W(X - Y) dy - \chi_{D_0}(x). \]

This and (3.3) imply

\[I_t(X) = B_t(X) + g(X) \chi_{D_0}(x) \text{ for } X \in (\mathbb{R}^d \setminus \partial D_0) \times (0, T]. \]

Similarly, using the Green formula for \(B(0, r) \setminus \overline{D}_0 \) and \(r \to \infty \), we obtain

\[I_t(X) = A_t(X) - g(X) \chi_{\mathbb{R}^d \setminus \overline{D}_0}(x) \]

for \(X \in (\mathbb{R}^d \setminus \partial D_0) \times (0, T] \). This and (3.4) lead to

\[A_t(X) = B_t(X) + g(X) \text{ for } X \in (\mathbb{R}^d \setminus \partial D_0) \times (0, T]. \]
Noting that $A_t(X) = A_T(X)$ and $B_t(X) = B_T(X)$, we obtain (3.2) for $X \in (\mathbb{R}^d \setminus \partial D) \times (0, T]$. Since A_T and B_T are continuous on $\mathbb{R}^d \times (0, T]$ by Lemma 3.2, (3.2) holds for a bounded piecewise smooth domain $D = D_0$.

We next show (3.2) for a bounded domain such that ∂D is a β-set. We use (3.2) for $D_0 = A_n$. Since A_T and B_T are continuous on $\mathbb{R}^d \times (0, T]$ by Lemma 3.2, (3.2) holds for a bounded piecewise smooth domain $D = D_0$.

Since $\int_0^T \int_{\mathbb{R}^d} |\nabla g(Y)||\nabla_y W(X-Y)|dyds < \infty$, $\int_0^T ds \int_{\mathbb{R}^d} \|g(Y) - g(X)||\triangle W(X-Y)|dy < \infty$ and $\int_{\mathbb{R}^d \times \{0\}} W(X-Y)dy < \infty$, we see that (3.2) holds for the domain D as $n \to \infty$. \hfill \Box

Lemma 3.4. Let $0 \leq \beta - (d-1) < \alpha$ and $f \in \Lambda_{\alpha,\alpha/2}(S_D)$. Then (3.2) holds for $g = \mathcal{E}(f)$.

Sketch of Proof. Let $f \in \Lambda_{\alpha,\alpha/2}(S_D)$ and $\{v_m\}$ be a mollifier on \mathbb{R}^d such that $\supp v_m \subset B(0, 1/m)$. We define, for $Y = (y, s) \in \mathbb{R}^d \times [0, T]$,

$$g_m(Y) = (\mathcal{E}(f)(\cdot, s) * v_m)(y).$$

Lemma 3.3 yields

$$A_Tg_m(X) = B_Tg_m(X) + g_m(X) \text{ for } X \in \mathbb{R}^d \times (0, T].$$

Using $g_m(X) \to \mathcal{E}(f)(X)$ uniformly as $m \to \infty$ and Lemmas A, 1.1 and 2.1, we can show that

$$A_Tg_m(X) \to A_T\mathcal{E}(f)(X)$$

and

$$B_Tg_m(X) \to B_T\mathcal{E}(f)(X)$$

for $X \in \mathbb{R}^d \times [0, T]$ as $m \to \infty$. \hfill \Box

We can also show the following lemma.

Lemma 3.5. Let $0 \leq \beta - (d-1) < \alpha < 1$. Then the operator K defined by (1.7) is a bounded operator from $\Lambda_{\alpha,\alpha/2}(S_D)$ to $\Lambda_{\alpha,\alpha/2}(S_D)$.

Let us prove our theorems.
Proof of Theorem. Let $X \in D \times (0, T]$. Using Lemma 2.2, we have $\Phi f(X) = A_T f(X)$. Since $A_T f$ is continuous on $\mathbb{R}^d \times (0, T]$ by Lemma 3.2, we have

$$\lim_{X \to Z, X \in D \times (0, T)} \Phi f(X) = A_T f(Z).$$

On the other hand Lemma 3.4 yields

$$K f(Z) = \frac{1}{2} (A_T f(Z) + B_T f(Z)) = A_T f(Z) - \frac{1}{2} f(Z).$$

Therefore we have (1.8). Similarly we can show (1.9). \hfill \square

References

