A Non-Zero-Sum Repeated Game — Criminal vs Police

Minoru SAKAGUCHI* (始星高科大 坂口 実)

Abstract In this paper a conflict between a potential criminal offender and a law-enforcement authorities is studied. The model is a non-zero-sum n-period game with perfect information, where each player has to "act" at most a permitted times during the n periods. We formula the the game by dynamic programming and derive equiliblia of the four two-period games each in an explicit form depending on the parameter values of the game. It is shown that in equilibrium the offender is more pushed to making a crime, and the defender invests more effort in law-enforcement, both in the second period than in the first. The fact that the expected payoff to the offender is non-decreasing as his illeagal income coming from an unpunished crime increases, but the expected payoff to the dedender is not necessarily non-increasing, is also established.

1 Formulation of the Multistage Game — Criminal vs Police.

The game is played as a repeated game over n periods between a potential criminal offender (hereafter called a criminal, or player I) and a law-enforcement authorities (hereafter called police, or player II) Being a repeated game implies that the fundamentals of the game are the same in each period. There are two pure strategies available in each period to player I: to commit a crime (C) and to act honestly (H). Similarly, player II has two pure strategies: to enforce the law (E) or to do nothing (N) If player I chooses H he carns his leagal income r > 0 (dollars) If he Chooses C, illegal income in amount of $\pi > 0$, in addition to his legal income r, may be earned. However if I's crime is detected and arrested by II, I is punished by having to , and inprisoned until the end of the game. When pay a fine in amount of f > 0 caught in prison, I earns no income at all, of course.

If player II chooses E, with a cost of c > 0 (dollars), he can (cannot), catch 1's crime with probability $p(\bar{p}=l-p)$ In case that I commits crime that goes unpunished, a loss

of 1 >0 is inflicted upon society.

So a single stage of this game has the game tree as shown by Figure 1, and is represented by a bimatrix game with payoff bimatrix(1)

We assume that C < PL i.e. the strategy E for player II has a positive merit of choosing. This condition is very important as is seen in the proofs of the subsequent theorems.

We shall disacuss the n-stage game, where player I wants to commit crime at most k of n periods, and player II attempts to prevent I's illegal act by taking enforcement action at most m times during n periods. After each period is over, the outcome in that period becomes known to both players. The total payoff during n periods is the sum of the payoffs on each period. We assume that all of the above information is known to both players.

Figure 1. Game tree of a single stage

C: commit a crime

H: be honest

E: law-enforcement

N: do nothing

p: prob. of being punished

f: amount of fine

r(T): leagal(illeagal) income

to I (if unpunished)

c: It's cost of law-enforcement

l: social loss to II for

an unpunished crime

	(I)	
	E	N,
(1) (1) (2)	-pf+p(r+π), -(c+pl)	r+π, -l
H	r, –c	r, o

Let $\lceil k,m \rceil$ denote the game described above. (n,k,m) denotes the state of the system in which players I and II possess k and m times to take actions, respectively, and they have n periods to go as their "mission time." Let $(u_{k,m}(n), v_{k,m}(n))$ represent the equilibrium values of this non-zero-sum n-stage game $\lceil k,m \rceil$. Then the Optimality Equation of dynamic programming gives a system of equations

$$(U_{km}(n), V_{km}(n)) = Eg. Val.$$

(if the equilibrium values exist uniquely), with the boundary conditions:

(2a)
$$(u_{0,m}(n), V_{0,m}(n)) = (nr, o), \text{ for } 1 \leq m \leq n,$$

(2b)
$$(u_{k,0}(n), v_{k,0}(n)) = (nr + k\pi, -kl), \text{ for } l \leq k \leq n,$$

(2c)
$$(u_{0,0}(n), v_{0,0}(n)) = (nr, o), \text{ for } n \ge 1,$$

(2d)
$$u_{k,m}(v) = \nabla_{k,m}(v) = 0, \quad \forall k,m \geq 0,$$

(2e)
$$(u_{k,m}(n), v_{k,m}(n)) = (u_{k,m}(n), v_{k,m}(n)), \text{ with } k=k \wedge n, m=m \wedge n.$$

The four conditions $(2a) \sim (2d)$ imply that; (a) If II has m times of law-enforcement and his opponent has none of the opportunity of violation, then the decision-pair H-N is repeated throughout the whole period, (b) If I has k times of violating law and his opponent cannot do anything because of lack of budget, then I chooses C and H k and n-k times, respectively, during the n periods, (c) If both

players have any law-violation and law-enforcement intentions, the decision -pair H-N is repeated throu ghout the whole period, and (d) The problem with n=1 reduces to the bimatrix game with payoff matrix (1).

If release from prison and a second offense are not taken into account, we need not consider large n, and the optimality equation (2), with $(2\alpha) \sim (2e)$, can be, in principle solved by backward induction. The two-period games $\Gamma_{n,n}(n)$, $\Gamma_{n,n}(n)$, and $\Gamma_{n,n}(n)$, all for n=2, are explicitly solved in the subsequent sections 2,3,4 and 5, respectively.

Concerning the n-period games of the kind discussed in this paper, Sakaguchi [3] studies a zero-sum game of smuggler vs customs, and Dawid, Feichtinger and Jorgensen [1] and Sakaguchi [4] investigate non-zero-sum games, with k=m=n, the latter being related to full-information optimal stopping games. Also Kilgour [2] studies a zero-sum game with k=m=n, where the offender is not restricted to the two pure strategies and is asked to choose the "level of violation" $q \in [0,1]$ in each stage.

2. The Game $\lceil n, n \rceil$.

First we consider the case k = m = n, which is discussed by Dawid, Feichtinger and Jorgensen [1]. Let us simply write $\prod_{n=u_{n,n}(n)}$ and $\nabla_n = \nu_{n,n}(n)$. Then (2) becomes

$$(U_{n}, \nabla_{n}) = E_{q}.\nabla_{n}l. \frac{-pf + \overline{p}(r + \pi + \overline{U}_{n-1}), -(c + \overline{p}l) + \overline{p}\nabla_{n-1}}{r + \overline{U}_{n-1}, -c + \overline{V}_{n-1}} \frac{r + \overline{\pi} + \overline{U}_{n-1}, -l + \overline{V}_{n-1}}{r + \overline{U}_{n-1}, -c + \overline{V}_{n-1}}$$

$$= (\mathcal{D}_{n-1}, \mathcal{V}_{n-1}) + \operatorname{Eg.Val.} M_n$$

where M_n is a bimatrix

(4)
$$M_n = \frac{|\overline{p}(r+\pi)-p(t+\overline{U}_{n-1}), -(c+\overline{p}l+p\overline{V}_{n-1})| r+\pi, -l}{r, -c} r, -c$$

$$(n \ge 1; \overline{V}_0 = \overline{V}_0 = 0)$$

which is identical to (1) for n = 1.

The two theorems that follow are not new, and essentially reproduction of the main results in [1] but with more simpler description of the proofs.

Let $\pi_i = \left(\frac{p}{p}\right)(f+r)$. Then the solution to the game $\Gamma_{i,j}(1)$ is: Theorem 1. Case $0 < \pi < \pi$ $T = T_i$ T > T, x - y with (ZC+ ZH)-E $\frac{+r+\pi)}{\Box_{i}=r}$ Eq. play Y Ze[0,1] Eq. values

The mixed-strategy equilibrium is denoted by $x_i^* - y_i^*$ with $x_i^* = \langle x, \pi \rangle$ and $y_i^* \langle y, \overline{y} \rangle$. The strategy $zC + \overline{z}H$ means the mixture of the pure strategies C and H, with probabilities z and \overline{z} , respectively.

Proof We have $-(c+\beta l) > -l$, since we assumed $c < \beta l$. So by the circular rule of finding the eq. of 2×2 bimatrix game, which of $-\beta + \beta (r+\pi)$ and r is larger becomes important. Clearly $-\beta + \beta (r+\pi) \ge r$, if $\pi \ge \pi$. If $0 < \pi < \pi$, there is a mixed-strategy eq. x = -3, which together with the eq. values is found by solving $= -(c+\beta l) - c\overline{z} = -lz = \overline{l},$ $= -lz = \overline{l},$

$$\begin{cases} -(c+F) - c\overline{x} = -Lx = \nabla, \\ -(c+F)y + (c+\pi)y = r = U, \end{cases}$$
there is a numerator and C.F.

If $\pi > \pi_1$, there is a pure-strategy eq C-E.

Theorem 2 Let $T_2 = \left(\frac{P}{P}\right) \left(\frac{P}{P}\right) r$. Then the solution to the game $\Gamma_{2,2}(2)$ is:

Case	ο<π<π,	TI < T < Ta	$\pi > \pi_2$
Eq play	$\chi_z^{\nu} - y_z^{\nu}$ with $\chi = c/\rho l + c$ $y = \pi/\rho (f + 2i + \pi)$	メニーリン with	c-E
Eq values		$ \overline{V}_2 = -\frac{1}{p} + \overline{p} (r + \pi) + r $ $ \overline{V}_2 = -\left[\frac{c \mathcal{L}}{p \cdot (r + \pi) \mathcal{L}} + c + \overline{p} \mathcal{L} \right] $	$ \nabla_{2} = (1+\overline{p}) \left(+ \overline{p} \right) (1+\overline{p}) \left(+ \overline{p} \right) \left($

The solutions for the bordering cases $\pi = \pi$ and $\pi = \pi_z$ are omitted. The mixed-strategy equilibrium is denoted by $\chi_z^2 - y_z^2$ with $\chi_z^2 = \langle x, \overline{x} \rangle$ and $y_z^2 = \langle y, \overline{y} \rangle$.

Substituing the values of U₁ and V₁, which was found in Theorem 1, into M_2 in (4) we obtain the bimatrices

Since $0 < \pi < \pi = (P/\overline{p})(f+r) \Rightarrow \pi < (P/\overline{p})(f+2r) \Leftrightarrow \overline{P}(f+\pi) - P(f+r) < r$, the bimatrix (5₁)has the mixed-strategy solution and it is found, together with eq. values by solving

$$-\overline{p} |_{x-c} \overline{x} = -1 x = \nabla_z - \overline{\nabla}_i$$

$$\{\overline{p} (r+\pi) - p(f+r)\} \beta + (r+\pi) \overline{y} = r = \overline{D}_z - \overline{D}_i$$

and giving the result mentioned in the theorem (1st column of the table)

solving

 $-\overline{p}(c+\overline{p}l)x-c\overline{x}=-lx=\overline{V_2}-\overline{V_1}$ $\overline{p}(-\overline{p}l+\overline{p}(r+\pi))y+(r+\pi)\overline{y}=r=\overline{U_2}-\overline{U_1}$

and giving the result mentioned in the theorem (2nd column of the table) The pure-strategy eq. C-E for $\pi > \pi_2$ gives the eq. values

 $(\overline{U_2}, \overline{V_2}) = (\overline{U_1} + \overline{p} \{-pf + \overline{p}(r+m)\}, \overline{V_1} - \overline{p}(c+\overline{p} L)).$

which are mentioned in the 3rd column of the table in the theorem.

Hereafter we shall omit considerations about the bordering cases, where a continuum of equilibria in the first period and correspondingly in the whole game exist. Direct calculations show that the game value for the offender is continuous, non-decreasing in TT, and the game value for the defender involves the mixing parameter $z \in [0, 1]$ chosen arbitrarily by the offender.

In the game $\Gamma_{2,2}(2)$, $\pi > \pi_2$ means that committing a crime for I in the first stage has a positive profit in that stage since $\bar{p} \pi > p(f+2r+\bar{p}\pi-p(f+r))$. Theorem 2 implies

that I is not motivated to commit crime in both stages as long as $\mathbb{T} < \mathbb{T}_1$, the choice-pair C-E is in eq. in the first stage if $\mathbb{T} > \mathbb{T}_2$, and the intermediate situation arises if $\mathbb{T}_1 < \mathbb{T} < \mathbb{T}_2$.

- 3. The Game $\bigcap_{n}(n)$.
- 4 The Game $\prod_{n}(n)$.
- 5. The Game $\Gamma_{n,1}(n)$
 - 6. Remarks and a Numerical Example

1°) From Theorems 1 and 2, the two-period equilibrium play in the game $\Gamma_{2,2}(2)$ is as follows:

Case	Two-period eq play in $\int_{2,2}^{2}(2)$
$\pi > \pi > 0$	$\{x_{2}^{*}, x_{1}^{*}, y_{1}^{*}\}$ with $(x_{2}^{*}) = 9(pl+c), (y_{2}^{*}) = \frac{\pi}{p(f+2r+\pi)}$ and $(x_{1}^{*}) = 9(pl), (y_{1}^{*}) = \pi p(f+r+\pi)\}$.
π, < π < π.	
π>π _ε	{ C-E; C-E }

2°) For the game $\Gamma_{z,2}(2)$ we easily find, from Theorems 1 and 2, that $(\chi_z^*)_1 \leq (\chi_1^*)_1$ and $(\chi_z^*)_1 \leq (\chi_1^*)_1$ for all $\pi > 0$

This means that player I is more pushed to making a crime, and II invests more effort in law-enforcement, both in the 2nd period than in the 1st. From Theorems 4 and 5, the above is true in the games $\prod_{i,2}(z_i)$ and $\prod_{i=1}^{n}(z_i)$ also.

3) Throughout Theorems $2\sim 5$, the following fact is observed. As functions of $\pi>0$ the two-period eq.payoff U_2 for I is continuous and non-decreasing, but V_2 for II is piece-wise constant and not necessarily decreasing as π increases.

We give, by Table 2, a numerical example of the solutions to the four two-period games for the parameters $r = \frac{1}{2}p = \frac{2}{3}$, c = 1, f = 1 = 2 and therefore c < pL being satisfied and $\pi_1 = 5 < \pi_2 = 3$.

Table 2. Example of Solutions to the Five Games

				
Game	Case	Eq.play in the 1st period	Eq.payoffs	Based on
Γ, ₁ (1)	1	$(3/4, 1/4) - (\frac{3\pi}{2\pi + 5}, \frac{5 - \pi}{2\pi + 5})$	1/2-(-3/2)	0
	_ 2	C-E	(1/4)(211-7)-(-5/3)	Th.
[₃₂ (2)	. 1	$\langle 3/\eta, 4/\eta \rangle - \langle \frac{3 \text{ft}}{2(\pi+3)}, \frac{b-\pi}{2(\pi+3)} \rangle$	1-(-33/14)	
	2'	$\langle \frac{9}{22}, \frac{13}{27} \rangle \cdot \left\langle \frac{9\pi}{\$(\pi_{+1})}, \frac{8-\pi}{\$(\pi_{+1})} \right\rangle$	$(\sqrt{3})(\pi-2)-(-82/33)$	Th. 2
	2"	C-E	(1/ q)(2π-1)-(-20/9)	
17,1(2)	i	(9/11,2/11) - (3 11 , 2 11+4)	$\frac{3\pi^{2}+5\pi+b}{5\pi+b}-\left(-\frac{2}{11}\right)$	
	2	(45,15)-(211+5,211+6)	$\frac{2\pi^{2}+9\pi+11}{4\pi+11}-\left(-\frac{29}{15}\right)$	Th. 3
T _{1,2} (2)	1	$(3/4, 1/4) - (\frac{3\pi}{2(\pi+3)}, \frac{b-\pi}{2(\pi+3)})$	1-(-15/8)	
	2	$(3/4, 1/4) - (\frac{2\pi+5}{2(\pi+3)}, \frac{1}{2(\pi+3)})$	$(\frac{1}{3})(\pi-2)-(-\frac{23}{12})$	TR 4
T21(2)	1	$\langle 9/16, 7/6 \rangle - \langle \frac{3 \pi}{2(2\pi+3)}, \frac{\pi+6}{2(2\pi+3)} \rangle$	$\frac{3\pi^{2}+4\pi+b}{2(2\pi+3)}-\left(-\frac{21/8}{8}\right)$	
12,114	2	$(\sqrt{2}, \frac{1}{2}) - (\frac{3\pi}{2(2\pi+3)}, \frac{\pi+6}{2(2\pi+3)})$	$\frac{10\pi^{2}+13\pi-12}{6(2\pi+3)}-(-83)$	Th. 5
1.44				

(Case 1,2,2',2", means $0 < \pi < 5$, $\pi > 5$, $5 < \pi < 8$, $\pi > 8$, respectively.)

We can make sure that, for all $\pi > 0$

$$u_{1,2}(2) \leq \begin{cases} u_{1,1}(2) \\ u_{2,2}(2) \end{cases} \leq u_{2,1}(2), \quad \text{for } I,$$

and

$$v_{2,1}(2) \leq \begin{cases} v_{1,1}(2) \\ v_{2,2}(2) \end{cases} \leq v_{1,2}(2), \quad \text{for } \mathbb{I}.$$

Furthermore, we can check-that the facts mentioned in 3°) are true.

REFERENCES

- 1, H.Dawid, G. Feichtinger and S. Jorgensen, Crime and law-enforcement: a repeated
- game, to appear.

 2. D. M. Kilgour, Optimal cheating and inspection strategies under a chemical weapons treaty, INFOR, 28 (1990), 27-39.

 3. M. Sakaguchi, A sequential game of multi-opportunity infiltration. Math. Japonica, 33 (1994), 157-166.

 Optimal stopping games for bivariate uniform distribution
- Optimal stopping games for bivariate uniform distribution Math. Japonica, 41 (1995), 679-687.