A New Parametric Method for Finding Efficient Solutions in Biobjective Shortest Route Problems (Decision Theory and Its Related Fields)

Author(s)
Furukawa, Nagata

Citation
数理解析研究所講究録 (1998), 1043: 107-113

Issue Date
1998-04

URL
http://hdl.handle.net/2433/62125

Type
Departmental Bulletin Paper

Textversion
publisher

Kyoto University
A New Parametric Method for Finding Efficient Solutions in Biobjective Shortest Route Problems

Nagata Furukawa (Soka University)

§ 1. Preliminaries

Denote the variables representing two quantities we want to minimize in the biobjective programs by \(x \) and \(y \). We call the coordinates plane having its orthogonal coordinates \(x \) and \(y \) the original plane, which is denoted by \(\mathcal{P} \). The points of the plane \(\mathcal{P} \) are written as \(a = (x, y) \) and \(b = (x', y') \), etc.

An order relation among the points of the plane \(\mathcal{P} \) is given by the usual manner. Namely, for two points \(a = (x, y) \) and \(b = (x', y') \), we write

\[
a \leq b \quad \text{iff} \quad x \leq x' \text{ and } y \leq y'.
\]

Let \(\Omega \) be a non-empty finite subset of \(\mathcal{P} \). We consider the optimization problem:

\[
(P_0) \quad \text{Minimize } a \text{ subject to } a \in \Omega.
\]

A point \(a \in \Omega \) is said to be an efficient solution to the problem \((P_0)\), if there is no point \(b \in \Omega \) such that \(a \geq b \) and \(a \neq b \).

For \(t \in (0, 1) \), define a \(2 \times 2 \) matrix \(G(t) \) by

\[
G(t) = \begin{bmatrix} t & 1 \\ t & -1 \end{bmatrix}.
\]

We call the matrix \(G(t) \) a transformation matrix, and \(t \) is called a transformation parameter. Trivially, the matrix \(G(t) \) is nonsingular for every \(t \in (0, 1) \). Let

\[
\begin{bmatrix} u \\ \alpha \end{bmatrix} = G(t) \begin{bmatrix} x \\ y \end{bmatrix}, \quad \text{for} \quad \begin{bmatrix} x \\ y \end{bmatrix} \in \mathcal{P}.
\]

The coordinates plane whose orthogonal coordinates are given by \(u \) and \(\alpha \) of (4) is called the transformed plane, which is denoted by \(\mathcal{H} \). The points of the plane \(\mathcal{H} \) are written as \(A = (u, \alpha) \) and \(B = (v, \beta) \), etc..

Proposition 1. Let \(a = (x, y) \) and \(b = (x', y') \) be two points of \(\mathcal{P} \). Let \(0 < t \leq 1 \) be arbitrary but fixed. Let \(A = (u, \alpha) \) and \(B = (v, \beta) \) be the points of \(\mathcal{H} \) transformed from \(a \) and \(b \) by the transformation matrix \(G(t) \),
respectively. Then the order relation $a \leq b$ is equivalently transformed to a relation on \mathfrak{H} as follows:

$$\begin{bmatrix} x \\ y \end{bmatrix} \leq \begin{bmatrix} x' \\ y' \end{bmatrix} \iff |\alpha - \beta| \leq v-u.$$ \hfill (4)

§ 2. An order relation on the transformed plane

Definition 1. Let $0 \leq \lambda \leq 1$ be arbitrary. For two points $A=(u, \alpha)$ and $B=(v, \beta)$ of the transformed plane, we define an order relation \leq^λ with the parameter λ by the following:

$$A \leq^\lambda B \iff \begin{cases} (i) & |\alpha - \beta| \leq v-u, \\
 & \text{or} \\
(ii) & 0 < \lambda(\beta-\alpha) \leq |v-u| < \beta - \alpha, \\
 & \text{or} \\
(iii) & 0 < v-u < \lambda|\alpha-\beta|, \\
 & \text{or} \\
(iv) & u=v \text{ and } \alpha < \beta. \end{cases}$$ \hfill (5)

The four cases in the right-hand side of (5) are exclusive one another. Let a and b be the points transformed from A and B, respectively, by $G(t)^{-1}$. Proposition 1, then, implies that the condition (i) in the right-hand side of (5) is equivalent to the relation $a \leq b$. This fact holds true regardless of the value of the transformation parameter t.

Proposition 2. For each $0 \leq \lambda \leq 1$, the order relation \leq^λ is reflexive and asymmetric on \mathfrak{H}.

Proposition 3. For any pair $A=(u, \alpha)$ and $B=(v, \beta)$ of points in the plane \mathfrak{H} and for any $0 \leq \lambda \leq 1$, either $A \leq^\lambda B$ or $B \leq^\lambda A$ necessarily holds.
Proposition 4. Let $0 \leq \lambda \leq 1$ be arbitrary, and let A and B be two points on \mathfrak{X}. For every positive number μ and every point C on \mathfrak{X}, then, it holds that

$$A \preceq^\lambda B \Rightarrow \mu A \preceq^\lambda \mu B \text{ and } A \pm C \preceq^\lambda B \pm C.$$

§ 3. Descent sequence on the transformed plane

Proposition 5. Let $A = (u, \alpha)$ and $B = (v, \beta)$ be two points on \mathfrak{X} satisfying that

$$u < v \text{ and } \alpha < \beta. \tag{6}$$

Then A is smaller than B with respect to the order \preceq^λ for every $0 \leq \lambda \leq 1$.

Definition 2. Let $\{A_i = (u_i, \alpha_i) ; i = 1, 2, \cdots, m\}$, where $m \geq 3$, be a finite sequence of points on \mathfrak{X}. Then the sequence is said to be descending to the right, iff it holds that

$$\begin{align*}
&\begin{cases}
 u_i < u_{i+1}, \\
 \alpha_i > \alpha_{i+1},
\end{cases} & i = 1, 2, \cdots, m-1.
\end{align*} \tag{7}$$

For a sequence $\{A_i = (u_i, \alpha_i) ; i = 1, 2, \cdots, m\}$ of points, if it holds that

$$\begin{align*}
&\begin{cases}
 u_i > u_{i+1}, \\
 \alpha_i < \alpha_{i+1},
\end{cases} & i = 1, 2, \cdots, m-1,
\end{align*} \tag{8}$$

then the sequence is, of course, descending to the right, by renumbering the index of points. But, in order to unify the numbering of points, when we speak of a sequence descending to the right, we suppose to imply the condition (7) but not (8).

We denote the gradient of the line segment connecting two points a and b on the original plane by γ_{ab}. Similarly, we denote the gradient of the line segment connecting two points A and B on the transformed plane by γ_{AB}.

Theorem 1. Let $\{a_i = (x_i, y_i) ; i = 1, 2, \cdots, m\}$, where $m \geq 3$, be a sequence of points on \mathcal{P} such that
\begin{align*}
& x_i > x_{i+1}, \quad i = 1, 2, \ldots, m-1. \\
& y_i < y_{i+1}, \quad i = 1, 2, \ldots, m-1.
\end{align*}

(9)

Suppose that
\[\gamma_{a_{i-1}} < \gamma_{a_{i}a_{i+1}}, \quad i = 2, 3, \ldots, m-1. \]

(10)

Choose \(t \) such that \(0 < t < \text{Min}\left\{ \left| \gamma_{a_{m-1}a_m} \right|, 1 \right\} \). Define \((u_i, \alpha_i)\), \(i = 1, 2, \ldots, m \), by
\[\begin{bmatrix} u_i \\ \alpha_i \end{bmatrix} = G(t) \begin{bmatrix} x_i \\ y_i \end{bmatrix}, \quad i = 1, 2, \ldots, m, \]

(11)

and let \(\mathcal{A} = \{ A_i = (u_i, \alpha_i) ; i = 1, 2, \ldots, m \} \). Then it holds that

(i) The sequence \(\mathcal{A} \) is descending to the right:

(ii) \(0 > \gamma_{A_{i-1}A_i} > \gamma_{A_iA_{i+1}}, \quad i = 2, 3, \ldots, m-1. \)

\section*{§ 4. Detection of efficient solutions}

\textbf{Definition 3.} For two points \(A = (u, \alpha) \) and \(B = (v, \beta) \) on \(\mathcal{H} \), if it holds that
\[|\alpha - \beta| > |u - v|, \]

(12)

then the points are said to be \textit{mutually nondominant}. For a finite sequence \(\{ A_i = (u_i, \alpha_i) ; i = 1, 2, \ldots, m \} \) of points on \(\mathcal{H} \), if every two elements of the sequence are mutually nondominant, then it is said that the sequence is \textit{mutually nondominant}.

\textbf{Proposition 6.} Let \(A = (u, \alpha) \) and \(B = (v, \beta) \) be points on \(\mathcal{H} \). Let \(t \in (0, 1) \) be arbitrary, and let \(a = (x, y) \) and \(b = (x', y') \) be the points transformed by \(G(t)^{-1} \) from \(A \) and \(B \), respectively. Then, \(A \) and \(B \) are mutually nondominant, if and only if, the relation
\[\begin{cases}
 x < x' \text{ and } y > y', \\
 \text{or} \\
 x > x' \text{ and } y < y',
\end{cases} \]

holds.
As we have stated in the preceding section, the order relation \leq^λ is reflexive and asymmetric but not transitive on the whole plane \mathcal{H}. However, it can be shown that if we restrict ourselves to the family of sequences which are mutually nondominant and descending to the right, then the relation \leq^λ is transitive on each of the sequences.

Theorem 2. Let $\mathcal{A} = \{ A_i = (u_i, \alpha_i) ; i = 1, 2, \ldots, m \}$ be mutually nondominant and descending to the right. Then the relation \leq^λ is a total order relation on the sequence \mathcal{A} for every $\lambda \in [0, 1]$.

Let M denote the set $\{1, 2, \ldots, m\}$. Throughout the remainder of this section, it is assumed that $m \geq 3$.

Proposition 6. Let $\mathcal{A} = \{ A_i = (u_i, \alpha_i) ; i = 1, 2, \ldots, m \}$ be mutually nondominant and descending to the right. Suppose that the relations
\[\gamma_{A_{i-1}A_i} \succ \gamma_{A_iA_{i+1}}, \quad i = 2, 3, \ldots, m-1.\] (13)
hold. For each $k \in M$, put
\[\lambda_{ki} = \frac{u_k - u_i}{\alpha_i - \alpha_k} \quad \text{for} \quad i \in M \setminus \{k\}.\] (14)
Then we have

(i) for each $k \in M$,
\[0 < \lambda_{ki} < 1 \quad \text{for} \quad i \in M \setminus \{k\},\] (15)
(ii) for each $k \in N$,
\[\lambda_{ki} = \lambda_{ik} \quad \text{for} \quad i \in M \setminus \{k\},\] (16)
(iii) for each $k \in N$,
\[\lambda_{ki} > \lambda_{k,i+1} \quad \text{for} \quad i \in M \setminus \{k-1, k, m\},\] (17)
(iv) $\lambda_{k-1,k} > \lambda_{k,k+1}$ for $k = 2, 3, \ldots, m-1$. (18)

Now, let $\{a_i = (x_i, y_i) ; i = 1, 2, \ldots, m\}$ be the whole set of efficient solutions to the problem (P_0). Without of loss of generality, we may assume that
\[x_i > x_{i+1}, \quad y_i < y_{i+1}, \quad i = 1, 2, \ldots, m - 1. \]

(19)

It is well known that if the efficient solutions \(a_i = (x_i, y_i), \quad i = 1, 2, \ldots, m \) satisfy the condition:

\[\gamma_{a_{i-1}a_i} > \gamma_{a_i a_{i+1}}, \quad i = 2, 3, \ldots, m - 1, \]

(20)

in addition to (37), then the solutions can be all detected by the usual scalarization method. In this paper, we consider another condition:

\[\gamma_{a_{i-1}a_i} < \gamma_{a_i a_{i+1}}, \quad i = 2, 3, \ldots, m - 1. \]

(21)

Theorem 3. Let \(\{a_i = (x_i, y_i); \quad i = 1, 2, \ldots, m\} \) be the whole set of efficient solutions to the problem \((P_0) \). Suppose the conditions (19) and (21) to be satisfied. Choose \(t \) such that \(0 < t < \text{Min}\{\gamma_{a_{m-1}a_m}, 1\} \), and define \(\mathcal{A} = \{A_i = (u_i, \alpha_i); \quad i = 1, 2, \ldots, m\} \) by (11).

Then the sequence \(\{\lambda_{ki}\} \) defined by (14) generates a partition of \([0, 1]\):

\[1 > \lambda_{12} > \lambda_{23} > \ldots > \lambda_{k-1,k} > \lambda_{k,k+1} > \ldots > \lambda_{m-2,m-1} > \lambda_{m-1,m} > 0, \]

(22)

such that, with respect to the order criterion \(\leq^\lambda \),

(i) \(A_1 \) is the smallest one among \(\mathcal{A} \) iff \(1 \geq \lambda > \lambda_{12} \).

(ii) for each \(k (2 \leq k \leq m - 1) \), \(A_k \) is the smallest one among \(\mathcal{A} \) iff \(\lambda_{k-1,k} \geq \lambda > \lambda_{k,k+1} \).

(iii) \(A_m \) is the smallest among \(\mathcal{A} \) iff \(\lambda_{m-1,m} \geq \lambda \geq 0 \).

\[\S 5. \text{Applications to biobjective shortest route problems} \]

We consider a directed network \((N, A, \Gamma) \), where \(N = \{1, 2, \ldots, N\} \) is a finite set of nodes, \(A \) is a set of arcs whose elements are ordered pairs \((i, j) \)
of distinct nodes, and $\Gamma = \{ \gamma_{ij} = (\gamma_{ij}^{1}, \gamma_{ij}^{2})^{T} \mid (i, j) \in A \} : \gamma_{ij} = (\gamma_{ij}^{1}, \gamma_{ij}^{2})^{T}$
denotes a biobjective distance attached to the directed arc (i, j). Node 1 is
assigned to a starting node, and node N to a terminal node.

Choose a transformation parameter t of an appropriate value, and transform
the original data by the matrix $G(t)$. Put

$$T_{ij} = G(t)\gamma_{ij}, \quad \text{for } (i, j) \in A.$$

Let $A(i)$ denote the set of terminal nodes of all arcs emanating from node i.

Definition 4. For two points $A = (u, \alpha)$ and $B = (v, \beta)$ on \mathcal{E}, we define
the relations \prec by

$$A \prec B \iff |\alpha - \beta| \leq v - u \text{ and } A \neq B.$$

Algorithm modified Dijkstra ;

begin
Choose: $\lambda \in (0, 1)$ arbitrarily;
$S := N$;
$d(i) := +\infty$ for each node $i \in N \setminus \{1\}$;
$d(1) := 0$ and $\text{pred}(1) := 0$;
while $S \neq \emptyset$ do
begin
$D := \{ j \in S \mid (\exists i \in S) (d(i) \prec d(j)) \}$;
$M := S \setminus D$;
let $i_{0} \in M$ be a node satisfying that $d(i_{0}) \leq^{\lambda} d(j)$ for $\forall j \in M$;
$S := S \setminus \{i_{0}\}$;
for each $j \in A(i_{0})$ do
if $d(i_{0}) + T_{i_{0}j} \leq^{\lambda} d(j)$ and $d(i_{0}) + T_{i_{0}j} \neq d(j)$ then
$d(j) := d(i_{0}) + T_{i_{0}j}$ and $\text{pred}(j) := i_{0}$;
end;
end.