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Abstract

In a controlled Markov set-chain with finite state and action spaces, we find a
policy, called average-optimal, which maximizes Cesaro sums of each time’s reward
over all stationaly policies under some partial order.

Analysing the behavior of expected total rewards over the 7-horizon as T" ap-
proaches oo under irreducibility condition, the average rewards from any stationary
policy are characterized.

Also, we investigate the left and right side optlmahty equations, by which the
existence of an average-optimal policy is shown. A numerical example is given.

Keywords: Controlled Markov set-chains, average reward criterion, a interval
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1 Introduction and notations

In standard Markov decision processes [cf.2,7,8,12], we treat the case that the transition
probability of the state varies in some glven domain at each time and its variation is
unknown or unobservable. '

For the sake of analysing such a case, Kurano et al [10] has introduced a new decision
model, called a controlled Markov set- cha,m based on Markov set-chains [3,4,5,6], and
discussed the optimization of the discounted expected rewards under some partial order.

In our previous paper [14], we have tried to find a policy, called average-optimal, which
maximizes Cesaro sums of each time’s reward under some partial order.

The main condition the authors imposed on was of uniformly scrambling type, under
which the dynamic programming operator for our model became a contraction in a span
seminorm. oo

The objective of this paper is to prove the same redults as [14] without unlformly

- scrambling condition Analysing the behavior of the expected total rewards over the T-
horizon as T approches co under 1rreduc1b1hty condltlon the average rewards ﬁom any
stationary policy are characterized.
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Also, we investigate the left and right side optimality equations, by which the existence
of an avera,ge-op{;imal policy is shown. Our proofis done by applying the results of Bather
[1] and the idea of policy improvement ( cf.[8] ). The proofs are omitted for the sake of
shrinking the page. :

We adopt the notations in [6,10,11].

Let R, R™ and R™*™ be the sets of real numbers, real n- dimensional column vectors
and real n x m matrices, respectively. We shall identify n x 1 matrices with vectors and
1 x 1 matrices with real numbers, so that R = R'*! and R® = R™*!. Also, we denote by
Ry, R? and R"*™ the subsets of entrywise non-negative elements in R, R* and R™*™,
respectively. , ' ' o '

We equip R™*™ with the componentwise relations <,<,>,> . For any A = (&),
A= (a@;) in R7*™ with A < A, we define the set of stochastic matrices, (4, A),

RS

(A, A) == {A]| A= (a;)is an n x m stochastic matrix with A < A < A4},
' Let - |
. M, ={A=(44) | (4, A) #0,A<Aand A A € R}Y"}.
The product of A and B € M, is defined by

AB:={AB| A € A, B € B}.

For any sequence {A;}2; with A, € M, (1 > 1), we define the multiproduct induc-
tively by , ~
AIAQ e Ak = (./41 . '.Ak_1)./4k (k‘ 2 2)

Denote by C(R.) the set of all bounded and closed intervals in R,.
Let C(R4)" be the set of all n-dimemsional column vectors whose elements are in

C(R4), i.e.,
C(Ry)" :={D = (D1, Dy,---, D) | D; € C(R+) (1<i<n)}

where d’ denotes the transpose of a vector d.
The following arithemetics are used in Section 2.
For D = (D1, D,,---,D,), E = (Ey,E,,---,E,) € C(Ry)", h € R} and X € Ry,
D+ E={d+e|deDeecFE}, \D={Xd|de€ D}and h+ D ={h+d|de D}
D= ([di,d1], -, [dy,dn])’, D will be denoted by D = [d, d], whered = (d;, - -,d,.)’,
d=(dy,+-,d,) and [d,d]={d|d € R",d < d < d}.
For any D = (Dy, Dy, -+, D,)" € C(R4)" and subset G of R}*" the product of G and
D is defined as :

GD = {gd| g = (gly"‘akgn) EG) d:‘(dl.r"':dn)l GD; di € Di (1 SLS Tl)}
The following results are used in the sequel.

Lemma 1.1 ([3,10])

(i) Any A € M, is a convex polytope in the vector space R™*".
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(i) }E:Olrdany compa(ct c;)nvex subset G C RY™ and D = (D1, Dy, -+, Dy,) € C(R4)", it
olds GD € C R+ .

We will give a partial order >,> on C(R4) by the definition :
For [c1,¢s], [d1, d2] € C(R4),

[c1,c2] > [dl,dz] if ¢ Z'di, cy 2 da,

and
le1, co] > [da, da] if [e1,¢5] > [dl,dz] and [c, c3] # [da, do).

For v = (v1,v3, - +,¥,)" and w = (w1, wa, - - -, w,) € C(R4)", we write
v>wifv; >w;, 1<1<n and v>w if U>w and v#w
Define a metric A on C(R;)™ by

Av, w) == meaxé(v,, w;)
for v = (v1,v2, -, Un), w= (w1, wa," -, wy) € C(R4)", where § is the Hausdorff metric
on C(Ry) and given by

6([a,b],[c,d]) :=la—c| V|b—d| for [a,b],[c,d] € C(Ry),

where z V y = max{z,y}.

Obviously, (C(R+)™, A) is a complete metric space.

A controlled Markov set-chain consists of four object; S, A, ¢; 7, r, where S = {1,2,

-,n}and A ={1,2, -, k} are finite sets and for each (i, a) € SXA g=q(-li,a) € Rlx”
7=q(-i,a) € RY*" Wlth g<gand(g,7) #0and r =r(i,a) a functlon on S x A w1th
r > 0. Note that A is used as the set in this section, different from that in the previous
section. We interpret S as the set of states of some system, and A as the set of actions
available at each state. '

When the system is in state 7 € S and we take action a € A, we move to anew state j €
S selected according to the probability distribution on S, ¢(-|¢, @), and we recieve a return
r(i, a), where we know only that g(-|7, a) is arbitrarily chosen from (g(-|3, a),q(-|7,a)). This
process is then repeated from the new state j.

Denote by F the set of functions from S to A. :

A policy 7 is a sequence (fi, f2,--) of functions with f, € F (t>1). Le't II denote
the class of policies. . o

- We denote by f* the policy (h;, hg, -) with h; = f for all ¢ > 1 and some f € F.
Such a policy is called stationary, denoted simply by f, and the set of statlonary policies
is denoted by Ilr.

We associate with each f € F the n-dimensional column vector r(f) € R% whose

)
ith element is r(i, f(i)) and the set of stochastic matrices Q(f) :=(Q(f), Q(f )) € M,,
),

where the (7, ;) elements of Q(f) and Q(f) are q(j|s, (7)) and g(jl%, f(d
and (Q(f), Q(f)) is already defined. .

For any m = (fi1, fa,--+) € II, let wq(7) = r(fl) and

vr(T) Z{T(f1) + Q17(f2) +- . + Q1Q2 - Qroar(fr)

respectively,
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1Q € Q(f)i=1,2-,T—1} (T>2). (L)

We observe, for example that »
va(r) = (1) + QUA) ((f) + QUr(f)

so that by Lemma 1.1 (i) vr(7) € C(Ry)" for all T > 1.
For any 7 € 11, let

o] .
v(r) = llﬁg}f f'uT(vr),‘ : (1.2)

where, for a sequence { Dy} C C(R4)",

liminf Dy := {:c € R"

k—o00

limsup 6;(z, Di) = 0} ,

k— o0

and 6;(z, D) = iglf) 52(z,y), 8, is a metric in R™. Since v(7) € C(R4)", v(m) is written as
y
v(m) = [w(r), v(7)].

Definition A policy f* € IIF is called average—optima,j if there does not exist f € Iz
such that v(f*) < v(f).

In the above definition, we confine ourselves to the'stationary policies; which simplifies
our discussion in the sequel. _ _

In Section 2, irreducibility condition for the class of transition matrices is introduced,
under which the interval equations concerning the average rewards are investigated.

‘In Section 3, the asymptotic behavior of vr(f) as T' approaches oo is obtained. And
in Section 4, the left and right side optimality equations are given and the existence of an
average-optimal policy is proved.

2 Assumption and preliminary lemmas
Hecéforth, the following assumption will remain operative.-

Assumption A (irreducibility) For any f € F, each @ € Q(f) is irreducible, i.e.,
Q" > 0 for some t > 1.

Obviously, if Q(f) is irreducible in the sence of non-negative matrix. ( cf.[13] ), As-
sumption A holds. ‘
The following facts about Markov matrices are well-known ( cf.[2,9] ).

Lemma 2.1 For any f € F, let Q be any matrix in Q(f).

(1) The sequence (I + Q@ + -+ + Q%)/(t + 1) converges as t — oo to a stochastic matrix
Q* with Q*Q = Q*, @* > 0 and rank(Q*) = 1. ‘

(ii) The matrix @* in (i) is uniquely determind by @*@Q = @ and rank(Q*) = 1.
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Associated with each f € F is a corresponding operator L(f), mapping C(R4)" into

C(R4)™, defined as follows.
For v € C(R4)",

Note that from Lemma 1.1, L( yJveC for each v € C(R4)".
v,

Putting v = [v,7] with v < 7, (2.1) can be written as

L(f)v = r(f) + Q(f)v.
(R4
€ R,

L(f)v = [L(f)v, L(f)7],
where L and L are operators, mapping R™ into R™, defined by :

L(fyv = r(f) + min Qv,

QeQ(f)

L(f)o = r(f) + max Qv.

QeQ(f)

and min (max) represents componentwise minimization (maximization).

Let e =(1,1,---,1).
Here, for any f € F, we consider the interval equation

r(f)+Q(fHh =v+h,

where v = [ve, e}, h = [h,h] € C(R)", u, TE€E R, h, h € R" withu <7

Obviously, (2.5) can be rewritten by

h = h
() + gmin, Qh=ve +

r + max E:ﬂe%—ﬁ
(f) QeQ(f)Q

whereg,UER,Q,EER”WithQSE,b_gﬁ.

(21

(2.2)

(2.3)

(2.4)'

(2.6)

(2.7)

(2.8)

Then, by a slight modification of the proof of Theorem 2.4 in Bather [1], we have the

following lemma.
Lemma 2.2 ([1]) The interval equation (2.5) has a solution.

For simplicity of the notation, let, for any d € R* and f € F,

Q(f,d) = {Q € Q(f)| Qd= min Qd}

QeQ(f)

and

Qs d) = {Q € 0()| @d= max Qd}

QEQ(f)

Lemma 2.3 For any. f € F, the interval equation (2.5) determines v uniquely and h

up to an additive constant [c;e, cze] with ¢1,c0 € R (c1 < ¢3).
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3 Asymptotic properties of vr(f)

In this section we study the asymptotic behavior of v7(f) as T — oo under Assumption ’
A- . . .
Throughout this section, we assume that Assumtion A holds.

For any g € C(R)" and f € F, the sequence {vr(f,g),T > 0} is defined as follows:

vo(f,9) =9 and

ua(f,9) = (1) + Qur() + -+ Qu- - Qooar(f)
+Q1QTg|Qz € Q(f):z': 17:T} (t > 1) (31)

Lemma 3.1 For any g € C(R)" and f € F, the sequence {vr(f,g)} satisfies that

Since the solutions v, ¥, h of (2.6)-(2.8) in Section 2 are depending on f € F, we will -
denote them respectively by v(f) = [u(f)e, 7(f)e] and h(f) = [&(f), h(f)]-

Lemma 3.2 For any f € F, it holds that

vr(f, h(f)) = To(f) + h(f) forall T > 0. | (3.3)

The following theorem is concerned with the asymptotic properties of vy (f) as T' — oo.

Theorem 3.1 For any f € F, there exists ¢, cs, ¢, b € R () <y cfy <cz)such
that : :

[(Tu(f) + cr)e, (TT(f) + cz)e} C vr(f) C[(Tu(f) + cr)e, (T(S) + c2)e]

for all T'> 0, (3.4)
where [a,b] = 0, if a > b.

Corollary 3.1 For any f € F, it holds

@ w(f) = (e, T(f)e]
and |
(ii) u(fle=Qr(f), T(fle=qr(f)

: : T-1 .
for any Q € Q(f,h) and Q € O(f,h), where Q* = }Lm %ZQt for Q € Q(f)
. oo» t=0
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4 Average-opimal policies

In this section, we give the existence theorem of an average-optimal policy under Assump-
tion A. ,

Let q(i,a) := (q(-|%, a), g(-]5,a)) for each i € S and a € A.

For each 71 € S and f € F, denote by G(4, f) the set of a € A for which

u(f) +A(f)i <r(1,0) + min Zq Jli, a)b(f);,

g€q(s, a)

where u(f) and A(f) = (A(f)1,- -, b(f)x) is solution of (2.6).

Let g € F be quch that g(d ) € G(i, f) for any i with G(3, f) # 0 and g(s) = f(3) for
any 1 with G(3, ) =

Then, we have the following.

Lemma 4.1 For any f with G(i, f) # 0 for some i € S, v(f) < u(g).

The following lemma is proved from the idea of policy improvement ( cf.[8] ).

Lemma 4.2 The left side optimality equatlons (4. 1) below determine v* uniquely and
h € R™ up to an additive constant.

9€q(ra) ;5

+h—m€aﬁc(r(z a) + min Zqﬂza ) (1 <1< n). | (4.1)
Let, for each z'-(l < i< n),

‘A,~ —argmax (r(z a) + min Zq 7li,a)h )

g€q(s, a)

For each 1 € S and f € F with f(:) € A; for all 1 € S, denote by G(3, f) the set of
a € A, for which

U(f)-i—ﬁ( i <r(i,a)+ n(ll?)’()Zq ili,a)h

where 7(f) and E(f) = (A(f)1, -, h(f)n) is a solution of (2.7). ‘
Using G(i, f) instead of G(i, f) and applying the same way as the proof of Lemma
4.2, we can prove the following. '

Lemma 4.3 The right side optimality equations (4.2) below determlne 7* uniquely and
h € R* up to an addltlve constant.

9€q(za) ;=

. 6*+7L—i=max( (7,a) + max Zq jli,a)h ) (1§i.§‘n). | - (4.2)
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Let, for each i (1<i<n),

q€q(s a)

Al = arg max (r(z a) + max Zq le a)h ) .

Then we have the following Theorem.

Theorem 4.1 Let f* be any policy with f*(:) € A* for all 1 € S. Then f~ is
average-optimal and v(f*) = [v"e,T"e¢]. \ '

Here we shall give a numerical example which illustrates Theorem 4.1.

For simplicitity, let gfj = q(j1,a), T = q(jli,a) and r(a) := (r(1,a),r(2,a)).
Consider the following controlled Markov set-chain model :

S ={1,2},A={1,2},

11 21
3 3 — 3 2
3 3 2 3
2 2 13
5 5 — 2 5
5 5 5 2

’ r(1) = (1,2) and r(2) = (1,2.1).
Then, the equation (4.1) which v* and h = (hy, h,)" is given as follows :
- 14 min{2h; + 1hy, 1h; + 1ho}
v* + h; = max . :
- ! 1+ mln{%hl + %h27 %b_l + %-@2}7
2+ min{ih; + by, 1hy + 1hy}

V" 4+ hy = max ¢
’ { 2.1+ min{2h; + 2hy, LAy + Lhs},

After a simple calculation, the solution of the above with 2; = 0 becomes that v* = 1.5
and A = (0,1)". Also, we easily find A; = {2} and A, = {1,2}.

Similarly, by qolvmg the equation which h; = 0, we get 7* = 23/14, h = (0, 15/14)', A
{2} and A% = {1}. So, by Theorem 4.1, f* w1th f* ( ) = 2and f*(2) = 1is average- opt1mal

and v(f*) =[(3/2)e, (23/14)e]
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