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Possibility Analysis and Its Applications
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1. Introduction

The theory of possibility has been proposed by Zadeh [1], where fuzzy variables are assocxated with
possibility distributions in the same way as random variables are associated with probability distributions
[2]. The possibility measure and its dual measure call the necessity measure play important roles in
establishing the possibility theory [3]. Condition possibility distributions have been defined in different
forms in [4,5]. In [4], the consistency among joint, conditional and marginal possibility distributions is
considered. In {5}, a conditional possibility is obtained as an interval.

On the other hand, Dempster. [6] introduced upper and lower probabilities, which do not satisfy the
additivity, and Shafer [7] has interpreted Dempster’s work as a theory of evidence. The possibility and
necessity measures are special kinds of belief and plausibility measures discussed in [8]. In Dempster-
Shafer Theory, the evidence is represented by the basic probability assignment, and the combination rule

. of evidence is discussed. The theory is applied to obtain a certainty factor in chaining syllogism as a
belief interval associated with the composition of chained rules [9].

This paper studied a certain form of evidence theory by exponential possibility distributions. Because
possibility distributions are obtained from an expert knowledge, a possibility distribution is regarded as a
representation of evidence in this paper. A rule of combination of evidence is given similar to Dempster’s
rule [6]. Also, the measures of ignorance and fuzziness of evidence are defined by a normality factor and
the area of a possibility distribution, respectively. The measures of ignorance is similar to the weight of
conflict by Shafer[7], and the measure of fuzziness is the same as one defined by Kaufman and Gupta
[10]. Next, marginal and conditional possibilities are defined from a joint possibility distribution, and it is
shown that these three definitions are well match to each other. Thus, the posterior possibility distribution

' is derived from the prior possibility distribution in the same form as Bayes’ formula. This fact means that
an information-decision theory can be reconstructed from the viewpoint of possibility distributions.
Furthermore, linear systems whose variables are defined by possibility distributions are discussed. It
shows that the operations of fuzzy vectors defined by multidimensional possibility distributions are well
formulated using the extension principle of Zadeh [11]. '

As applications of possibility analysis, possibilistic regression [12, 13] and possibility portfolio
selection [14,15] are formulated in this paper. In regression analysis, it is assumed that regression models
are possibilistic linear systems defined by exponential possibility distributions. Thus, the problem of
possibilistic regression is to determine an exponential possibility distribution of parametric vector in a
model, which reflect the scatting of the given input-output data. In other words, the spread of the given
data is transformed into the possibility distribution of the parametric vector in the model.

In portfolio selection problems, it is assumed that security data have associated with possibility grades
given by experts. Those data can be described as two types of exponential possibility distributions. In

~other words, the upper and lower possibility distributions can be identified. Thus, we propose two types
“of portfolio selection models based on two types of distributions.

In numerical examples of two problems mentioned above are shown in this paper to illustrate our
proposed methods.

2. Possibility distribution and its properties
An exponential possibility distribution is regarded as a representation of evidence in this paper. A kind
of evidence is represented by an exponential possibility distribution as

IT1,(x) =exp{-(x—a)' D, (x—a)}, ¢))]
where the evidence is denoted as A, a is a center vectorand D, isa symmetrical positive definite matrix.
The parametric representation of A is written as follows. ‘

A=(a,D,), @

It should be noted that II,(x) is normal, that is, there is an x such that TI,(x)=1. Let us assume

that A’ isnot normal. Thus, A’ is given as



I, (x) =cexp{-(x—a)' D, (x—a)}, Co ' , 3)

where O<c<1. _
Definition 1: Let a measure of ignorance of A' denotedas I(A') be defined by
I(A)=-logc : ()]

It can be seen from Definition 1 that the poss:blhty distribution given by (1) has no ignorance. The
possibility distributions expressed by (1) are dealt with throughout this paper. Thus, given the evidence

A expressed by (3), A" should be normalized to obtain a normal possibility A with I(A), ie.,
n,x)=I,x)/c; I(A)=-logc. ’ 5)
Thus, it should be noted that the given evidence A’ is denoted as IT,(x) with I(A). |
Definition 2: Let a measure of fuzziness of A denoted as H(A) be defined by

H(A) = [exp{-(x-a)'D,(x - a)dx 6)
The characteristic of an evidence A can be represented as
- {(@,D)),,1(A),H(A)} : @)
It follows from the definition (6) that v , .
iy HA) =z"*ID," I'?, ®)
ii)If D, 2D, >0, H(A)S H(B). S ()]

Let us deﬁne a combination rule of possnblhty distributions from a similar view to Dempster’s rule [7].
Definition 3: Let A ©A, denote the combination of possibility distributions A, =(a,,D,), and

A, =(a,,D,), . Then the combination rule is defined as,

Maeay =HI, -T1,, 10)
where k is a normalizing factor such that
maxl'[u%)(x)=1 ’ an

It is clear from Definition 1 that the measure of ignorance of A, ® A2 is given by
I(A ® A) =logk, 12)
~ which is similar to the measure of conflict defined by shafer [7]. I(A4 @A ) can be regarded as the
wetght of conflict between A, and A,.

In order to obtain IT e, ,(X), we must solve the optimization problem described in the left-hand
side of (11). Thus, we have

x" =(D,+D,)"(D,a, +D,a,)" : ) (13)
Substitute x” into (10), we have o
kexp{-p}=1,
where
p-—(D a, +D,a,) (D, +D,)"(D,a, +D2a2)+a D,a, +a;D,a, : (14)
Thus, we have , ,
k =exp{p}. _ ' 15)
Subsututmg k into (10) ylelds : .
I, o0, (X)= ((D +D,)"'(D,a, +D;a,),(D, +D2)) . - ‘ (16)
From (15), the measure of ignorance of A, © A, can be written as
I(A®A)= a'D,a, +a'D,a, —(Da +D,a,)'(D, +D,)"'(D,a, +D,a,) an

In general, the possibility distribution of A, ®---@ A, can be obtained in the following theorem.

Theorem 1: The combination of n possibility distributions 4;, i=1,...,n can be represented as the
following exponential possibility distribution.
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A,ea BA = (():D,)"‘(;lD )gDa),- " - as)
The measure of ignorance of AD---DA is
I(4®--®4)=3aDa,-($Da )(ED)“(zDia) - (19)
i=1 i=1

i=1

The measure of fuzziness of A ®---® A, is
H(A ®-®A4)=1" (5D, 1. | 0)

i=1
Marginal and conditional possibility distributions are defined from the- given joint possibility
distribution. It is shown that these definitions are well matched to each other from the .viewpoint of the
given joint possibility distribution.
Let an exponential joint possibility distribution on the (n+m) dimensional space be

D,
I (x, )=exp{—(x—a,,y - az)‘[ J(x a,y-a,)}, ‘ (21
D, D
where x and y are n and m dimensional vectors, respectlvely, a; and a, are center vectors in # and m
dimensional spaces, i.c., X and Y, respectively and the positive definite matrix D 4 is divided into 4
matrices as written in (21). ,
Definition 4: The marginal possibility distribution on X is defined by
I1,(x) =maxTL,(x,y). 22)
The marginal possibility distribution obtained from the exponential distribution (22) can be
represented by
I,(x)=(@,D, - DlzD_lD:z) ' (23)
which is proved as follows. The maximization problem shown in (22) can be reduced to the following
minimization problem:

n;m(x a,)'D,(x-a,) +‘2(y—a2)’D{2(x—a,) +(y—a,)D,(y—a,). (24)

The optimal solution y~ of (24) is
y =-D;Dj,(x-a,)+a, (25)

Substituting (25) into (24) yields (23).
Definition 5: Given the joint possibility distribution (21), the conditional distribution given by y is
defined by

I, (x ly) =kexp{-(x—a,,y - az)[ :l(x a,y-a,)}, (26)
D, D, ,
where k is a normalizing factor such that
maxIT,(x ly)=1. @7
By solving the optimization problem (27), IT,(xly) can be written as
I (x ly)=(a, - 1_11D12 (y-2,),D,),, (28)

which is proved as follows. Consider the problem for obtaining a normalizing factor k. The maxnmxzatlon
problem (27) can be reduced to the following minimization problem

min(x —a,)' D, (x -a,) + 2y —~a,)' Dj;(x-a,) . (29
The optlmal solution of (29) is ‘

x =—D,‘,'D,2(y—a2)+a, . 30
By substituting x" into (26) and setting IT,(x"ly)=1, we have

k =exp{(y-a,)' (D, -D|,D;D,,)(y-a,)}. ' (D

Substituting (31) into (26) leads to (28).
In what follows, let us show that the marginal and conditional distributions derived from the joint

distribution are consistent with each other.



Theorem 2: The following relation holds. ‘ .

I, (x I, (y) =T, (xy), » ' 32
where IT,(x!y) and II,(y) arederived from II,(x,y) by Definition 4 and 5.

From Theorem 2, we know that :

O,&ly)=I,(y!x) I1,)/IT,(y), L (33)
which is just the same as Bayes theorem. Suppose that- IT ,(y lx) is a possibilistic information system,
where  x and y are associated with cause and effect, respectively. Assuming the prior possibility
distribution IT,(x), we can calculate the posterior possibility distribution IT,(x1y) given y, using (33).
Thus, we can expect to construct an information-decision problem from the viewpoint of possibility [16].

3. Possibilistic linear systems
The possibilistic linear system with exponential distributions are defined by the followmg extension
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principle. Let f : X XY — Z be a vector function. Given exponential possibility distributions IT,(x) and

IT,(y) on X and Y, respectively, the possibility distribution I1,, 5 (z) on Z is defined as

Iy, B)(z)"(xygl_f}’(( I, (x) - TIg(y) . (34

Suppose that a linear vector function is given as y=Tx, where T is an mxn matrix, n>m and
rank[T]=m. The possibility distribution derived from an exponential possibility distribution
I1,(x) =(a,D,), isdenoted as ‘

My, (y)= max exp{—(x—a)‘DA (x-a)}. : 35)
In other words when a fuzzy vector A is used instead of x, the fuzzy output vector Y is denoted as

Y=TA, (36)
where the possibility distribution of Y is regarded as I1;,(y). By solvmg the optimization problem
(35), we have

Ty, (y) = exp{—(y — Ta) (TD'T')" (y Ta)}=(Ta,(TD,'T")™),. (37
Suppose that :
z=Ax+Ay, - (38)

where A, and A4, are constants, and x and y are governed by possibility distribution IT,(x) =(a,,D,),
and II,(y)=(a,,D,),, respectively. The fuzzy vector of (38) is expressed as

Z=MA+A,B, , (39)
whose distribution is denoted as IT,(z) . By solving (34), I1,(z) can be represented as '
I, =(Aa, +Aﬂa2’zlzl)l +A;D2)z B 40)

4. Possibility linear regression

Let us define a possibility linear system as

Y=Ax +Ax +...+Ax, =Ax, , ’ : 41)
where x is a real vector(input vector) and A=(A,A,,....,A,) is a fuzzy coefficient vector defined by

(a,D, ) . The possibility distribution I1,(y) of (41) can be obtamed as

I, (y) =exp{—(y-xja,)’ x'Dx )"} = (x}a,,(x] D,,x . ‘ 42)
Given data (y,,x;), i=l,..,m, let us formulate possibility regression analysis with the following
assumptions: - .

D yelYl, =y y()2h},
2) J=YxD,x; — minimize (An index of the spread of (42)),

3 D,>0.
This formulation is given as follows:
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. _ t
min J =Y x;D,x;

D,.s, .
ST xDyx;2(y;-xja)’ /(-Ink), j=1,...,m. B 43)
D,>0. |
The center vector a, is obtained by a conventional regression. method and the condition D, >0 is
replace by a sufficient condition as follows: Given a real symmetric matrix [d;]e R™", the sufficient
condition for this matrix being positive definite can be described as :
&> 3 |, 6=t | (a4)

J=1,j#i

In the LP problems, |d;| will be replaced by d*+d because dj +dj; 2ld; —d; Hd;| where
d; 20 and dj; 20 . This is a direct corollary of Gersgorin theorem.

5. Possibility portfolio selection : ,

Given security data (x;, 4, ), i=1,...,m, where x; =[x,......x, ] is a vector of returns of securities S,
(i=1,...,n) for the ith period. The k; is an associated possibility grade given by an expert knowledge.
Assume that A; (i=1,..,m) are expressed by a possibility distribution (a, D,",.

Given the data, the upper and the lower possibility distributions denoted as [1, and II,, respectwely,
are identified to satisfy IT,(x)2TT,(x),which is similar to rough sets concept.

The center vector a can be approximately esumated as a=x, whose possibility degree

h, = Max h; and the associated possibility degree k; is rev1sed to be 1. Take y, =x;—a and denote

Jj=le.m
D;’ as D, and D, corresponding to the upper and lower distributions, respectively. Let us identify the
upper and lower possibility distributions with the following assumptions. ‘

D) IL(y)sh ,i=l,..m

2) TL.(Gy)2h,i=1,...m

3) IL(y)211,(y) |

4) I1,(y) X XI1,(y,) — maximize

5) IL.(y)X.....XII,(y,) — minimize
The upper and lower distributions can be obtained by the following optimization problem

_Dl:d’l:;’ ' gyinlyi ’E.yx'Duyi

subject to y,D,y, <-Inh,, , ; 45y
y\D,y, 2-Inh, , i=l,....m, |
D;'-D;' 20.

D; D 20-is a nonlinear constraint condition. It is difficult to solve the problem (44). Prmc1ple
component analysis (PCA) is used to rotate the given data (y, /) (i=1,...,m) to obtain a positive
definite matrix easily. The data can be transformed by the linear transformation T. The columns of T are
eigenvectors of the matrix X =[0',.j] of given data. It should be noted that T'T=I. o, is defined as
follows: : '

o, = ’g(xki —a)(x;—a,)h, }/g‘{hk . S @6)

It is ass_umed that rank[T] =nt Using the linear transformation, the data {y,} can be transformed
into {,=T'y,}. Then we have |

I1,(z,) =exp{-zT'D;'Tz;} . : (€9))
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According to the feature of PCA, T'D;'T is assumed to be a diagonal matrix as follows:
C1 0 |
T'D;'T=C,= ) . 48)
0 Cn
Denote C, as C, and C, for the upper and the lower possibility distribution cases, respectively. The

corresponding diagonal elements in C, and C, are denoted as C,; and Cy (=1,...,n), respectively.
The integrated model can be rewritten as follows.

m m
min Zz}C,z,- -¥2z,C,z,
C,,C, i= =1
subject to z;Cz, 2 -lnk,,
:Cuz, -Ink;,
C,;2€
c;2¢,, ‘ : 49)
i=l,..m,j=1,..n,

where ¢; 2¢, 2 & >0 (j=1,..,n) make D, -D, semi-positive definite and D, and D, positive. Thus,
we have - ‘

D, =TC,'T, ‘

D, =TC,'T'. ' Lo (50)
Theorem 3: The upper and the lower possmﬂlty d1str1buuon matrices in (48) always exist.
Theorem 4: Assume the data (y,,h,) i=1,...,m, are governed by an exponential possibility distribution

(0,D), . The optimal solutions of D, and D, in (44)are D. »
A possibility return of a portfolio Z can be written as Z= i r;x; , where r; denotes the proportion of
=
the total investment funds devoted to the securlty S Thus, Z isa poss1b111ty variable with the following
possibility distribution: o 7 ‘
I1, =exp{~(z-r'a)’ (r'D,r) }, . : ' 1)
where r'a is a center value and r'D,r isa spread of Z '

Portfolio selection models based on upper possnblllty distributions (j=u) and on lower possibility
distributions (j=0)

min r'D r
subject to . ra=c, '
Sr=1, o

where c is an expected center value of possibility return rate,
Theorem 5: The spread of the possibility return obtained by the lower model is not larger than the one
obtained by the upper model. E

The curves from upper and lower poss1b111ty models are called poss1b111ty frontlers I and II,
respectively.

5. Numerical example
5.1 Possibility regression ’ :
The input-output data are shown i in Table 1. The possibility linear system is
Y =Ax +A4x, = . - - (53)

The center vector ¢, is determined by the conventional regression analysis as o = (3.7885,0.4097)" .
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By solving (43), the matrix is obtained as
g [2.93537 0.02637]
A

= : 4
0.02637 0.02637

Fig. 1 shows the contour line (h=0.5) of the obtained possibility dlsmbuuon of parameters and Fig. 2
shows the possibility regression model and the given data.

Table 1: inplit-output data

i 1234 5 6 7 8 910
x 2 4 6 9 12 13 14 16 29 20
y, 4758 7 912 9 14 10

a2

al

3.5 4 4.5 5

Fig.1 Possibility distribution of with h=0.5
o %2

25 ¢
20
15 ¢

10 ¢

Fig.2 Possibility regression model and the given data

5.2 Possibility portfolio selection

Let us consider the security data shown in Table 2. In ‘order to show the concept of upper and lower
possibility distributions graphically let us just consider two securities, namely, Am.T. and At&T in Table
2. The upper and lower poss1b1hty are obtained from (49) and (50) as follows: '

a=[0.154,0.176],
o _[0:2665 0.0972 o _[0.0313 0.0165 55)
* 7100972 0.1689| " 7100165 0.0148]"

Fig. 3 shows the upper and lower possibility distribution of these two securities with h=0.5. From (49)
and (50), we can also obtain the upper and lower possibility distributions of nine securities in Table 2.
Then, the possibility efficient portfolio frontiers I and II can be obtained from (52) and shown in Fig. 4.



Table 2. Returnts on nine securities and possibility grades
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#1 7R X #4 #5 #6 #7 #8 - #9
hi year Am.T |AT&T.] USS. | GM. |AT&S.| C.C Bdn. Frstn. S.S.
0.2 |1937(1) | -0.305 | -0.173 | -0.318 | -0.477 | -0.457 | -0.065 | -0.319 0.4 -0.435
0.241 |1938(2)| 0.513 | 0.098 | 0.285 | 0.714 | 0.107 | 0238 | 0.076 | 0.336 | 0.238
0.282 | 19393) | 0.055 0.2 | -0047 | 0.165 | -0.424 | -0.078 | 0381 | -0.093 | -0.295
0.324 | 1940(4) | -0.126 | 0.03 0.104 | -0.043 | -0.189 | -0.077 | -0.051 | -0.09 | -0.036
0.365 | 1941(5)| -0.28 | -0.183 | -0.171 | -0.277 | 0.637 | -0.187 | 0.087 | -0.194 | -0.24
0.406 | 1942(6) | -0.003 | 0.067 | -0.039 | 0476 | 0.865 | 0.156 | 0262 | 1.113 | 0.126
0.447 | 1943(7) | 0.428 0.3 0.149 | 0225 | 0.313 | 0.351 | 0.341 0.58 0.639
0.488 | 19448) | 0.192 | 0.103 | 0.26 0.29 0.637 | 0.233 | 0.227 | 0473 | 0.282
0.529 |1194509)| 0446 | 0216 | 0419 | 0.216 | 0373 | 0.349 | 0352 | 0229 | 0.578
0.571 }1946(10)| -0.088 | -0.046 | -0.078 | -0.272 | -0.037 | -0.209 | 0.153 | -0.126 | 0.289
0.612 |1947(11)| -0.127 | -0.071 | 0.169 | 0.144 | 0.026 | 0.355 | -0.099 | 0.009 | 0.184
0.653 |1948(12)| -0.015 | 0.056 | -0.035 | 0.107 | 0.153 | -0.231 | 0.038 | 0.000 | 0.114
0.694 ]1949(13)| 0.305 | 0.038 | 0.133 | 0321 | 0.067 | 0.246 | 0273 | 0.223 | -0.222
0.735 ]1950(14)| -0.096 | 0.089 | 0.732 | 0305 | 0.579 | -0.248 | 0.091 0.65 | 0327
0.776 |1951(15)| 0.016 0.09 0.021 | 0.195 0.04 | -0.064 | 0.054 | -0.131 | 0.333
0.818 |1952(16)| 0.128 | 0.083 | 0.131 0.39 0434 | 0.079 { 0.109 | 0.175 | 0.062
0.859 |1953(17)| -0.01 | 0.035 | 0.006 | -0.072 | -0.027 | 0.067 0.21 -0.084 | -0.048
0.9 J1954(18)] 0.154 | 0.176 | 0.908 | 0.715 | 0.469 | 0.077 | 0.112 | 0.756 | 0.185

spread
N
(2]

x2

—®—1 low
v | upper

0.2 0.25 0.3 0.5 0.6 0.7
return

Fig. 4 Possibility efficient portfolio frontiers I and II
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