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Abstract

This paper considers a generalized fuzzy random version of bottleneck spanning tree-
problem in which edge costs are fuzzy random variables. The problem is to find an optimal
spanning tree under chance constraint with respect to possibility measure of bottleneck
(maximum cost) edge of spanning tree. The problem is first transformed into a deterministic
equivalent problem. Then its subproblem is introduced and a close relation between these
problems is clarified. Finally, fully utilizing this relation, we propose a polynomial order
algorithm that finds an optimal spanning tree under two special functions.

1 Introduction

A spanning tree problem is one of the investigated important problem and many types of
spanning tree problems have been considered, especially it has many application to communi--
cation of computer network. Ishii,et.al [1] [2] have investigated a stochastic minimum spanning
tree problem that the costs of edge are assumed to be random variables. Itoh,et.al [3] have
proposed fuzzy version.

In actual systems, we are often faced with the case where there exist both fuzziness and
randomness. Then we introduce a fuzzy random variable to mathematical programming problem
in order to treat elements containing fuzziness and randomness simultaneously. -

So, this paper proposes a géneralizéd version of spanning tree problem, i.e., fuzzy random
bottleneck spanning tree problem, whose purpose is to find an optimal spanning tree under the
chance constraint with respect to possibility measure of bottleneck edge of spanning tree. In
other words, the problem is a fuzzy random version of [4]. :

Section 2 gives the definition of fuzzy random variables. Section 3 formulates the generalized
fuzzy stochastic bottleneck spanning tree problem and show that it is transformed into deter-
ministic equivalent problem P by using a result of stochastic programming. Section 4 introduces
maximum spanning tree problem P? with parameter g and derives the close relation between P
and P9, and shows that an optimal solution of P can be found from a certain subproblem P9.
Further utilizing this relation, Section 5 proposes an algorithm that finds an optimal spanning
tree under two special functions in a polynomial time. Finally, Section 6 concludes this paper
and discusses futher research problems.

2 Fuzzy random variable

The concept of fuzzy random variables was introduced by Kwakernaak [5]. Puri and Ralescu
[6] have established the mathematical basis of fuzzy random variables. There are many defini-
tions of fuzzy random variables. N.Watanabe [7] gives simple but universal definition for fuzzy
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-random variables, which are useful in applications. In this paper, we choose it as definition of
- fuzzy random variables.

Definition 1 [7]

Let (Q, B, P) be a prababzlzty space and (A, By) a measumble space, where Q is a set, Lambda
is a fuzzy set, Bg and By are o—algebras, and P is o probability measure. A fuzzy random
variable X is a measurable mapping of ) mto A. Thzs means thaot {w|X(w) € A} € Bq for
arbitrary A € By. :

The following theorem is sufficient conditions for Definition 1.

Theorem 1 [7] , v

Let ¢ be -a measurable mapping of a probability space (22, B, P) into o measurable space
(T, Br) and X a mapping of ) into A. If there erists a bijection h : A — T', then there erists
a measurable space (A, By), and a mapping X of (Q, B, P) into (A, By) is a fuzzy random
variable. C e o

Theorem implies the next corollary immediately.

Corollary 1 [7]
Let X be a mapping of Q) into A. Suppose that, for Vw € Q, the membersth functzon Kx(w) of
a fuzzy set X (w) can be represented as pux(,)(u) = f(u; x(w)) for some function f(u;0), where
0 is a parameter vector such that 01 # 0 implies f(u;01) # f(u;02). Then X is @ fuzzy random
variable.

If the membership function of a fuzzy set X is determined by the location parameter z and if
is a random variable, then X is a fuzzy random variable from corollary. Conditions in corollary
is fairly restrictive , but useful in applications. The hybrid number given by Kaufmann and
Gupta (8] is such a fuzzy random variable. ‘

3 Problem Formulation

Let G = (N, E) denote undirected graph coﬁsisting of vertex set N = {v1,v2,--,vn} and
edge set = {e1,ez, --,em} C N x N. Moreover cost c; is attached to edge eJ Spannmg tree
T=T(N,S)ofGisa partlal graph sa,tlsfymg the following condltlons

1. T has a same vertex set as G.
2. |S| =n — 1 where |S| denotes the cardinality of set S
3. T is connected.

T can be denoted with 0 — 1 variables z1, 3, . ..,z as follows.

T : zi=1 €S
z; =0 e,&’S

Conversely, if {e;|z; = 1} becomes a spanning tree of G Wlth vertexset N, X = (z1,22, +,Zm)
is also called spanning tree hereafter in this paper.

- The ordinary minimal spanning tree problem is to seek a spanning tree X m1n1m1z1ng ZJ 1C5Zj.
As is easily shown, the bottleneck spanning tree problem that seeks a spanning tree X minimizing
max{cj|lz; = 1} is equivalent to the minimal spanning tree problem by using some greedy—type
algorithm. i : ‘
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" We consider the construction of a communication network that connects some cities directly
or indirectly. If each communication. quantity per unit time between one city and another is
constant, the problem of minimizing maximal capacity necessary for handling these quantities
becomes a bottleneck spanning tree problem. In reality, however, there is a situation where these
quantities vary randomly with time and experts can estimate these quantities approximately.
In such a case, these quantities can be considered as fuzzy random variables. Then optimal
connecting pairs of cities and capacity are to be determined under the condition that the prob-
ability that the possibility measure with respect to these quantities exceeds a certain value is
greater than or equal to a satisficing level. This problem may be formulated as the problem to
find an optimal spanning tree under a certain chance constraint. In other- words the problem
to be considered is a discrete fuzzy random programming problem. o
Suppose that c; is a fuzzy random variable characterized by the following membership function

fie;w)(ci) = max {0, L (Ez‘_éz_@l)}

where each d@(w) is assumed to be dlstrlbuted according to- the normal distribution ‘N (,uJ, 2)
with mean yp; and variance aj and they are mutually independent.
L(-) is a reference function satisfying the following conditions:

(a) L(—t) - L(t) for any ¢t € R.
) L) =1if t=0 |

(c) L(-) is nonincreasing on [0, 4+00).

(d) Let to = inf{t > O|L(t) = 0}, then 0 < tg < +00 (to is called the zero point of L).

The less each cost of minimal spanning tree is, the better it is. So we set the fuzzy goal “each
_cost of minimal spanning tree is roughly smaller than f1”, and we give the possibility measure
of the fuzzy goal as follows, ’

e, w)(G) = sup min{pc,w)(e), ka(ci)}

As pc;(w) Is a random variable, so I1¢;(,)(G) is .
Hereafter, we set L and ug to the following linear functions.

e = 1-]%
1 (ci < f1)
pa(ci) = ;;:J; (fi<e< fo)

(e > fo) -

Then we propose the following problem Py, which is a chance constrained programming.

Py: Mazimize h+ g( )
1

subject to Pr[mm{l’[cz(cz)|e, es}> h] >a, o> 3

where g(a) is a differentxable and nondecreasing function of a. We set level o of the chance
" comstraint to I > a > % The above chance constraint is transformed into the deterministic
equivalent one as follows.
Pr[min{Il, (u,,)(cl)le1 €T}>hl>a & Pri{alllg, (L‘,)(cz)le1 eT} > h]
< He1 TPT(HCqL(w)(CL) > h’) 2a
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¢, w)(ci) > h implies ‘ ,
| sup min{uc;wy(c), nele)} = h
i “Uewylc) 2 h, pgle) > h”
Far(t (“’)) >h, pale) > W
et “ci > di(w) = L*(h)Bi, ¢ < ug(h)”
& di(w) - L* (M6 < pg(h)

where ua(+)isa nondecreasmg upper-semi continuous functlon and, uG( ) and L*( ) are pseudo
inverse functions. '

T ¢ ¢

»L*(h) = to(l—h) ' (D)
ugh) = h(fr— fo)+ fo o (2)

Since Pr(di(w) < L*(h)B; + ug(h)) = Pr{(d; i(w) — pi)/oi < (L*(h)Bi + us(h) — wi)/oi] and
(di(w) — wi)/o; is ‘a mutually independent random variable distributed according to a standard
normal distribution N(0,1), :

I,crPr(di(w) < L* ()6 + p(h)) > & & HeerF (L*(h)ﬁ" +a“5(h') - ““') > q

& Y log <L* (M)Bi + ug(h) — M.)-Zloga

e; cT . 0-1

o Zl (L*(h ,BL +Mg(h) .Ufz) i > lOgOé

(X}

where F' denotes the distribution function of N (0 1). Thus P() is equlva,lent to the following
problem P;. . .

Py:  Mazimize h +g( )

*
subject to ZlogF (L (h)B: + MG( )= ) z; > loga
i=1 gi .
1-
1>2a> =
azg |
zi=00r1, i=12,...,m, X = (z;): spanning tree.

Putting (1) and (2) into the above constraint, P; becomes the following problem P;.
Py:  Mazimize h+g(a)

i=1 Ti
1
1>a> -
“=3
zi=0o0rl, i=12,...,m, X = (z;): spanning tree.

Set A = —h, we consider the following P instead of P;.
P:  Minimize \- g(a)

subject to ZlogF (

i=1

(f f1+,81t0)+:61,t0+f0_ﬂ'1

0j

) i > loga

1
1>2a> -
_04_2

zi=0or 1, i=12,...,m, X = (x;) : spanning tree.
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Of course, the optimal solution h* of P, is equivalent to the optimal solution —\* of P. -

4 Subproblem P? and Its relatlon to P

In order to solve P, consider the followmg subproblem Pq with parameter q.

P?: M a:mmzze '
Zl ( f1+161t0)+,61t0+f0"‘/~"1> i
aj
~subject to
zi=0o0r1, i=12,. ,m, X spanmng tree.

For notational convenience, we define ci(q) = (¢( fo - fi+ 5Lt0) + Bito + fo = 1)/ 0. ci(q)
is an increasing function of ¢ since fo > fi, and tg, B;, o3 > 0. P? is the ordinary maximal
spanning tree problem with edge cost log F(ci(g)) and can be efficiently solved by algorithms
that have been proposed so far. X9 denotes an optimal solution of P? and Z, the optimal value
of objective function.

Property 1 _
Zq is an increasing function of q.

Proof
For ¢1 < ¢q, from the optlmahty of X%,

Zg ZlogF ci( qz))a:q2 > ZlogF ci(ge))z?
=1 i=1-

> Zlog F(ei(q)z!" = Zg,
=1

where the last inequality follows from the monotonicity of F(c,(q)) thh Tespect to g
Further let (X*, \*, &*) denotes an op‘mmal solution of P. = -
kTheorem 2

v1. Zq > loga* © N<yq,

2. Zy=loga* « \* = q,

3. Zg< loga*_H 2> g,

Proof. . ‘

Clearly Z, is a continuous function of q.

(1)— . ;

If Z, =Y 12 log F(ci(g)xf > loga then from the continuity and monotomclty of log F(+),

ZIOg Fleq q))xq > ZF ci( ql))xq > lorra

holds for ¢1.< g sufficiently close to g. The above relatlon shows (X ,q1, @) is feasible for P,
that i Is, q>q1>/\* :
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(1)< ‘
-From the monotonicity of F(c.,(q)) and fea51b1hty of (X * A, *),

log a* < Zlog F(ci(A\*))z} S Zlog F(c,-.(q))xz‘ < Zg
=1 : i=1 o

(3)—
First, note that .
m m-
Zlog a* > 73> Zlog F(ci(9)z}
i=1 i=1 :

The above relation, monotonicity of F(c;(q)) and feasibility of (X*, \*, a*) show \* > q¢.
(8)«— This is clear from the optimality of \*. S
(2) Proof is automatically done after (1) and (3) are shown. S

By theorem 2, the feasible solutions (X9, ¢, a) satlsfymg i 1logF(c1( Nzd = loga
include. an optimal solution (X* \* o*). Now, let t = loga, that is, a = €', then t =
>y log F((c,(q))xq holds from the above observation. Then '

di_ ZF(‘" 0) Jo=fi+Bito y _ Zexp[—%{qum fo-fitBilo

dg @) @& & Flal) Voro, T
Pt P f (@) (@ @F (@) + £ (@) (fo= fitBito)? 4o
dg? J; T F(al)? ( o ) 1<0

~ since ci(g) > 0 from the condmon I1F;(ci(g)) > o > 3. That is, t is the concave function of g
Now we substitute o = € into g(a) and let h(t) = g(et) Further, let.

wg)=g-g(a)=g-v(t)=q-v (Z log F (ci(q)) x?)
j=1 |

Thus we seek ¢* minimizing u(q) and then (X*, ¢*, &) becomes an optimal solution of P where
& is the value of o corresponding to ¢*, i.e., g(&) = u(q*) — ¢*. By the chain rule,

du _ | dvds

dg dt dq

d*u B dvd?t  d*v /dt\?
d? _EW—Y#_Z(d_q)

Cross points of c;j(¢g) and c;(g) are defined by g;;. Then

Bito+ fo—p;  Bito+ fo— i

_ Oy . O
Y - fA+Bite  fo— it Bt
i , o

vx — Br — fo
fo— f1+ Beto

s is the dlfferent number of such g;;. Combining the above results, if dv/dt > 0 and d?v/dt? < 0, u
is a convex function of ¢ in each subinterval and endpoints of subintervals g5, gj+1], 7=0,...,s

, while, in the endpoints of subintervals or the point q such that (dv/dt)(dt/dg) =1 mcludes the
optlmal value of ¢,q¢*. In the next section, we investigate two special types of ¢(a) satlsfymg

the convexity of u(q).

satisfy q;; > max and let the results be —1 = ¢gg < g1 < -+ - < g5 < ¢s41 = 0 where
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5 Some typical cases of g(a)

In this section, we investigate two special cases of g(a), that is, g(a) = yloga and g(a) =
—~v/a in these case 7 is a positive constant. These cases are especially given as example which
can be solved easily. ' :

5.1 CASE g(a) =7vloga

In this case, u(q) = q — vloga = (j— ~t. For each subinterval [qk—1, 9, k= 1,... ,s,vand the
subinterval [gs, 00), u(q) is described as follows. :

q) =q- WZIOgF(Cz(Q)) 9 g€lge-nal k=1,...,s

u(q) = N |

Usp1 =g — 72 log F (ci(q)) ¥, ¢ € [gs,00)
4 = ‘

By differentiating u(q) in each subintérval,

, ’ 2 2,
du o ,dt d“u — "t >0
dg Tdq " dg? dg?

since d2t/ dg® < 0 and v > 0. That is, u(q) is a convex function of ¢ in each sublnterval Thus,
possible candidate points minimizing u(q) are g1, ...,qs or the points such that dt/dq = 1/.

Property 2
In each subinterval, there ezists at most one point satisfying dt/dq =1/ 7

Proof
Note that it is clear

— f1+ Bjt
dq ZF(CJ (9)) fo— f1+ Bjto 4
J=

, cile)) oy K
‘is a decreasing function of ¢ in each subinterval. As is easﬂy shown," dt/dq has a posslble
discontinuity at qi,...,¢s. Thus we obtain the following solutlon procedure:.

1. Find all cross points ¢y, . ..,qs. Then calculate left; and right derivatives of dt/ dq, that is,
L = dt/dqlg,—0, R = dt/dq|q,+0 at each ¢, 7 =1, ...

2. Find the subintervals [gy, ¢r4+1] such that R, > 0 and Lr+1 < 0 and find the pomts qy
satisfying dg/dt = 1/ in these subintervals.

3. Let Qy = {q} {dt/dq = 1/~}. Compare u(q}), ¢} € Q7 and u(q,‘c), k= 1; ..., s and choose
the minimizer ¢* of u(-) among g€ QU {ql, .+1qs}.. Then (X7 ¢*,t(¢*)) is an optimal
solution of P. ‘

Theorem 3 :
The above procedure finds an optimal solution of P in at most O(m®logm) computatzonal
time if g} can be found in ot most O(mlogm) computational time.

Proof , : L
The validity is clear from the above discussion.
(Complexity) Calculation of g1, ...,¢s takes at most O(m?logm) computational time because

there exist at most O(m?) cross points of ¢;(q) = ¢j(g), i < j < m, and sorting them takes
O(m?) and the complexity of the spanning tree algorithm is O(mlog m). |Q] is at most O(m?)
and Ly, R, can be caluculated in O(m) Thus, the total complex1ty is O( 2) - O(m logm) =
O(m?logm).
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5.2 CASE g(a) = —/a

In this case, o
| | ug) =g+ —=g+ye” |
For each subinterval [q;c 1 qk] k =1,...,s, and the subinterval [gs;00), u(q) is described as
follows:
1
up(q) = ¢+ e ere q€ [qr-1, &), k=1,...,s
u(g) = (¢i(9)

| us+1(Q):q+7Hej€T‘1 @) qe[qs,oo)

where 7' is the maximum spanning tree correspondmg to ¢, that is, Ie;eral/F(cs(q)) is the
product of F(c;(q)) for z] =1, i.e, the jth element of X? = 1. By dlﬂerentlatlng u(q) in each
subinterval,

du Lt Py dt d?t
— =1=qe? = —>0
dg " dg A <dq> ’

“since d?t/dq?® < 0 and vy > 0. In this case, u(g) is also a convex function of ¢ in each subinterval.
But, different from the case in subsection 4.1, possible candidate points minimizin’g u(q) are
q1,---,9s or the points such that dt/dq = 1/'7)6 Let w(q ) = dt/dq — (1/7) . Then the
following property holds:

Property 3
In each submte'r'val there exists at most one point satisfying u(q) = 0.

Proof
In each subinterval,

As is already mentioned, dt/dgq has a possible dlscontlnulty at ql, s s Thus we obtain the
following solution procedure S :

1. Find all cross points qi, .. .,¢s (0 < ¢g; < 1). Then calculate

Lp= lm w(q) and R,= Jim w(g)

ateach ¢, r=1,...,s.

" 2. Find the subintervals [gr, gr4+1] such that R™ > 0 and L™*! < 0 and find the points §
satisfying w(g) = 0 in these subintervals. :

3. Let Q = {grlw(dr) = 0}. Compare u(d;), ¢» € Q and u(gx),k = 1,...,s, and choose
the minimizer ¢* of u(-) among ¢ € QU {q1,...,¢s}. Then (X7, ¢*, ¢(¢*)) is an optimal
solution of P. |

Theorem 4 , : -
The above procedure finds an .optimal solution of P in at most O(m3 logm) computational
time if ¢, can be found in at most O(mlogm) compurational time. e

Proof :
The validity is clear from the above discusstion. Calculation of q,- - -, s takes O(m?logm)
computational time as is shown in the proof of Theorem 3. Thus the maximum spanning tree
problem to be solved is O(m?logm). |Q| is at most O(m?) and L”, R" can be calcilated in
O(m). Thus, the total complexity is O(m?® logm). '
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6 Conclusion

We have considered a generalized fuzzy random bottleneck spanning tree problem. However,
we proposed have solution procedures for only two special cases. So it is better to consider
more general types of g(a). Furthermore fuzzy random costs are not necessarily independent.
Besides, we should try to extend the idea in this paper to other fuzzy random combinatorial
optimization problems. Co :
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